
G A T E - a G e n e r a l A r c h i t e c t u r e for T e x t E n g i n e e r i n g

Hamish Cunningham

Dept. Computer Science

University of Sheffield

211 Portobello St.

Sheffield S10 4DP

hamish@dcs, shef. ac. uk

Kevin Humphreys

Dept. Computer Science

University of Sheffield

211 Portobello St.

Sheffield S10 4DP

kwh~dcs, shef. ac. uk

Robert Gaizauskas

Dept. Computer Science

University of Sheffield

211 Portobello St.

Sheffield S10 4DP

robertg@dcs, shef. ac. uk

Yorick Wilks

Dept. Computer Science

University of Sheffield

211 Portobello St.

Sheffield S10 4DP

yorick@dcs, s h e f . ac. uk

For a variety of reasons NLP has recently spawned
a related engineering discipline called language en-
gineering (LE), whose orientation is towards the ap-
plication of NLP techniques to solving large-scale,
real-world language processing problems in a robust
and predictable way. Aside from the host of funda-
mental theoretical problems that remain to be an-
swered in NLP, language engineering faces a variety
of problems of its own. First, there is no theory of
language which is universally accepted, and no com-
putational model of even a part of the process of
language understanding which stands uncontested.
Second, building intelligent application systems, sys-
tems which model or reproduce enough human lan-
guage processing capability to be useful, is a large-
scale engineering effort which, given political and
economic realities, must rely on the efforts of many
small groups of researchers, spatially and temporally
distributed. The first point means that any at tempt
to push researchers into a theoretical or represen-
tational straight-jacket is premature, unhealthy and
doomed to failure. The second means that no re-
search team alone is likely to have the resources to
build from scratch an entire state-of-the-art LE ap-
plication system.

Given this state of affairs, what is the best prac-
tical support that can be given to advance the field?
Clearly, the pressure to build on the efforts of others
demands that LE tools or component technologies
be readily available for experimentation and reuse.
But the pressure towards theoretical diversity means
that there is no point at tempting to gain agreement,
in the short term, on what set of component tech-
nologies should be developed or on the informational
content or syntax of representations that these com-
ponents should require or produce.

Our response has been to design and implement
a software environment called GATE (Cunninham
et al., 1997), which we will demonstrate at ANLP.
GATE attempts to meet the following objectives:

1. support information interchange between LE
modules at the highest common level possible
without prescribing theoretical approach;

2. support the integration of modules written in
any source language on any common platform;

3. support the evaluation and refinement of LE
component modules, and of systems built from
them, via a uniform, easy-to-use graphical in-
terface which in addition offers facilities for vi-
sualising data and managing corpora.

Corresponding to the three key objectives identi-
fied above GATE comprises three principal elements:
GDM, the GATE Document Manager, based on the
T IP S TER document manager; CREOLE, a Collec-
tion of REusable Objects for Language Engineering:
a set of LE modules integrated with the system; and
GGI, the GATE Graphical Interface, a development
tool for LE R&D, providing integrated access to the
services of the other components and adding visual-
isation and debugging tools.

The GDM provides a central repository or server
that stores all information an LE system generates
about the texts it processes. All communication be-
tween the components of an LE system goes through
GDM, which insulates these components from direct
contact with each other and provides them with a
uniform API for manipulating the data they produce
and consume. The basic concepts of the data model
underlying the GDM are those of the T IPSTER ar-
chitecture, which is specified (Grishman, 1996).

All the real work of analysing texts in a GATE-
based LE system is done by CREOLE modules or
objects (we use the terms module and object rather
loosely to mean interfaces to resources which may be
predominantly algorithmic or predominantly data,
or a mixture of both). Typically, a CREOLE object
will be a wrapperaround a pre-existing LE module
or database - a tagger or parser, a lexicon or ngram
index, for example. Alternatively, objects may be

2 9

developed from scratch for the architecture - in ei-
ther case the object provides a standardised API to
the underlying resources which allows access via GGI
and I /O via GDM. Tile CREOLE APIs may also be
used for programming new objects.

When the user initiates a particular CREOLE ob-
ject via GGI (or when a programmer does the same
via the GATE API when building an LE applica-
tion) the object is run, obtaining the information it
needs (document source, annotations from other ob-
jects) via calls to the GDM API. Its results are then
stored in the GDM database and become available
for examination via GGI or to be the input to other
CREOLE objects.

GDM imposes constraints on the I /O format of
CREOLE objects, namely that all information must
be associated with byte offsets and conform to the
annotations model of the T I P S T E R architecture.
The principal overhead in integrating a module with
GATE is making the components use byte offsets, if
they do not already do so.

The GGI is a graphical tool that encapsulates the
GDM and CREOLE resources in a fashion suitable
for interactive building and testing of LE compo-
nents and systems. The GGI has functions for creat-
ing, viewing and editing the collections of documents
which are managed by the GDM and that form the
corpora which LE modules and systems in GATE
use as input data. The GGI also has facilities to
display the results of module or system execution -
new or changed annotations associated with the doc-
ument. These annotations can be viewed either in
raw form, using a generic annotation viewer, or in an
annotation-specific way, if special annotation view-
ers are available. For example, named entity annota-
tions which identify and classify proper names (e.g.
organization names, person names, location names)
are shown by colour-coded highlighting of relevant
words; phrase structure annotations are shown by
graphical presentation of parse trees. Note that the
viewers are general for particular types of annota-
tion, so, for example, the same procedure is used for
any POS tag set, Named-Entity markup etc. Thus
CREOLE developers reuse GATE data visualisation
code with negligible overhead.

A central function of the GGI is to provide a
graphical launchpad for the various LE subsystems
available in GATE. To that end, the main panel
of the GGI top-level display shows the particular
tasks which may be performed by modules or sys-
tems within the GATE system (e.g. parsing). Hav-
ing chosen a task, a window appears displaying a
connected graph of the modules that need to be run
to achieve the task. In this graph, the boxes denot-

ing modules are active buttons: clicking on them
will, if conditions are right, cause the module to
be executed. The paths through the graph indi-
cate the dependencies amongst the various modules
making up this subsystem. At any point in time,
the state of execution of the system, or, more ac-
curately, the availability of data from various mod-
ules, is depicted through colour-coding of the mod-
ule boxes. After execution, the results of completed
modules are available for viewing by clicking again
on the module box, and are displayed using an ap-
propriate annotation viewer as described above. In
addition, modules can be 'reset', i.e. their results
removed from the GDM, to allow the user to pick
another path through the graph, or re-execute hav-
ing altered some tailorable data-resource (such as a
grammar or lexicon) interpreted by the module at
run-time. (Modules running as external executables
might also be recompiled between runs.)

To illustrate the process of converting pre-existing
LE systems into GATE-compatible CREOLE sets
we use as an example the creation of VIE (Vanilla
Information Extraction system) from LaSIE (Large-
Scale Information Extraction system) (Gaizauskas
et al., 1995), Sheffield's entry in the MUC-6 sys-
tem evaluations. LaSIE module interfaces were not
standardised when originally produced and its CRE-
OLEization gives a good indication of the ease of
integrating other LE tools into GATE. The work
took around 2 person-months. The resulting sys-
tem, VIE, is distributed with GATE.

R e f e r e n c e s

Cunninham, H., K. Humphreys, R. Gaizauskas, and
Y. Wilks. 1997. Software Infrastructure for Nat-
ural Language Processing. In Proceedings of the
Fifth Conference on Applied Natural Language
Processing (ANLP-97), March.

Gaizauskas, R., T. Wakao, K Humphreys, H. Cun-
ningham, and Y. Wilks. 1995. Description of the
LaSIE system as used for MUC-6. In Proceedings
of the Sixth Message Understanding Conference
(MUC-6). Morgan Kaufmann.

Grishman, R. 1996. T I P S T E R Architecture Design
Document Version 2.2. Technical report, DARPA.
Available at h t tp : / /www, t i p s t e r , o rg / .

3 0

