
CogentHelp:
NLG meets SE in a tool for authoring

dynamical ly generated on-l ine help

M i c h a e l W h i t e and D a v i d E . C a l d w e l l

CoGenTex , Inc.

840 Hanshaw R o a d
I thaca , NY 14850, USA

(m i k e , t e d } ~ c o g e n t e x , com

Abstract

CogentHelp is a prototype tool for au-
thoring dynamically generated on-line help
for applications with graphical user inter-
faces, embodying the "evolution-friendly"
properties of tools in the literate program-
ming tradition. In this paper, we describe
CogentHelp, highlighting the usefulness of
certain natural language generation tech-
niques in supporting software-engineering
goals for help authoring tools - - princi-
pally, quality and evolvability of help texts.

1 I n t r o d u c t i o n

CogentHelp is a prototype tool for authoring dynam-
ically generated on-line help for applications with
graphical user interfaces (GUIs). In this paper,
we describe CogentHelp, highlighting the usefulness
of certain natural language generation (NLG) tech-
niques in supporting software-engineering (SE) goals
for help authoring tools - - principally, quality and
evolvability of help texts.

To our knowledge, CogentHelp is unique in that
it is the first operational prototype to embody the
"evolu t ion-f r iendly" properties of tools in the lit-
erate programming tradition (Knuth, 1992) - - e.g.,
the by now well-known j avadoc utility for generat-
ing API documentation from comments embedded
in Java source code (Friendly, 1995; cf. also John-
son and Erdem, 1995; Priestly et al., 1996; Korgen,
1996) - - in a tool for generating end user-level doc-
umentation. CogentHelp is also unusual in that it
is (to date) one of the few tools to bring NLG tech-
niques to bear on the problem of au thor ing dy-
namically generated documents (cf. Paris and Van-
der Linden, 1996; Knott et al., 1996; Hirst and Di-
Marco, 1995); traditionally, most applied NLG sys-
tems have focused on niches where texts can be gen-
erated fully automatically, such as routine reports of

various types (e.g. Goldberg et al., 1994; Kukich et
al., 1994) or explanations of expert system reasoning
(cf. Moore, 1995 and references therein).

While striving to design highly sophisticated, fully
automatic systems has undoubtedly led to a deeper
understanding of the text generation process, it has
had the unfortunate effect (to date) of limiting the
use of techniques pioneered in the NLG community
to just a few niches where high knowledge acqui-
sition costs stand a chance of being balanced by
substantial volume of needed texts (cf. Reiter and
Mellish, 1993). By joining the emerging authoring
support crowd and endeavoring to create new op-
portunities in automated documentation, we hope
to contribute to the broader acceptance and visi-
bility of NLG technology in the overall computing
community.

The rest of the paper is organized as follows. In
Section 2 we discuss the software engineering goals
for CogentHelp. In Section 3 we provide back-
ground on automated documentation and identify
where CogentHelp fits in this picture. In Section 4
we give a brief overview of the CogentHelp system.
In Section 5, we highlight the NLG techniques used
in support of the software engineering goals identi-
fied in Section 2. In Section 6 we describe Cogent-
Help's authoring interface. Finally, in Section 7 we
conclude by discussing the outlook for CogentHelp's
use and further development.

2 S o f t w a r e E n g i n e e r i n g G o a l s

From a software engineering perspective, we set out
to achieve three main goals in designing CogentHelp,
each of which has various aspects. The first of these
goals is end user-oriented, whereas the latter two
are developer-oriented.

The first goal is to promote quality in the resulting
help systems, which includes promoting

• Consis tency - - the grouping of material into
help pages, the use of formatting devices such as

257

headings, bullets, and graphics, and the general
writing style should be consistent throughout
the help system;

• N a v i g a b i l i t y - - the use of grouping and for-
matt ing should make it easier to find informa-
tion about a particular GUI component in the
help system;

• C o m p l e t e n e s s - - all GUI components should
be documented;

• R e l e v a n c e - - information should be limited to
that which is likely to be of current relevance,
given the current GUI state;

• C o n c i s e n e s s - - redundancy should be avoided;

• C o h e r e n c e - - information about GUI compo-
nents should be presented in a logical and con-
textually appropriate fashion.

The second goal is to facilitate evolution, which
includes facilitating

• F i d e l i t y - - the help author should be assisted
in producing complete and up-to-date descrip-
tions of GUI components;

• R e u s e - - wherever possible, the help author
should not have to write the same text twice.

The final goal is to lower barriers to adopting the
technology, which has principally meant providing
an authoring interface which makes the benefits of
the system available at a reasonable cost in terms
of the understanding and effort required of the help
author.

3 A u t o m a t e d D o c u m e n t a t i o n

The main idea of CogentHelp is to have developers or
technical writers author the reference-oriented part
of an application's help system 1 in small pieces, in-
dexed to the GUI components themselves, instead
of in separate documents (or in one monolithic doc-
ument). CogentHelp then dynamically assembles
these pieces into a set of well-structured help pages
for the end user to browse.

The principal advantage of this approach is that it
makes it possible to keep the reference-oriented part

1By the reference-oriented part, we mean the part of
a help system which describes the functions of individ-
ual windows, widgets, etc., as opposed to more general
or more task-oriented information about the application;
other than providing an easy way of linking to and from
CogentHelp-generated pages, CogentHelp leaves task-
oriented help entirely to the author.

of an on-line help system up-to-date automatically,
since both the application GUI and the documen-
tation can be evolved in sync. This benefit of gen-
erating both code and documentat ion from a single
source 2 has long been recognized, both in the NLG
community (cf. Reiter and Mellish, 1993; Moore,
1995; and references therein) and in the SE commu-
nity, where it is recognized under the banner of lit-
erate programming tradit ion (Knuth, 1992). Other
important benefits stem from supporting the sepa-
ration of the content of the document to be gener-
ated (descriptions of individual components) from
the structure of the document (how the content is
distributed and formatted): this allows the author
to focus on writing accurate component descriptions,
and avoid much of the drudgery involved in creating
a complex hypertext document manually.

To bet ter understand where CogentHelp fits in,
it is instructive to compare it with the closest ref-
erence points in the NLG and SE communities. On
the NLG side, there is the Drafter system (Paris and
Vander Linden, 1996), which generates drafts of in-
structions in both English and French from a single
formal representation of the user's task. Drafter is
considerably more ambitious in aiming to automate
the production of multilingual, task-oriented help; at
the same time, however, Drafter is more limited in
tha t it is not evolution-oriented, aiming only to gen-
erate satisfactory initial drafts (whence its name).
This is in large part due to the fact that Drafter 's
input is centered around task representations which
are not typically used for GUI-level tasks in software
engineering practice; in contrast, nearly every GUI
builder provides some form of GUI resource database
which could be used as input to CogentHelp.

On the SE side, the nearest reference points
are a bit more distant, as CogentHelp has more
in common with developer-oriented tools such as
the j avadoc API documentat ion generator dis-
t r ibuted with Sun Microsystems' Java Developers
Kit (Friendly, 1995) than with currently available
help authoring tools. While several current GUI-
development environments include tools which gen-
erate an initial, "skeleton" help system for an appli-
cation (with topics that correspond to the widgets in
the GUI), to our knowledge CogentHelp is the first
operational prototype to implement the "evolution-
friendly" properties of a tool like j avadoc in a sys-
tem for generating end user-level documentation.
Unlike the "skeleton generators" mentioned above,

2Note that this "single source" need only be virtual
- - physically single-source code and documentation can
have its drawbacks, which are not however inherent to
the approach (Priestley et al., 1996).

258

which require the help author to start from scratch
each time the skeleton is regenerated in response to
GUI modifications, CogentHelp supports help au-
thoring throughout the software life cycle.

4 Sys tem Overview

CogentHelp takes as input various human-writ ten
text fragments (or "help snippets") indexed to GUI
resource databases, which provide some useful help-
related information in the form of types, labels, lo-
cations and part-whole relations for GUI widgets.
CogentHelp generates HTML help files, which can
be displayed on any platform for which a Web
browser is available. It is designed to support ef-
ficient navigation through the help system, through
the use of intelligent, functionally structured layout
as well as through an expandable/collapsible table
of contents and "thumbnail sketch" applet. These
points will be elaborated upon below.

CogentHelp operates in two modes: a "static"
mode, which does not make use of run-time informa-
tion, and a "dynamic" mode, which uses widget run-
time status information to produce more specialized,
contextually appropriate messages. The static mode
is useful in the authoring process, since it displays
all available help information and has simpler archi-
tectural requirements.

In evolving the design of CogentHelp, we have
employed a rapid-prototyping approach in work-
ing with our T R P / R O A D 3 consortium partners at
Raytheon, who are serving as a trial user group.
The full CogentHelp component architecture and
dependencies reflects the particular requirements of
this group, and are as follows. CogentHelp itself
is a hypertext server written in Java, making it
highly cross-platform. CogentHelp currently works
with applications built using the Neuron Data cross-
platform GUI builder; while it is not dependent on
this product in any conceptually substantial way, us-
ing other GUI builders would require a porting ef-
fort. To retrieve run-time information, CogentHelp
uses Expersoft 's PowerBroker ORB for inter-process
communication; in comparison to the Neuron Data
connection, other IPC methods could be more eas-
ily substituted. Finally, CogentHelp displays hyper-
text in Netscape Navigator, using H T T P to medi-
ate access to the dynamically generated texts; since
Netscape Navigator remains the most widely used
cross-platform browser, we have yet to investigate
using other browsers.

3A DARPA-sponsored Technology Reinvestment Pro-
gram for Rapid Object Application Development, led by
Andersen Consulting.

5 NLG Techniques

Although CogentHelp is by no means a typical NLG
system - - insofar as it is incapable of generating
useful texts in the absence of human-authored help
snippets - - it does employ certain natural language
generation techniques in order to support the soft-
ware engineering goals described above. These tech-
niques fall into two categories, those pertaining to
knowledge representation and those pertaining to
text planning.

5.1 K n o w l e d g e R e p r e s e n t a t i o n

In developing CogentHelp, we have taken a mini-
realist approach to knowledge representation follow-
ing a methodology for building text generators de-
veloped over several years at CoGenTex. As will
be explained below, this approach has led us to
(i) make use of what amounts to a large-grained
"phrasal" lexicon and (ii) devise and implement a
widget-clustering algorithm for recovering functional
groupings, as part of an Intermediate Knowledge
Representation System (IKRS).

5.1.1 Phrasal Lexicon

As Milosavljevic et al. (1996) argue, to optimize
coverage and cost it makes sense to choose an un-
derlying representation which

• makes precisely those distinctions that are rele-
vant for the intended range of generated texts;
and

• is no more abstract than is required for the in-
ference processes which need to be performed
over the representation.

They go on to argue that besides eliminating a great
deal of unnecessary 'generation from first principles,'
this approach complements their use of a phrasal
lexicon (Kukich, 1983; Hovy, 1988) at the linguistic
level.

Applying essentially the same approach to the de-
sign of CogentHelp, we first determined that for the
intended range of generated texts it suffices to as-
sociate with each widget to be documented a small
number of atomic propositions and properties, iden-
tifiable by type. Next we determined that since no
inference is required beyond checking for equality,
these propositions and properties can be conflated
with their linguistic r e a l i z a t i o n s - i.e., the indexed,
human-authored help snippets CogentHelp takes as
input. While we did not originally think of Cogent-
Help's collection of input help snippets as a phrasal
lexicon a la Milosavljevic et al., in retrospect it be-
comes evident that this collection can be viewed as

259

Figure 1: Sample application window

tantamount to one; of course, since these snippets
vary in size from phrases to paragraphs, the term
"phrasal" is not entirely accurate.

The types of snippets in current use include a one-
sentence short description of the relevant GUI com-
ponent; a paragraph-sized elaboration on the short
description; various phrase-sized messages concern-
ing the conditions under which it is visible or en-
abled, if appropriate; and a list of references to other
topics. In the case of the phrase-sized messages, each
of these fields is accompanied by a syntactic frame
which prompts the author to provide consistent syn-
tax - - for example, entries in the WHEN_ENABLED field
should fit the frame

This element is enabled when

To facilitate equality checking and promote text
reuse, a mechanism is provided enabling the author
to alias the message for one widget to that of an-
other.

5.1.2 I K R S

To enhance the modulari ty and robustness of a
practical text generator, Korelsky et al. (1993) ar-
gue for the use of an Intermediate Knowledge Rep-
resentation System (IKRS, pronounced "Icarus") to
bridge the gap between what the text planner would
like to access and what is actually found in the infor-
mation base of an application program. A remark-
ably similar idea has been independently developed
by Lester and Porter (1996), under the heading of
KB Accessors.

One purpose of an IKRS, Korelsky et al. sug-
gest, is to provide a component in which to locate

domain-level inferencing not provided by the appli-
cation program. Note that while this type of infer-
encing is motivated by text planning needs, it is still
about the domain rather than about natural lan-
guage communication, and thus does not belong in
the text planner itself.

In developing CogentHelp, we encountered a need
for just this sort of inferencing in order to support
sensible layout. The problem we faced was how to
logically arrange descriptions of widgets within a
help page (or set of help pages) describing a window,
which is the basic unit of organization in Cogent-
Help. As will be explained below, grouping widgets
by type was considered inadequate, because doing
so would obscure functional relationships between
widgets of different types. A naive spatial sorting
was likewise considered inadequate, as this would
inevitably separate elements of a functional group
appearing in a certain area of the window. Unfor-
tunately, since these functional groups are often not
explicitly represented in GUI resource databases, we
appeared to be at an impasse.

To illustrate the problem, consider the sample ap-
plication window shown in Figure 1, from a proto-
type of an application under development by our
trial user group at Raytheon. This window, whose
purpose is to allow a manufacturing shop floor fore-
man to assign operators to parts, is organized as
follows: on the left there are two list boxes for op-
erators (1, 2), with buttons beneath them to access
information about these operators (3, 4, 5, 6); on the
right there are two list boxes for parts (9, 10), with
buttons beneath them to access information about
these parts (11, 12); in the middle there are two
buttons for making and removing assignments (7,
8); towards the bot tom there is a list box showing
the assignments made so far (of which there are none
here - - 13); and at the bot tom there are standard
buttons such as Save and Done (14, 15 - - the Help
but ton would go here). Given this organization, con-
sider first arranging descriptions by type, and alpha-
betizing: besides cutting across the implicit func-
tional groupings, arranging descriptions in this way
would end up putt ing the two View K-Factors but-
tons (4, 11) in sequence, without any indication of
which was which! Now consider a simple top-down,
left-to-right spatial sort: again, this would inevitably
yield a rather incoherent ordering, such as the Op-
erators without Work list box (1), the Hot Parts
list box (9), the Assign but ton (7), the Operators on
Jobs list box (2), the Parts list box (10), the Remove
Assignment but ton (8), etc.

The solution to this problem was to develop, as
part of our IKRS, a method of recovering these func-

260

tional groups using spatial cues as heuristics; the rea-
son this approach might be expected to work is that
in a well-designed GUI, functionally related widgets
are usually clustered together spatially in order to
make the end user's life a bit easier. We began with
the fairly standard hierarchical agglomerative algo-
r i thm found in (Stolcke, 1996). Stolcke's algorithm
is an order n ~ one that iteratively merges smaller
clusters into bigger ones until only one cluster re-
mains; new clusters are formed out of the two nearest
clusters in the current set, ensuring that the results
are independent of the order in which clusters are
examined. After some experimentation, we modified
this algorithm to bet ter suit our needs, resulting in
the following three differences: (i) to create clusters
with more than two elements, we continue adding
elements to the newly created cluster until a certain
distance threshold is exceeded; (ii) we represent the
new cluster using its bounding box, rather than us-
ing an average of its elements; and (iii) we restrict
the clustering to not operate across explicit groups,
such as those formed using panels.

With any clustering approach, there is always
the tricky matter of determining a suitable distance
measure. After trying out a variety of features, what
we found to work surprisingly well was a simple
weighted combination of proximity, alignment and
type identity. In particular, in a test suite of around
15 windows provided to us by our trial user group,
we obtained reasonable results (no egregiously bad
groupings) on all of them without undue sensitiv-
ity to the exact weights. In the case of the window
shown in Figure 1, the clustering procedure performs
exactly as desired, yielding precisely the groupings
used in the description of this window given above
- - i.e.: (((1, 2), (3, 4, 5, 6)), ((9, 10), (11, 12)),
(7, 8), 13, (14, 15)).

Once the IKRS has heuristically recovered clus-
ters of widgets likely to form a functional group,
these clusters - - as well as any explicitly represented
groups, e.g. widgets contained within a panel of a
window - - can be used as a basis for help layout, as
discussed below.

5.2 Tex t P l a n n i n g

At the core of CogentHelp is the text planner. The
text planner builds up HTML trees starting from
an initial goal, using information provided by the
IKRS, following the directives coded in CogentHelp's
text planning rules. These HTML trees are then lin-
earized into an ascii stream by a separate formatter,
so that they can be displayed in a web browser (cf.
Section 4).

The text planner is constructed using Exem-

261

Figure 2: A sample help page

plars for Java, a lightweight framework for build-
ing object-oriented text planners in Java which has
been developed in parallel with CogentHelp (White,
1997). In this framework, text planning rules - - the
exemplars, so-called because they are meant to cap-
ture an exemplary way of achieving a communicative
goal in a given communicative context - - are objects
which cooperate to efficiently produce the desired
texts. While space precludes a detailed description,
it is worth noting that Exemplars for Java supports
abstraction, specialization and content-based revi-
sions, all of which have proved useful in the present
effort.

In developing the exemplars for CogentHelp, we
have made use of three NLG techniques: structuring
texts by traversing domain relations, automatically
grouping related information, and using revisions to
simplify the handling of constraint interactions. The
first two of these make life simpler for the end user,
while the third makes life simpler for the developer.

5.2 .1 C a p i t a l i z i n g o n D o m a i n S t r u c t u r e
When text structure follows domain structure, one

can generate text by selectively following appropri-
ate links in the input (Paris, 1988; Sibun, 1992). In
the case at hand, we have chosen to use the group
and cluster structure combined with a top-down,
left-to-right spatial sort: while such a spatial sort
alone is insufficient, as we saw above, a spatial sort
which respects functional groups turns out to work
well.

Returning to the example of Section 5.1.2 (re-
garding the window shown in Figure 1), travers-
ing the clusters in this way yields a listing which
(naturally!) mirrors the order and groupings of the
one-sentence description of the window's organiza-

tion we have provided - - tha t is, following a general
description of the window, there are descriptions of
the two operators list boxes (1, 2), followed by de-
scriptions of the four buttons providing additional
information on operators (3, 4, 5, 6), followed next
by the part list boxes (9, 10) and the buttons asso-
ciated with them (11, 12), and so on. This is (par-
tially) illustrated in Figure 2, which shows a sample
CogentHelp-generated help topic. Note that the list
of widgets in the dynamic TOC on the left side of
the page is arranged according to this traversal; con-
sequently, stepping through the contents (using the
TOC or the Next button) for this window will lead
from widget to widget and cluster to cluster in a sen-
sible fashion. In the particular topic shown, the user
has reached the second but ton (View K-Factors) of
the group of four buttons beneath the Operators list
boxes, as can be seen from the highlighting in the
thumbnail sketch applet (cf. Section 6).

The use of domain s t ructure-driven text plan-
ning is central to supporting the software engi-
neering goals identified in Section 2. Rather ob-
viously, generating-by-rule helps to achieve consis-
tency, completeness and fidelity, eliminating much
mind-numbing drudgery along the way. A bit less
obvious, perhaps, is the fact tha t this technique
should help to achieve navigability and coherence:
by presenting descriptions of widgets in a natural
order - - i.e., in the order in which the user is apt to
encounter them in scanning the GUI - - we hope to
make it easier for the user to find desired informa-
tion; and, by keeping together descriptions of wid-
gets which are heuristically determined to be func-
tionally related, we hope to make it easier for the
user to quickly grasp the organization of both the
interface and the on-line help.

5.2.2 G r o u p i n g

Grouping related information and presenting
shared parts just once is a well-known NLG tech-
nique for achieving conciseness and coherence (Re-
iter and Mellish, 1993). In a reference-oriented docu-
ment such as an on-line help system, similar or iden-
tical descriptions will often be appropriate for ele-
ments which have similar or identical functions. To
indicate these similarities, as well as to save space, it
makes sense to group these descriptions when possi-
ble.

As mentioned in Section 5.1.1, we allow develop-
ers to alias messages to promote text reuse, as well
as to facilitate equality checking. When the text
planner detects (via the IKRS) that a phrase-sized
message (such as T0_ENABLE) is the same for a group
of widgets, it generates a description that applies to

the whole group, rather than repeating the same de-
scription several times in close proximity. Note that
this group description is made possible by the use of
a phrasal lexicon, which has been designed to allow
the author 's messages to make sense in a variety of
contexts.

To illustrate, let us have another look at Figure 2.
In the upper right frame of the page, note that there
is the following description of how to enable all of the
four buttons below the operators list boxes, rather
than a repetition of the same message four times in
close proximity:

These commands are currently disabled.
To enable them, select exactly one opera-
tor in either the Free Operators list box or
the Working Operators list box.

This group-level description appears here because (i)
the author, realizing that these buttons are enabled
under the same conditions, entered the T0_ENABLE
message "select exactly one operator in either the
Free Operators list box or the Working Operators
list box" for one button, and aliased this message
for the other; and (ii) the text planner, detecting
(via the IKRS) that the TO_ENABLE messages for the
entire group were the same, and that these buttons
were currently disabled (a run-time fact), prepended
"These commands are currently disabled. To enable
them," to the shared message to yield what appears
in Figure 2.

5.2.3 R e v i s i o n s

While the central use of domain structure-driven
text planning makes it possible to generate text in a
relatively straightforward, top-down fashion, as vari-
ations are added a one-pass top-down approach can
become cumbersome. The reason why is this: In
evolving the text planning rule base, it makes sense
to localize decisions as much as possible; however, to
handle rule interactions in a single pass, one is forced
to centralize these decisions (which can become cum-
bersome). To simplify matters, it is often appropri-
ate to generate an initial version naively, then carry
out revisions on it in a subsequent pass (cf. Robin,
1994; Wanner and Hovy, 1996).

In CogentHelp, interactions that are cumbersome
to anticipate arise in dealing with the various op-
tional phrase-sized messages whose inclusion condi-
tions differ between the static and dynamic mode.
To elaborate, let us consider once more the help page
shown in Figure 2. Had the four but tons described in
the lower right frame been enabled rather than dis-
abled (at run-time), the group-level T0_.ENABLE mes-
sage would have simply been left out, in order to en-

262

hance relevance and conciseness; 4 on the other hand,
had this page been generated in static mode (where
such run-time conditions are not known), the text
planner would have again included the description,
though this time with the less specific "To enable
these commands," prepended instead. Now, since
the various messages associated with a widget have
slightly different inclusion conditions, it makes sense
to localize these inclusion conditions to a text plan-
ning rule for each message (the common parts of
these conditions are shared via inheritance). At the
same time, however, there is a need to know whether
any of these messages will in fact appear, in order to
decide whether to include the second paragraph in
the upper right frame, as well as the italics element.
In a one-pass top-down approach, this need would
force the various inclusion conditions to be cumber-
somely centralized; with revisions, in contrast, one
can simply add the paragraph and italics element
during the first pass, then check during a second
pass whether any of the optional messages for this
paragraph did in fact appear, removing the super-
fluous HTML elements if not.

6 A u t h o r i n g

In informal usability tests, we have gathered much
useful information about areas in which CogentHelp
could be improved - - the most important of these
being ease of authoring. A previous version of the
authoring interface, which relied on the resource ed-
itor of the Neuron Data GUI builder, proved unsat-
isfactory, as it (i) required excessive clicking for the
author to navigate from snippet to snippet, and (ii)
failed to provide sufficient context, making it un-
necessarily difficult for the author to adhere to the
CogentHelp authoring guidelines.

The current authoring interface, shown in Fig-
ure 3, uses CogentHelp's existing architecture (to-
gether with the H T T P forms protocol) to allow the
user to edit the text snippets for each widget in sub-
stantially the same context they would inhabit in
generated help topics. This design provides maxi-
mal realism for the author, especially since one can
switch between editing and browsing mode at the
click of a but ton to preview the generated help.

Another feature illustrated in Figure 3, as well
as Figure 2, owes its inspiration to our trim user
group at Raytheon. Our users were concerned about
the ease of visual navigation of help pages, and
had experimented with using manually coded (and

4With a perfectly intuitive GUI, the user would never
need to know this information, as commands would al-
ways be enabled when the user expects them to be.

Figure 3: CogentHelp in authoring mode

thus difficult to evolve) image maps superimposed
over bitmaps of each application window. This con-
cern prompted us to develop an automatically gen-
erated "thumbnail sketch" of the current GUI win-
dow, which appears in the upper left corner of the
help window (in a Java applet along with the ta-
ble of contents) and contains hyperlinks for each of
the widgets on the window (these hyperlinks dis-
play the corresponding help topics on the right-hand
side). The automatically generated thumbnail im-
ages require no intervention on the part of the help
author, and thus are guaranteed to be up-to-date;
furthermore, their abstract nature gives them cer-
tain advantages over actual bitmaps: they do not
present information which is redundant (since the
actual window in question will usually be visible) or
inconsistent (static bitmaps fail to capture widgets
which are enabled/disabled or change their labels in
certain situations).

7 O u t l o o k

To date we have gathered substantial feedback on
CogentHelp functionality from our trial user group
at Raytheon, especially on the need for authoring
support and visual navigation aids. We are opti-
mistic that this group will find CogentHelp suitable
for actual use in developing a production-quality
help system by the end of our Rome Labora tory-
sponsored software documentat ion SBIR project, in
mid-1997. Also by project end, we hope to port
CogentHelp to a more affordable, Java-based GUI
builder, in order to make it useful to a much broader
community of developers.

263

Acknowledgements
We gratefully acknowledge the helpful comments and ad-
vice of Ehud Reiter, Philip Resnik, Keith Vander Lin-
den, Terri SooHoo, Marsha Nolan, Doug White, Colin
Scott, Owen Rainbow, Tanya Korelsky, Benoit Lavoie
and Daryl McCullough. This work has been supported
by SBIR award F30602-94-C-0124 from Rome Labora-
tory (USAF) and by the TRP/ROAD cooperative agree-
ment F30602-95-2-0005 with the sponsorship of DARPA
and Rome Laboratory.

R e f e r e n c e s
Lisa Friendly. 1995. The design of distributed hyper-

linked programming documentation. In International
Workshop on Hypermedia Design.

Eli Goldberg, Norbert Driedger, and Richard Kittredge.
1994. Using natural-language processing to produce
weather forecasts. IEEE Expert, pages 45-53.

Graeme Hirst and Chrysanne DiMarco. 1995. Health-
Doc: Customizing patient information and health ed-
ucation by medical condition and personal characteris-
tics. In AI in Patient Education Workshop, Glasgow,
Scotland, August.

Eduard H. Hovy. 1988. Generating language with a
phrasal lexicon. In D. D. McDonald and L. Bolc,
editors, Natural Language Generation Systems, pages
353-384. Springer-Verlag, New York.

W. Lewis Johnson and Ali Erdem. 1995. Interactive ex-
planation of software systems. In Proceedings of the
Tenth Knowledge-Based Software Engineering Confer-
ence (KBSE-95), pages 155-164, Boston, Mass.

Alistalr Knott, Chris Mellish, Jon Oberlander, and
Michael O'Donnell. 1996. Sources of flexibility in
dynamic hypertext generation. In Proceedings of
the Eighth International Natural Language Generation
Workshop (INLG-96), pages 151-160, Herstmonceux
Castle, Sussex, UK.

D. E. Knuth, editor. 1992. Literate Programming. CSLI.

Tanya Korelsky, Daryl McCullough, and Owen Rambow.
1993. Knowledge requirements for the automatic gen-
eration of project management reports. In Proceedings
of the Eighth Knowledge-Based Software Engineering
Conference (KBSE-93, pages 2-9, Chicago, Illinois.

Susan Korgen. 1996. Object-oriented, single-source, on-
line documents that update themselves. In Proceed-
ings of The l$th Annual International Conference on
Computer Documentation (SIGDOC-g6), pages 229-
238.

K. Kukich, K. McKeown, J. Shaw, J. Robin, N. Mor-
gan, and J. Phillips. 1994. User-needs analysis and
design methodology for an automated document gen-
erator. In A. Zampolli, N. Calzolari, and M. Palmer,
editors, Current Issues in Computational Linguistics:
In Honour of Don Walker. Kluwer Academic Press,
Boston.

Karen Kukich. 1983. Design of a knowledge-based re-
port generator. In Proceedings of the 21st Annual
Meeting of the Association for Computational Linguis-
tics, Cambridge, Mass.

James C. Lester and Bruce W. Porter. 1996. Scaling up
explanation generation: Large-scale knowledge bases
and empirical studies. In Proceedings of the National
Conference on Artificial Intelligence (AAAI-96), Port-
land, Oregon.

Maria Milosavljevic, Adrian Tulloch, and Robert Dale.
1996. Text generation in a dynamic hypertext en-
vironment. In Proceedings of the 19th Australasian
Computer Science Conference, pages 229-238, Mel-
bourne, Australia.

Johanna Moore. 1995. Participating in Ezplanatory Di-
alogues. MIT Press.

Cecile Paris and Keith Vander Linden. 1996. Drafter:
An interactive support tool for writing. IEEE Com-
puter, Special Issue on Interactive Natural Language
Processing, July.

Cecile Paris. 1988. Tailoring object descriptions to the
user's level of expertise. Computational Linguistics,
11(3):64-78.

Michael Priestley, Luc Chamberland, and Julian Jones.
1996. Rethinking the reference manual: Using
database technology on the www to provide com-
plete, high-volume reference information without
overwhelming your readers. In Proceedings of The
14th Annual International Conference on Computer
Documentation (SIGDOC-96), pages 23-28.

Owen Rainbow and Tanya Korelsky. 1992. Applied text
generation. In Third Conference on Applied Natural
Language Processing, pages 40-47, Trento, Italy.

Ehud Reiter and Chris Mellish. 1993. Optimizing the
costs and benefits of natural language generation. In
Proceedings of the 13th International Joint Conference
on Artificial Intelligence (1JCAI-93), volume 2, pages
1164-1169.

Jacques Robin. 1 9 9 4 . Revision-Based Generation
of Natural Language Summaries Providing Historical
Background. Ph.D. thesis, Columbia University.

Penelope Sibun. 1992. Generating text without trees.
Computational Intelligence, 8(1):102-22.

Andreas Stolcke. 1 9 9 6 . Cluster 2 .9 . URL go-
pher : / / gopher.icsi.berkeley.edu /1/ usr /local/ ftp / al /
stolcke/software/cluster-2_9_tar.Z.

Leo Wanner and Eduard Hovy. 1996. The HealthDoc
sentence planner. In Proceedings of the Eighth In-
ternational Natural Language Generation Workshop
(INLG-96), pages 1-10, Herstmonceux Castle, Sussex,
UK.

Michael White. 1997. Exemplars for Java: a lightweight
framework for building object-oriented text planners
in Java. Technical report, CoGenTex, Inc.

264

