
A Workbench for Finding Structure in Texts

A n d r e i M i k h e e v
H C R C , L a n g u a g e Technology Group ,

Univers i ty of Ed inburgh ,
2 Buccleuch Place, E d i n b u r g h EH8 9LW, UK.

A n d r e i . Mikheev@ed. ac . uk

S t e v e n Finch
T h o m s o n Technical Labs,

1375 P iccard Drive, Sui te 250,
Rockvil le Mary l and , 20850

sfinch@thomtech, com

A b s t r a c t

In this paper we report on a set of compu-
tational tools with (n)SGML pipeline data
flow for uncovering internal structure in
natural language texts. The main idea be-
hind the workbench is the independence of
the text representation and text analysis
phases. At the representation phase the
text is converted from a sequence of char-
acters to features of interest by means of
the annotation tools. At the analysis phase
those features are used by statistics gath-
ering and inference tools for finding signifi-
cant correlations in the texts. The analysis
tools are independent of particular assump-
tions about the nature of the feature-set
and work on the abstract level of feature-
elements represented as SGML items.

1 Introduct ion
There is increasing agreement that progress in vari-
ous areas of language engineering needs large collec-
tions of unconstrained language material. Such cor-
pora are emerging and are proving to be important
research tools in areas such as lexicography, text un-
derstanding and information extraction, spoken lan-
guage understanding, the evaluation of parsers, the
construction of large-scale lexica, etc.

The key idea of corpus oriented language analy-
sis is to collect frequencies of "interesting" events
and then run statistical inferences on the basis of
those frequencies. For instance, one might be inter-
ested in frequencies of co-occurences of a word with
other words and phrases (collocations) (Smadja,
1993), or one might be interested in inducing word-
classes from the text by collecting frequencies of the
left and right context words for a word in focus
(Finch&Chater, 1993). Thus, the building blocks
of the "interesting" events might be words, their
morpho-syntactic properties (e.g. part-of-speech,

suffix, etc.), phrases or their sub-phrases (e.g. head-
noun of a noun group), etc. The "interesting" events
usually also specify the relation between those build-
ing blocks such as "the two words should occur next
to each other or in the same sentence". In this paper
we describe a workbench for uncovering that kind of
internal structure in natural language texts.

2 Data Level Integrat ion
The underlying idea behind our workbench is data
level integration of abstract data processing tools by
means of structured streams. The idea of using an
open set of modular tools with stream input/output
(IO) is akin to the philosophy behind UNIX. This
allows for localization of specific data processing or
manipulation tasks so we can use different combina-
tions of the same tools in a pipeline for fulfilling dif-
ferent tasks. Our architecture, however, imposes an
additional constraint on the IO streams: they should
have a common syntactic format which is realized as
SGML markup (Goldfarb, 1990). A detailed compar-
ison of this SGML-oriented architecture with more
traditional data-base oriented architectures can be
found in (McKelvie et al., 1997).

As a markup device an SGML element has a label
(L), a pre-specified set of attributes (attr) and can
have character data:

<L attr=val . . attr=val>character data</L>

SGML elements can also include other elements thus
producing tree-like structures. For instance, a doc-
ument can comprise sections which consist of a title
and a body-text and the body-text can consist of
sentences each of which has its number stated as an
attribute, has its contents as character data and can
include other marked elements such as pre-tokenized
phrases and dates as shown in Figure I. Such struc-
tures are described in Document Type Definition
(DTD) files which are used to check whether an
SGML document is syntactically correct, i.e. whether
its SGML elements have only pre-specified attributes
and include only the right kinds of other SGML ele-
ments. So, for instance, if in the document shown

372

in Figure 1 we had a header element (H) under an
S element - this would be detected as a violation of
the defined structure.

An impor tan t proper ty of SGML is tha t defining a
rigorous syntactic format does not set any assump-
tions on the semantics of the da ta and it is up to a
tool to assign a specific interpretation to a particular
SGML i tem or its at tr ibutes. Thus a tool in our archi-
tecture is a piece of software which uses an SGML-
handling Application Programmer Interface (API)
for all i ts da ta access to corpora and performs some
useful task, whether exploiting markup which has
previously been added by other tools, or itself adding
new markup to the stream(s) and without destroying
the previously added markup. This approach allows
us to remain entirely within the SGML paradigm for
corpus markup while allowing us to be very general
in designing our tools, each of which can be used for
many purposes. Furthermore, through the ability
to pipe da ta through processes, the UNIX operating
system itself provides the natural "glue" for inte-
grating data-level applications together.

The API methodology is very widely used in the
software industry to integrate software components
to form finished applications, often making use of
some glue environment to stick the pieces together
(e.g. tc l / tk , Visual Basic, Delphi, etc.). However,
we choose to integrate our applications at the da ta
level. Rather than define a set of functions which
can be called to perform tasks, we define a set of
representations for how information which is typi-
cally produced by the tasks is actually represented.
For natural language processing, there are many ad-
vantages to the da ta level integration approach. Let
us take the practical example of a tokenizer. Rather
than provide a set of functions which take strings
and return sets of tokens, we define a tokenizer to
be something which takes in a SGML stream and re-
turns a SGML stream which has been marked up for
tokens. Firstly, there is no direct tie to the process
which actually performed the markup; provided a
tokenizer adds a markup around what it tokenizes,
it doesn ' t ma t t e r whether it is writ ten in C or LISP,
or whether it is based on a FSA or a neural net.
Some tokenization can even be done by hand, and
any downline application which uses tokenization is
completely functionally isolated from the processes
used to perform the tokenization. Secondly, each
par t of the process has a well-defined image at the
da ta level, and a data-level semantics. Thus a tok-
enizer as par t of a complex task has its own seman-
tics, and fur thermore its own image in the data.

3 Queries and V i e w s
SGML markup (Goldfarb, 1990) represents a docu-
ment in terms of embedded elements akin to a file

structure with directories, subdirectories and files.
Thus in the example in Figure 1, the document com-
prises a header and a body text and these might
require different strategies for processing 1. The
SGML-handling API in our workbench is realized
by means of the LT NSL library (Thompson et al.,
1996) which can handle even the most complex doc-
ument structures (DTDs). I t allows a tool to read,
change or add at t r ibute values and character da ta to
SGML elements and address a part icular element in a
normalized 2 SGML (NSGML) s t ream using its partial
description by means of nsl-queries. Consider the
sample text shown in Figure 1. Given tha t text and
its markup, we can refer to the second sentence un-
der a BODY element which is under a DOC element:
/DOC/BODY/S[n=2]. This will sequentially give us
the second sentences in all BODYs. If we want to ad-
dress only the sentence under the first BODY we can
specify that in the query: /DOC/BODY[0]/S[n=2].
We can use wildcards in the queries. For instance,
the query . */S says "give me all sentences anywhere
in the document" and the wildcard ".*" means " at
any level of embedding". Thus we can directly spec-
ify which parts of the s t ream we want to process and
which to skip.

Using nsl-queries we can access required SGML el-
ements in a document. These elements can have,
however, quite complex internal structures which we
might want to represent in a number of different
ways according to a task at hand. For instance, if we
want to count words in the corpus and these words
are marked with their par ts of speech and base forms
such as
<W pos=VBD l=look>looked</W>
we should be able to specify to a counting pro-
gram which fields of the element it should con-
sider. We might be interested in counting only
word-tokens themselves and in this case two word-
tokens "looked" will be counted as one regardless
whether they were past verbs or participles. Using
the same markup we can specify tha t the "pos" at-
t r ibute should be considered as well, or we can count
just parts-of-speech or lemmas. A special view pat-
tern provides such information for a counting tool.
A view pat tern consists of names of the a t t r ibutes to
consider with the symbol # representing the char-
acter da ta field of the element. For instance:

• {#} - this view pat tern specifies tha t only the
character da ta field of the element should be
considered ("looked");

• {#}{pos} - this view pa t te rn says tha t the

1For instance, unlike common texts, headers often
have capitalized words which are not proper nouns.

2There are a number of constraints on SGML markup
in its normalized version.

373

<DOC>
<H>This is a Title</H>
<BODY>
<S n=l>This is the first sentence with character data only</S>
<S n=2>There can be sub-elements such as <W pos=NN>noun groups</W> inside sentences.</S>

</BODY>
<H>This is another Title</H>

<BODY>
<S n=l>This is the first sentence of the second section</S>
<S n=2>Here is a marked date <D d=l m=11 y=1996>1st October 1996</D> in this sentence.</S>

</BODY>
</DOC>

Figure 1: SGML marked text.

Corpus

Viewers

CORPORA

X 2 test [

Retrieval ~ Indexing L ' I
Tools Tools i~i

I

INDEXING & RETRIEVAL

Convert
to SGML

J Convert I
"q to NSGMI_J

I rJ Element
Count

2ontingency
Table

Builder

COUNTING TOOLS

Logistic
Regression

I Dendrogram
Builder

I Tokenizer I

I
[POS Taggerl

I
N.' Lemmatizer I

I

I

I

I

!

I " ' ° ° " ° ' "

' Chunker I m j i , sgml tr
I I I

I

I ° , , , o . .
I

A No To s K ' J iNs

SGML - Record/Field
Converters
(sgdelmarkup)

2
INFERENCE TOOLS UNIX UTILITIES

Figure 2: Workbench Architecture. Thick arrows represent NSGML "fat" data flow and thin arrows normal
(record/field) data flow.

374

character da ta and the value of the "pos" at-
t r ibute should be considered (" looked/VBD");

• {1} - this view pa t te rn says tha t only the lem-
mas will be counted ("look");

4 T h e W o r k b e n c h
Using the idea of da ta level integration the work-
bench described in this paper promotes the idea of
independence of the text representation and the text
analysis phases. At the representation phase the
text is converted from a sequence of characters to
features of interest by means of the annotation tools.
At the analysis phases those features are used by the
tools such as statistics gathering and inference tools
for finding significant correlations in the texts. The
analysis tools are independent of particular assump-
tions about the nature of the feature-set and work
on the abs t rac t level of feature-elements which are
represented as SGML items. Figure 2 shows the main
modules and da ta flow between them.

At the first phase documents are represented in an
SGML format and then converted to the normalized
SGML (NSGML) markup. Unfortunately there is no
general way to convert free text into SGML since it is
not trivial to recognize the layout of a text; however,
there already is a large body of SGML-marked texts
such as, for instance, the British National Corpus.
The widely used on W W W format - HTML - is
based on SGML and requires only a limited amount of
efforts to be converted to strict SGML. Other markup
formats such as LATEX can be relatively easily con-
verted to SGML using publicly available utilities. In
many cases one can write a perl script to convert
a text in a known layout, for example, Penn Tree-
bank into SGML. In the simplest case one can put
all the text of a document as character da ta under,
for instance, a D0C element. Such conversions are
relatively easy to implement and they can be done
"on the fly" (i.e. in a pipe), thus without the need
to keep versions of the same corpus in different for-
mats. The conversion from arbi t rary SGML to NSGML
is well defined and is done by a special tool (nsgml)
"on the fly".

The NSGML st ream is then sent to the annota-
tion tools which convert the sequence of characters
in specified by the nsl-queries parts of the s t ream
into SGML elements. At the annotation phase the
tools mark up the text elements and their features:
words, words with their part-of-speech, syntactic
groups, pairs of frequently co-occuring words, sen-
tence length or any other features to be modelled.

The annota ted text can be used by other tools
which rely on the existence of marked features of
interest in the text. For instance, the statistic gath-
ering tools employ s tandard algorithms for counting
frequencies of the events and are not aware of the

nature of these events. They work with SGML ele-
ments which represent features we want to account
for in the text. So these tools are called with the
specification of which SGML elements to consider,
and what should be the relation between those el-
ements. Thus the same tools can count words and
noun-groups, collect contingency tables for a pair
of words in the same sentence or for a pair of sen-
tences in the same or different documents. For in-
stance, for automat ic alignment we might be inter-
ested in finding frequently co-occuring words in two
sentences, one of which is in English and the other
one in French. Then the collected statistics are used
with the s tandard tools for statistical inferences to
produce desirable language models. The impor tan t
point here is tha t neither statistics gathering nor in-
ference tools are aware of the nature of the statistics
- they work with abst ract da ta (SGML elements) and
the semantics of the statistical experiments is con-
trolled at the annotat ion phase where we enrich texts
with the features to model.

4.1 Text A n n o t a t i o n Phase
At the text annotation phase the text as a sequence
of characters is converted into a set of SGML ele-
ments which will later be used by other tools. These
elements can be words with their features, phrases,
combinations of words, length of sentences, etc. The
set of annotat ion tools is completely open and the
only requirement to the integration of a new tool
is tha t it should be able to work with NSGML and
pass through the information it is not supposed to
change. An annotat ion tool takes a specification
(nsl-query) of which par t of the s t ream to annotate
and all other parts of the s t ream are passed through
without modifications. Here is the s tandard set of
the annotators provided by our workbench:

sgtoken - the tokenizer (marks word boundaries).
Tokenization is at the base of many NLP applica-
tions allowing the jump from the level of characters
to the level of words, s g t o k e n is built on a determin-
istic FSA library similar to the Xerox FSA library,
and as such provides the ability to define tokens as
regular expressions. It also provides the ability to
define a priority amongst competing token types so
one doesn' t need to ensure tha t the token types de-
fined are entirely distinct. However of greatest inter-
est to us is how it interfaces with the NSGML stream.
The arguments to s g t o k e n include a specification of
the FSA to use for tokenization (there are several
pre-defined ones, or the user can define their own in
a perl-like regular expression syntax), an nsl-query
which syntactically specifies the par t of the source
s t ream to process, and specification of the markup
to add. The output of the process is an NSGML
data s t ream which contains all the da ta of the input
s t ream (in the same order as it appears in the in-

375

put s tream) together with additional markup which
tokenizes those par ts of the input s t ream which are
specified by the nsl-query parameter . A call

sgtoken -q /DOC/BODY/S <== what to tokenize
-s <== use stemdard tokenizer
-m W <== markup tokens as W

can produce an output like:

<W>books</W><W>,</W> <W>for instance</W>

This gives rise to a simple data-level semantics --
"everything inside a <W> element is a token added
by sgtoken". However, this semantics is flexible.
For example, if W markup is used for some other pur-
pose, this markup might be changed to T markup.

itpos - a POS-tagger (assigns a single part-of-
speech (POS) to a word according to the context it
was used). This is an HMM tagger akin to that de-
scribed in (Kupiec, 1992). It receives a tokenized NS-
GML stream and instructions on what is the markup
for words (word element label), where to apply tag-
ging (nsl-query), and how to output the assigned
information (attribute to assign). For instance, we
might want to tag only the body-text of a document,
and if the tokenizer marked up words as W elements
we specify this to the tagger, together with the at-
t r ibute tha t is to stand for the part-of-speech in the
W element:

itpos -q /DOC/BODY/.*/W <== path to words
-m pos <== attribute to set with tag
resource <== resources spec. file

This call will produce, for instance,

<W pos=NNS>books</W><W pos=CM>,</W>
<W pos=NNS>pens</W>

Here the "pos" attributes of the word elements "W"
are set by the tagger to pos-tags: NNS - plural
noun and CM - -comma. We can combine results
produced by different taggers in different attributes
which is useful for their evaluation.

Itlem - the lemmatizer (finds the base form for
a word). The lemmatizer takes a stream with
word elements together with their part-of-speech
tags and further enriches the elements assigning a
pre-specified attribute with lemmas, such as:

<W pos=NNS l=book>books</W><W pos=CM>,</W>
<W pos=NNS l=pen>pens</W>

l t c h t m k - syntactic chunker which determines the
s t ructural boundaries for syntactic groups such as
noun groups and verb groups as, for instance:

<NG>
<W pos=DT>the</W>
<W pos=JJ>good</W>
<W pos--NNS l=man>men</W>

</NG>

The chunker leaves all previously added information
in the text and creates a structural element which
includes the words of the chunk. The chunker it-
self is a combination of a finite s tate t ransducer over
SGML elements with a g rammar for syntactic groups
similar in spirit to tha t of Fidditch (Hindle, 1983).
This g rammar can employ all the fields of the SGML
elements. For instance a rule can say:"If there is
an element of type "W" with character da ta "book"
and the "pos" a t t r ibute set to "NN" followed by zero
or more elements of type "W" with the "pos" at-
tr ibutes set to "NN" - create an "NG" element and
put this sequence under it. The transducer itself
is application independent - it rewrites the SGML

streams according to a g rammar s ta ted in terms of
SGML elements. It was, for instance, applied for the
conversion of SGML markup into the LaTex markup.

The presented annotat ion tools are quite fast: the
whole pipeline annotates at a speed of 1500-2000
words per second. Thus we never store the results
of the annotat ion on disk, but annota te in the pipe
shaping the annotat ion to the task in hand. Al-
though the tools presented are deterministic and
always produce a single annotat ion there is a way
to incorporate multiple analyses into SGML struc-
tures using the hyperlinks described in (McKelvie
et al., 1997). This initial set of annotat ion tools
serves a wide range of tasks but one can imag-
ine, for instance, a tool which adds the suffix of
a word as its a t t r ibute <W s=ed>looked</W> or
noun group length in words or characters <NG wl=3
c l = 1 0 > < W > . . . </NG>. Another point to mention
here is tha t it is quite easy to integrate another tag-
ger or chunker or other tools as long as they obey the
NSGML i npu t /ou tpu t conventions of the workbench
or can be encased in a suitable "wrapper" .

4.2 Count ing Tools
After the annotat ion tools have been used to con-
vert the text from a sequence of characters into a
sequence of S(3ML elements, the counting tools can
count different phenomena in a uniform way. Like
the annotat ion tools, the counting tools take a spec-
ification of which par t of the document to count
things from (nsl-query) and they also take a spec-
ification of the view of an SGML element, i.e. which
parts of those elements to consider for comparison.

The element counting program s g c o u n t counts
the number of occurrences of certain SGML elements
in pre-specified fields of the s t ream according to a
certain view. For instance, the call

sgcount -q /DOC/H/.*/W -v {#}{pos}

will count frequencies of words occurring only in the
titles of a document at any level of embedding (.*)
and considering their character fields and the par t -
of-speech information. The call

376

sgcount -q /DOC/BODY/.*/W -v {pos}

will produce the distribution of parts of speech in
the BODY fields of documents.

To count joint events such as co-occurences of a
word with other words, there is a tool for build-
ing contingency tables - sgcontin. A contingency
table 3 records the number of times a joint event hap-
pened and the number of times a corresponding sin-
gle event happened. For instance, if we are inter-
ested in the association between some two words, in
the contingency table we will collect the frequency
when these two words were seen together and when
only one of them was seen. For instance, the call:

sgcontin -q /DOC/BODY/W -v {#}
-q2 /DOC/H/W -v2 {#}

will give us a table of the associations between words
in the body text of a document with the words in
the title. Here, the program takes the query and
the view for each element of a joint event. We can
also specify the relative position of elements to each
other. For instance, the call

sgcontin -q /DOC/BODY/W -v {#}
-q2 {q}/W[-l] -v2 {#}

will build a contingency for a word with words to
the left of it.

Both sgcount and sgcontin are extremely fast
- they can process a million word corpus in a few
minutes, so it is cheap to collect statistics of different
sorts from the corpus.

4.3 The Inference Tools

The statistics gathered at the counting phase can be
used for different kinds of statistical inferences. For
instance, using mutual information (MI) or X 2 test
on a contingency table we can find "sticky" pairs of
items. Thus if we collected a contingency table of
words in titles vs. words in body-texts we can infer
which words in a title strongly imply certain words
in a body text.

Using a contingency table for collecting left and
right contexts of words we can run tests on similarity
of the context vectors such as Spearman Rank Cor-
relation Coefficient, Manhat tan Metric, Euclidean
Metric, Divergence, etc, to see which two words have
the most similar context vectors and thus behave
similarly in the corpus. Such similarity would imply
closeness of those words and the words can be clus-
tered in one class. The dendrogram tool then can be
used to represent clustered words in a hierarchical
classification.

There is a wide body of publicly available statis-
tical software (StatXact, Cytel Software, etc) which

3Here we will talk only about two-way contingency
tables but our tools can build n-way tables.

can be used with the collected statistics for perform-
ing different sorts of statistical inferences and one
can chose the test and package according to the task.

4 . 4 I n d e x i n g / R e t r i e v a l T o o l s

For fast access to part icular locations in an SGML
corpus we can index the text by using features of
interest. Again, as in the case with the statistical
tools, the indexing tools work on the level of ab-
s tract SGML elements and take as arguments which
element should be indexed and what are the index-
ing units. For instance, we can index documents
by word-tokens in their sentences, or by sentence
length, or we can index sentences themselves by their
tokens, or by tokens together with their parts-of-
speech or by other features (marked by the anno-
tat ion tools). Then we can instantly retrieve only
those documents or sentences which possess the set
of features specified by the user or another tool.

If, for instance, we index sentences by their words
we can collect the collocations for a part icular word
or a set of words in seconds. The mkindex pro-
gram takes an annotated NSGML st ream and in-
dexes elements specified by an nsl-query by their
sub-elements specified by another nsl-query:

mkindex
-dq .*/BODY/S <== index all S in BODY
-iq .*/W <= by Ws in these Ss
-v {#} <= using only character data of W

The "v" specifies the view of the indexing units.
Such call will produce a table of indexing units
(words in our case) with references (sequential num-
bers) to the indexed elements (sentences) they were
found in. For instance:

book 23 78 96 584

says tha t word "book" was found in the sentences
23 78 96 and 584.

Next we have to relate (hook) the indexed ele-
ments (sentences) to the locations on disk. Note
here tha t for the indexing itself we used sentences
with annotations (they included W elements) but
for hooking of these sentences to their absolute lo-
cations the annotat ion is not needed if we want to
retrieve sentences as character data. The call:

MakeSGMLHook -dq .*/BODY/S filename.sgm

finds all sentences in the BODY elements of the
file and stores their locations:

0 12344
i 33444

So sentence 0, for instance, starts from the offset
12344 in the file. To retrieve a sentence with a cer-
tain word (or set of words) we look up in which sen-
tences this word was found and then look up the
locations of those sentences in the file.

377

In some cases when the corpus to index already
has a required annotation there is no need for our
annotat ion tools. An example of such case is the
British National Corpus (BNC). The BNC itself
is distributed in SGML format with annotation, thus
we used the indexing tools directly after the pipeline
conversion into NSGML.

4.5 Util i t ies and Fi l ters
One of the at tractive features of data-level integra-
tion is the availability of a number of very flexi-
ble da ta manipulation and filtering utilities. For
the record/field da ta format of the UNIX envi-
ronment, such utilities include g r e p , sed , coun t ,
awk, s o r t , t r and so on. These utilities allow flex-
ible and selective data-manipulation applications to
be built by "piping" data through several utility pro-
cesses. SGML is a more powerful da ta representa-
tion language than the simple record/field format
assumed by many of these UNIX utilities, and con-
sequently new utilities which exploit the additional
power of the SGML representation format are re-
quired. We shall briefly describe the sggrep and
sgdelmarkup utilities.

sggrep is an NSGML-aware version of grep. This
utility selects parts of the NSGML stream according
to whether or not a regular expression appears in
character data at a specific place. As arguments, it
takes two queries, the first (context query) tells it
what parts of the stream to select or reject, and the
second (content query) tells it where to look for the
regular expression (within the context of the first).
Optional flags tell the utility whether to include or
omit parts of the stream falling outside the scope
of the first query, or whether to reverse the polarity
of the decision to include or exclude (the "-v" flag).
For instance, the call:

sggrep -qx .*/SECT[t=SUBSECTION] <== context
-qt .*/TITLE <== content
miocar.+[]+£nf <== regular expr.

will produce a stream of those SECT elements
whose attribute "t" has the value SUBSECTION
and which contain somewhere an element called TI-
TLE with contiguous characters matched by the reg-
ular expression "miocar.+[]+inf" in the character
data field.

sgdelmarkup is a utility which converts SGML ele-
ments into the record field format adopted by UNIX
so the information can be further processed by the
s tandard UNIX utilities such as p e r l , awk, sed ,
t r , etc. This tool takes an nsl-query as the specifi-
cation which elements to convert and the view to the
elements as the specification how to convert them.
For instance, the call:

sgdelmarkup -q .*/W[pos=NN] -v "{#} {i}"

will convert all nouns into "word lemma" format:

<W l=book pos=NN>books</W> ==> books book

As an example of the combined functionality we
can first extract from an NSGML stream elements of
interest by means of sggrep, then convert them into
the record-field format using sgdelmarkup and then
sort them using the standard UNIX utility s o r t .

5 Putting it all together
Here we present a simple example of extracting and
clustering the terminology from a medical corpus us-
ing the tools from the workbench. The PDS is a cor-
pus of short Patient Discharge Summaries written
by a doctor to another doctor. Usually such a letter
comprises a structured header and a few paragraphs
describing the admission, investigations, t reatments
and the discharge of the patient. We easily converted
thes texts into SGML format with the structure PDS-
HEADER-BODY writing a few lines of perl script.
We did not keep a separate SGML version of the cor-
pus and converted it "on the fly". Then we applied
the annotation as described in section 4.1 thus mark-
ing up words with their lemmas and parts-of-speech
and noun/verb group boundaries. Put t ing in this
annotation is computationally cheap and we did it
in the pipe rather than storing the annotated text
on disk:

cat *.pds i nawk-f pds2sgml.awk I nsgml i
sgtoken -q ".*/BODY" -m W I
itpos -q ".*/BODY/.*/W" -mpos [
itlem -q ".*/BODY/.*/W" -m 1 l
itchunk -q ".*/BODY/S -m NG ng-gram l

itchunk -q ".*/BODY/S -m VG vg-gram

We annotated only the body-text of the sum-
maries and as the result of the annotation phase
we obtained sentence elements "S" with noun-group
("NG"), verb-group ("VG") and word ("W') ele-
ments inside, such as:

<S n=l> -- sentence N 1
<NG> -- start of noun group

<W pos=DT>This</W>
<W pos=CD>70</W>
<W pos=NN>year</W>
<W pos=JJ>old</W>
<W pos=NN>man</W>

</NG> -- end of noun group
<VG> -- start of verb group

<W pos=BED l=be>was</W>
<W pos=VBN l=admit>admitted</W>

</VG> -- end of verb group
<W pos=IN>from</W>
.......... -- other phrases and words
<W pos=SENT>. </W>

</S> -- end of sentence 1

Following (Justeson&Katz, 1995) we extracted
terminological multi-word phrases as frequent multi-

378

word noun groups. We collected all noun-groups
with their frequencies of occurrences by running:

sgdelmarkup -q ".*/NG/W" -v {#} I
sgcount -q /PDS/BODY/S/NG -v {#}

The sgdelmarkup call substituted all W elements
in noun groups with their character data:

<NG><W pos=DT>the</W> <W pos=NN>man</W></NG>

<NG>the man</NG>

and sgcount counted all NGs considering only their
character fields. Here are the most frequent noun
groups found in the corpus:

463 cardiac catheterisation
207 Happy Valley Hospital
144 ischaemic heart disease
114 Consultant Cardiologist
111 Isosorbide Mononitrate
108 the right coronary artery

Then we clustered the extracted terms by their
left and right contexts. Using the sgcont in tool we
collected frequencies of the two words on the left and
two words on the right as the context. We also im-
posed a constraint that if there is a group rather than
a word, we take only the head word: the last word
in a noun group or the last verb in a verb group.
As the result of such clustering we obtained four
distinctive clusters: body-parts ("the right coronary
artery"), patient-conditions ("70% severe stenosis"),
treatments ("coronary bypass operation") and inves-
tigations ("cardiac catheterisation"). Unlike simple
word-level clustering this clustering revealed some
interesting details about the terms. For instance,
the terms "left coronary artery" and "right coronary
artery" were clustered together whereas "occluded
coronary artery" was clustered with "occlusion" and
"stenosis" thus uncovering the fact that it is of the
"patient-condition" type rather than of the "body-
part". A more detailed description of the process
for uncovering corpus regularities can be found in
(Mikheev&Finch, 1995).

6 Conclusion
In this paper we outlined a workbench for investi-
gating corpus regularities. The important concept
of the workbench is the uniform representation of
corpus data by using SGML markup at the corpus
annotation phase. This allows us to use the same
statistics gathering and inference tools with differ-
ent annotations for modelling on different features.
The workbench is completely open to the integra-
tion of new tools but imposes SGML requirements
on their input/output interface. The pipeline archi-
tecture of our workbench is not particularly suited
for nice GUIs but there are publicly available visual
pipeline builders which can be used with our tools.

The tools described in this paper and some other
tools are available by contacting the authors. Most
of the tools are implemented in c / c + + under the
UNIX environment and now we are porting them to
the NT platform since it supports the pipes which
are essential to our architecture.

7 Acknowledgements
This work was carried out in the HCRC Language
Technology Group, partly with support from the
UK EPSRC project "Text Tokenisation Tool". The
HCRC is a UK ESRC funded institution.

References
S. Finch and N. Chater 1993. "Learning Syn-

tactic Categories: a statistical approach." In
M.R.Oaksford & G.D.A.Brown (eds) Neurody-
namics and Psychology, pp. 295-322. London:
Harcourt Brace&Co.

C.F. Goldfarb 1990. "The SGML Handbook." Ox-
ford: Clarendon Press.

D. Hindle 1983. "User manual for Fidditch."
Naval Research Laboratory Technical Memoran-
dum #7590-142

J.S. Justeson and S.M. Katz 1995. "Technical ter-
minology: some linguistic properties and an algo-
rithm for identification in text." In Journal for
Natural Language Engineering vol 1(i). pp.9-27.
Cambridge University Press.

J. Kupiec 1992. "Robust Part-of-Speech Tagging
Using a Hidden Markov Model." In Computer
Speech and Language. pp.225-241. Academic Press
Limited.

D. McKelvie, C. Brew and H. Thompson 1997. "Us-
ing SGML as a Basis for Data-Intensive NLP."
In Proceedings of the 5th Applied Natural Lan-
guage Processing Conference (ANLP'97), Wash-
ington D.C., USA. ACL

A. Mikheev and S. Finch 1995. "Towards a Work-
bench for Acquisition of Domain Knowledge from
Natural Language." In Proceedings of the 7th
Conference of the European Chapter of the Asso-
ciation for Computational Linguistics (EA CL '95),
Dublin. pp.194-201. ACL (CMP-LG 9604026)

F. Smadja 1993. "Retrieving Collocations from
Text: Xtract." In Computational Linguistics, vol
19(2), pp. 143-177. ACL

H. Thompson, D. McKelvie and S. Finch 1996.
"The Normalised SGML Library LT NSL ver-
sion 1.4.6." Technical Report, Language
Technology Group, University of Edinburgh.
http ://www. itg. ed. ac .uk/software/nsl

379

