
Software Infrastructure for Natural Language Processing

Hamish Cunningham

Dept. Computer Science

University of Sheffield

211 Portobello St.

Sheffield S10 4DP

h a m i s h ~ d c s , s h e f . ac . uk

Kevin Humphreys

Dept. Computer Science

University of Sheffield

211 Portobello St.

Sheffield S10 4DP

kvhOdcs, s h e f . ac . uk

Robert Gaizauskas

Dept. Computer Science

University of Sheffield

211 Portobello St.

Sheffield S10 4DP

robertg@dcs, shef. ac. uk

Yorick Wilks

Dept. Computer Science

University of Sheffield

211 Portobello St.

Sheffield S10 4DP

yorick~dcs, shef. ac. uk

A b s t r a c t

We classify and review current approaches
to software infrastructure for research, de-
velopment and delivery of NLP systems.
The task is motivated by a discussion of
current trends in the field of NLP and Lan-
guage Engineering. We describe a sys-
tem called GATE (a General Architecture
for Text Engineering) that provides a soft-
ware infrastructure on top of which het-
erogeneous NLP processing modules may
be evaluated and refined individually, or
may be combined into larger application
systems. GATE aims to support both re-
searchers and developers working on com-
ponent technologies (e.g. parsing, tagging,
morphological analysis) and those work-
ing on developing end-user applications
(e.g. information extraction, text sum-
marisation, document generation, machine
translation, and second language learning).
GATE promotes reuse of component tech-
nology, permits specialisation and collab-
oration in large-scale projects, and allows
for the comparison and evaluation of al-
ternative technologies. The first release of
GATE is now available.

1 I n t r o d u c t i o n

This paper reviews the currently available design
strategies for software infrastructure for NLP and
presents an implementation of a system called
GATE - a General Architecture for Text Engineer-
ing. By software infrastructure we mean what has
been variously referred to in the literature as: soft-
ware architecture; software support tools; language
engineering platforms; development enviromnents.
Our gloss on these terms is: common models for the
representation, storage and exchange of data in and

between processing modules in NLP systems, along
with graphical interface tools for the management of
data and processing and the visualisation of data.
NLP systems produce information about texts 1, and
existing systems that aim to provide software in-
frastructure for NLP can be classified as belonging
to one of three types according to the way in which
they treat this information:

a d d i t i v e , o r m a r k u p - b a s e d :

information produced is added to the text in
the form of markup, e.g. in SGML (Thompson
and McKelvie, 1996);

r e f e r en t i a l , o r a n n o t a t i o n - b a s e d : information
is stored separately with references back to the
original text, e.g. in the T I P S T E R architecture
(Grishman, 1996);

a b s t r a c t i o n - b a s e d : the original text is preserved
in processing only as parts of an integrated data
structure that represents information about
the text in a uniform theoretically-motivated
model, e.g. attribute-value structures in the
ALEP system (Simkins, 1994).

A fourth category might be added to cater for those
systems that provide communication and control
infrastructure without addressing the text-specific
needs of NLP (e.g. Verbmobil's ICE architecture
(Amtrup, 1995)).

We begin by reviewing examples of the three ap-
proaches we sketched above (and a system that falls
into the fourth category). Next we discuss current
trends in the field and motivate a set of requirements
that have formed the design brief for GATE, which
is then described. The initial distribution of the
system includes a MUC-6 (Message Understanding
Conference 6 (Grishman and Sundheim, 1996)) style
information extraction (IE) system and an overview

1These texts may sometimes be the results of auto-
matic speech recognition - see section 2.6.

237

of these modules is given. GATE is now available
for research purposes - see
http ://ul;w. dcs. shef. ac. u_k/research/groups/
nlp/gate/ for details of how to obtain the system.
I t is written in C + + and T c l / T k and currently runs
on UNIX (SunOS, Solaris, Irix, Linux and AIX are
known to work); a Windows NT version is in prepa-
ration.

2 M a n a g i n g I n f o r m a t i o n a b o u t T e x t

2.1 A b s t r a c t i o n A p p r o a c h e s

The abstract ion-based approach to managing in-
formation about texts is primarily motivated by
theories of the nature of the information to be
represented. One such position is tha t declara-
tive, constraint-based representations using feature-
s t ructure matrices manipulated under unification
are an appropr ia te vehicle by which "many techni-
cal problems in language description and computer
manipulat ion of language can be solved" (Shieber,
1992). Information in these models may be charac-
terised as abstract in our present context as there
is no requirement to tie da ta elements back to the
original text - these models represent abstract ions
from the text.

One recent example of an infrastructure project
based on abstract ion is ALEP - the Advanced Lan-
guage Engineering Pla t form (Simkins, 1994). ALEP
aims to provide "the NLP research and engineering
community in Europe with an open, versatile, and
general-purpose development environment". ALEP,
while in principle open, is primarily an advanced sys-
tem for developing and manipulat ing feature struc-
ture knowledge-bases under unification. Also pro-
vided are several parsing algorithms, algorithms for
transfer, synthesis and generation (Schlitz, 1994).
As such, it is a system for developing particular
types of da ta resource (e.g. grammars , lexicons) and
for doing a part icular set of tasks in LE in a particu-
lar way. ALEP does not aim for complete gener-
icity (or it would need also to supply algorithms
for Baum-Welch estimation, fast regular expression
matching, etc.). Supplying a generic system to do
every LE task is clearly impossible, and prone to
instant obsolescence in a rapidly changing field.

In our view ALEP, despite claiming to use a
theory-neutral formalism (an HPSG-like formalism),
is still too commit ted to a part icular approach to lin-
guistic analysis and representation. It is clearly of
high utility to those in the LE community to whom
these theories and formalisms are relevant; but it
excludes, or at least does not actively support , all
those who are not, including an increasing number
of researchers commit ted to statistical, corpus-based

approaches. GATE, as will be seen below, is more
like a shell, a backplane into which the whole spec-
t rum of LE modules and databases can be plugged.
Components used within GATE will typically exist
already - our emphasis is reuse, not reimplementa-
tion. Our project is to provide a flexible and efficient
way to combine LE components to make LE systems
(whether experimental or for delivered applications)
- not to provide ' the one true system' , or even ' the
one true development environment ' . Indeed, ALEP-
based systems might well provide components oper-
ating within GATE. Seen this way, the ALEP enter-
prise is orthogonal to ours - there is no significant
overlap or conflict.

In our view the level at which we can assume com-
monali ty of information, or of representat ion of in-
formation, between LE modules is very low, if we
are to build an environment which is broad enough
to support the full range of LE tools and accept
tha t we cannot impose s tandards on a research com-
munity in flux. Wha t does seem to be a highest
common denominator is this: modules tha t process
text, or process the output of other modules tha t
process text, produce further information about the
text or portions of it. For example, part-of-speech
tags, phrase s tructure trees, logical forms, discourse
models can all be seen in this light. I t would seem,
therefore, tha t we are on safe common ground if we
s tar t only by commit t ing to provide a mechanism
which manages arbi t rary information about text.

There are two methods by which this may be done.
First, one may embed the information in the text at
the relevant points - the additive approach. Second,
one may associate the information with the text by
building a separate database which stores this in-
formation and relates it to the text using pointers
into the text - the re]erential approach. The next
two subsections discuss systems tha t have adopted
these two approaches respectively, then we compare
the two and indicate why we have chosen a hybrid
approached based mainly on the second. Finally we
look at a system tha t falls outside our three cate-
gories.

2.2 A d d i t i v e A p p r o a c h e s
Additive architectures for managing information
about text add markup to the original text at each
successive phase of processing. This model has been
adopted by a number of projects including par ts of
the M U L T E X T EC project. The M U L T E X T work 2
has led to the development of an architecture based

2Note that other partners in the
project adopted a different architectural solution - see
http ://www. ipl. univ-aix, fr/proj ect s/multext/.

238

on SGML at the University of Edinburgh called LT-
NSL (Thompson and McKelvie, 1996).

The architecture is based on a commitment to
TEI-style (the Text Encoding Initiative (Sperberg-
McQueen and Burnard, 1994)) SGML encoding of
information about text. The TEI defines standard
tag sets for a range of purposes including many rel-
evant to LE systems. Tools in a LT-NSL system
communicate via interfaces specified as SGML doc-
ument type definitions (DTDs - essentially tag set
descriptions), using character streams on pipes - an
arrangement modelled after UNIX-style shell pro-
gramming. To obviate the need to deal with some
difficult types of SGML (e.g. minimised markup)
texts are converted to a normal form before process-
ing. A tool selects what information it requires
from its input SGML stream and adds information
as new SGML markup. An advantage here is a
degree of data-structure independence: so long as
the necessary information is present in its input, a
tool can ignore changes to other markup that in-
habits the same stream - unknown SGML is simply
passed through unchanged (so, for example, a se-
mantic interpretation module might examine phrase
structure markup, but ignore POS tags). A disad-
vantage is that although graph-structured data may
be expressed in SGML, doing so is complex (either
via concurrent markup, the specification of multi-
ple legal markup trees in the DTD, or by rather
ugly nesting tricks to cope with overlapping - so-
called "milestone tags"). Graph-structured informa-
tion might be present in the output of a parser, for
example, representing competing analyses of areas
of text.

2.3 R e f e r e n t i a l A p p r o a c h e s

The ARPA-sponsored T I P S T E R programme in the
US, now entering its third phase, has also produced
a data-driven architecture for NLP systems (Grish-
man, 1996). Whereas in LT-NSL all information
about a text is encoded in SGML, which is added by
the modules, in T I P S T E R a text remains unchanged
while information is stored in a separate database
- the referential approach. Information is stored
in the database in the form of annotations. Anno-
tations associate arbi trary information (attributes),
with portions of documents (identified by sets of
s ta r t /end byte offsets or spans). Attributes may be
the result of linguistic analysis, e.g. POS tags or tex-
tual unit type. In this way the information built up
about a text by NLP modules is kept separate from
the texts themselves. In place of an SGML DTD,
an annotation type declaration defines the informa-
tion present in annotation sets. Figure 1 shows an

example from (Grishman, 1996).

Tezt
Sarah savored the soup.

0...15...110..115..120
Annotations

Id Type

token
token
token
token
token
name
sentence

Span
Start End

0 5
6 13

14 17
18 22
22 23

0 5
0 23

Attributes

pos=NP
pos----VBD
pos----DT
pos----NN

name_type=person

Figure 1: T I P S T E R annotations example

The definition of annotations in T I P S T E R forms
part of an object-oriented model that deals with
inter-textual information as well as single texts.
Documents are grouped into collections, each with
a database storing annotations and document at-
tributes such as identifiers, headlines etc. The model
also describes elements of information extraction
(IE) and information retrieval (IR) systems relating
to their use, with classes representing queries and
information needs.

The T I P S T E R architecture is designed to be
portable to a range of operating environments, so
it does not define implementation technologies. Par-
ticular implementations make their own decisions re-
garding issues such as parallelism, user interface, or
delivery platform. Various implementations of TIP-
STER systems are available, including one in GATE.

2.4 C o m p a r i s o n o f L T - N S L a n d T I P S T E R
Both architectures are appropriate for NLP, but
there are a number of significant differences. We
discuss five here, then note the possibility of compli-
mentary inter-operation of the two.

1. T I P S T E R can support documents on read-only
media (e.g. Internet material, or CD-ROMs,
which may be used for bulk storage by organisa-
tions with large archiving needs) without copy-
ing each document.

2. From the point of view of efficiency, the original
LT-NSL model of interposing SGML between
all modules implies a generation and parsing
overhead in each module. Later versions have
replaced this model with a pre-parsed represen-
tation of SGML to reduce this overhead. This
representation will presumably be stored in in-
termediate files, which implies an overhead from
the I /O involved in continually reading and

239

writing all the data associated with a document
to file. There would seem no reason why these
files should not be replaced by a database im-
plementation, however, with potential perfor-
mance benefits from the ability to do I /O on
subsets of information about documents (and
from the high level of optimisation present in
modern database technology).

3. A related issue is storage overhead. T I P S T E R
is minimal in this respect, as there is no inher-
ent need to duplicate the source text and all its
markup during the nromalisation process.

4. At first thought texts may appear to be one-
dimensional, consisting of a sequence of charac-
ters. This view breaks down when structures
like tables appear - these are inherently two-
dimensional and their representation and ma-
nipulation is much easier in a referential model
like T I P S T E R than in an additive model like
SGML because a markup-based representation
is based on the one-dimensional view. In TIP-
STER, the column of a table can be repre-
sented as a single object with multiple refer-
ences to parts of the text (an annotation with
multiple spans). Marking columns in SGML re-
quires a tag for each row of the column. Related
points are that: T I P S T E R avoids the difficul-
ties referred to earlier of representing graph-
structured information in SGML; LT NSL is
inefficient where processing algorithms require
non-sequential access to data (McKelvie, Brew,
and Thompson, 1997).

5. T I P S T E R can easily support multi-level access
control via a database's protection mechanisms
- this is again not straightforward in SGML.

6. Distributed control is easy to implement in a
database-centred system like T I P S T E R - the
DB can act as a blackboard, and implemen-
tations can take advantage of well-understood
access control (locking) technology. How to
do distributed control in LT-NSL is not obvi-
ous. We plan to provide this type of control in
GATE via collaboration with the Corelli project
at CRL, New Mexico - see (Zajac, 1997) for
more details.

2.5 C o m b i n i n g A d d i t i o n a n d R e f e r e n c e

We believe the above comparison demonstrates that
there are significant advantages to the T I P S T E R
model and it is this model that we have chosen for
GATE.

We also believe that SGML and the TEI must re-
main central to any serious text processing strategy.

The points above do not contradict this view, but
indicate that SGML should not form the central rep-
resentation format of every text processing system.
Input from SGML text and TEI conformant output
are becoming increasingly necessary for LE appli-
cations as more and more publishers adopts these
standards. This does not mean, however, that flat-
file SGML is an appropriate format for an architec-
ture for LE systems. This observation is born out
by the facts that T I P S T E R started with an SGML
architecture but rejected it in favour of the current
database model, and that LT-NSL has gone part ly
towards this style by passing pre-parsed SGML be-
tween components.

Interestingly, a T I P S T E R referential system could
function as a module in an LT-NSL additive system,
or vice-versa. A T I P S T E R storage system could
write data in SGML for processing by LT-NSL tools,
and convert the SGML results back into native for-
mat. Work is underway to integrate the LT-NSL
API with GATE and provide SGML I /O for TIP-
STER (and we acknowledge valuable assistance from
colleagues at Edinburgh in this task).

2 . 6 I C E

ICE, the Intarc Communication Environment
(Amtrup, 1995), is an 'environment for the develop-
ment of distributed AI systems'. As part of the Verb-
mobil real-time speech-to-speech translation project
ICE has addressed two key problems for this type
of system, viz. distributed processing and incremen-
tal interpretation (Gorz et al., 1996): distribution
to contribute to processing speed in what is a very
compute-intensive application area; incremental in-
terpretat ion both for speed reasons and to facili-
ta te feedback of results from downstream modules
to upstream ones (e.g. to inform the selection of
word interpretations from phone lattices using part-
of-speech information).

ICE provides a distribution and communication
layer based on PVM (Parallel Virtual Machine).
The infrastructure tha t ICE delivers doesn't fit into
our tr ipart i te classification because the communica-
tion channels do not use data structures specific to
NLP needs, and because data storage and text col-
lection management is left to the individual modules.

ICE might well form a useful backbone for an NLP
infrastructure, and could operate in any of the three
paradigms.

3 N L P T r e n d s a n d G A T E

For a variety of reasons NLP has recently spawned
a related engineering discipline called language engi-
neering (LE), whose orientation is towards the appli-

240

cation of NLP techniques to solving large-scale, real-
world language processing problems in a robust and
predictable way. These problems include informa-
tion extraction, text summarisation, document gen-
eration, machine translation, second language learn-
ing, amongst others. In many cases, the technologies
being developed are assistive, rather than fully auto-
matic, aiming to enhance or supplement a human's
expertise rather than at tempting to replace it.

The reasons for the growth of language engineer-
ing include:

• computer hardware advances which have in-
creased processor speeds and memory capacity,
while reducing prices;

• increasing availability of large-scale, language-
related, on-line resources, such as dictionaries,
thesauri, and 'designer' corpora - corpora se-
lected for representativeness and perhaps anno-
tated with descriptive information;

• the demand for applications in a world where
electronic text has grown exponentially in vol-
ume and availability, and where electronic com-
munications and mobility have increased the
importance of multi-lingual communication;

• maturing NLP technology which is now able, for
some tasks, to achieve high levels of accuracy
repeatedly on real data.

Aside from the host of fundamental theoretical
problems that remain to be answered in NLP, lan-
guage engineering faces a variety of problems of its
own. Two features of the current situation are of
prime importance; they constrain how the field can
develop and must be acknowledged and addressed.
First, there is no theory of language which is uni-
versally accepted, and no computational model of
even a part of the process of language understanding
which stands uncontested. Second, building intelli-
gent application systems, systems which model or
reproduce enough human language processing capa-
bility to be useful, is a large-scale engineering ef-
fort which, given political and economic realities,
must rely on the efforts of many small groups of re-
searchers, spatially and temporally distributed, with
no collaborative master plan.

The first point means that any at tempt to push
researchers into a theoretical or representational
straight-jacket is premature, unhealthy and doomed
to failure. The second means that no research team
alone is likely to have the resources to build from
scratch an entire state-of-the-art LE application sys-
tem. Note the tension here: the first point identi-
fies a centrifugal tendency, pushing researchers into

ever greater theoretical diversity; the second, a cen-
tripetal tendency forcing them together.

Given this state of affairs, what is the best prac-
tical support that can be given to advance the field?
Clearly, the pressure to build on the efforts of others
demands that LE tools or component technologies -
parsers, taggers, morphological analysers, discourse
planning modules, etc, - be readily available for ex-
perimentation and reuse. But the pressure towards
theoretical diversity means that there is no point at-
tempting to gain agreement, in the short term, on
what set of component technologies should be de-
veloped or on the informational content or syntax
of representations that these components should re-
quire or produce.

Our response to these considerations has been
to design and implement a software environment
called GATE - a General Architecture for Text Engi-
neering (Cunningham, Gaizauskas, and Wilks, 1995;
Cunningham, Wilks, and Gaizauskas, 1996) - which
at tempts to meet the following objectives:

1. support information interchange between LE
modules at the highest common level possi-
ble without prescribing theoretical approach
(though it allows modules which share theoret-
ical presuppositions to pass data in a mutually
accepted common form);

2. support the integration of modules written in
any source language, available either in source
or binary form, and be available on any common
platform;

3. support the evaluation and refinement of LE
component modules, and of systems built from
them, via a uniform, easy-to-use graphical in-
terface which in addition offers facilities for vi-
sualising data and managing corpora.

The remainder of this paper describes the design of
GATE. In section 4 we detail the design of GATE.
Section 5 illustrates how GATE can be used by de-
scribing how we have taken a pre-existing informa-
tion extraction system and embedded it in GATE.
Section 6 makes some concluding remarks.

4 G A T E D e s i g n

Corresponding to the three key objectives identified
at the end of section 3, GATE comprises three prin-
cipal elements: GDM, the GATE Document Man-
ager, based on the T I P S T E R document manager;
CREOLE, a Collection of REusable Objects for Lan-
guage Engineering: a set of LE modules integrated
with the system; and GGI, the GATE Graphical In-
terface, a development tool for LE R&:D, providing

241

integrated access to the services of the other compo-
nents and adding visualisation and debugging tools.

Working with GATE, the researcher will from the
outset reuse existing components, and the common
APIs of GDM and CREOLE mean only one inte-
gration mechanism must be learnt. As CREOLE
expands, more and more modules will be available
from external sources (including users of other TIP-
STER systems).

4.1 G D M
The GDM provides a central repository or server
tha t stores all information an LE system generates
about the texts it processes. All communication be-
tween the components of an LE system goes through
GDM, which insulates these components from direct
contact with each other and provides them with a
uniform API for manipulating the data they pro-
duce and consume.

The basic concepts of the data model underlying
the GDM have been explained in the discussion of
the Tipster model in section 2.3 above. The TIP-
STER architecture has been fully specified (Grish-
man, 1996) and its specification should be consulted
for further details, in particular for definitions of the
API. The GDM is fully conformant with the core
document management subset of this specification.

4.2 C REOLE
All the real work of analysing texts in a GATE-based
LE system is done by CREOLE modules or objects
(we use the terms module and object rather loosely
to mean interfaces to resources which may be pre-
dominantly algorithmic or predominantly data, or a
mixture of both). Typically, a CREOLE object will
be a wrapper around a pre-existing LE module or
database - a tagger or parser, a lexicon or ngram
index, for example. Alternatively, objects may be
developed from scratch for the architecture - in ei-
ther case the object provides a standardised API to
the underlying resources which allows access via GGI
and I /O via GDM. The CREOLE APIs may also be
used for programming new objects.

When the user initiates a particular CREOLE ob-
ject via GGI (or when a programmer does the same
via the GATE API when building an LE applica-
tion) the object is run, obtaining the information it
needs (document source, annotations from other ob-
jects) via calls to the GDM API. Its results are then
stored in the GDM database and become available
for examination via GGI or to be the input to other
CREOLE objects.

GDM imposes constraints on the I /O tbrmat of
CREOLE objects, namely that all information must
be associated with byte offsets and conform to the

annotations model of the T I P S T E R architecture.
The principal overhead in integrating a module with
GATE is making the components use byte offsets, if
they do not already do so.

4.3 GGI
The GGI is a graphical tool that encapsulates the
GDM and CREOLE resources in a fashion suitable
for interactive building and testing of LE compo-
nents and systems. The GGI has functions for creat-
ing, viewing and editing the collections of documents
which are managed by the GDM and that form the
corpora which LE modules and systems in GATE
use as input data. The GGI also has facilities to
display the results of module or system execution -
new or changed annotations associated with the doc-
ument. These annotations can be viewed either in
raw form, using a generic annotat ion viewer, or in an
annotation-specific way, if special annotat ion view-
ers are available. For example, named entity annota-
tions which identify and classify proper names (e.g.
organization names, person names, location names)
are shown by colour-coded highlighting of relevant
words; phrase structure annotations are shown by
graphical presentation of parse trees. Note that the
viewers are general for particular types of annota-
tion, so, for example, the same procedure is used for
any POS tag set, Named-Enti ty markup etc. (see
section 4.4 below). Thus CREOLE developers reuse
GATE data visualisation code with negligible over-
head.

4.4 Plug and Play
The process of integrating existing modules into
GATE (CREOLEising) has been automated to a
large degree and can be driven from the interface.
The developer is required to produce some C or
Tcl code that uses the GDM T I P S T E R API to get
information from the database and write back re-
sults. When the module pre-dates integration, this
is called a wrapper as it encapsulates the module in
a standard form that GATE expects. When mod-
ules are developed specifically for GATE they can
embed T I P S T E R calls throughout their code and
dispense with the wrapper intermediary. The under-
lying module can be an external executable written
in any language (the current CREOLE set includes
Prolog, Lisp and Perl programs, for example).

There are three ways to provide the CREOLE
wrapper functions. Packages written in C, or in
languages which obey C linkage conventions, can
be compiled into GATE directly as a Tcl pack-
age. This is tight coupling and is maximally efficient
but necessitates recompilation of GATE when mod-
ules change. On platforms which support shared

242

libraries C-based wrappers can be loaded at run-
t ime - dynamic coupling. This is also efficient (with
a small penalty at load time) and allows devel-
opers to change CREOLE objects and run them
within GATE without recompiling the GATE sys-
tem. Wrappers written in Tcl can also be loaded at
run-time - loose coupling. There is a performance
penalty in comparison with using the C APIs, but
for simple cases this is the easiest integration route.
In each case the implementat ion of CREOLE ser-
vices is completely t ransparent to GATE.

CREOLE wrappers encapsulate informa-
tion about the preconditions for a module to run
(data tha t must be present in the GDM database)
and post-conditions (data that will result). This in-
formation is needed by GGI, and is provided by the
developer in a configuration file, which also details
what sort of viewer to use for the module 's results
and any parameters that need passing to the module.
These parameters can be changed from the interface
at run-time, e.g. to tell a parser to use a different
lexicon. Aside from the information needed for GGI
to provide access to a module, GATE compatibili ty
equals T I P S T E R compatibili ty - i.e. there will be
very little overhead in making any T I P S T E R mod-
ule run in GATE.

Given an integrated module, all other interface
functions happen automatically. For example, the
module will appear in a graph of all modules avail-
able, with permissible links to other modules auto-
matically displayed, having been derived from the
module pre- and post-conditions.

At any point the developer can create a new graph
from a subset of available CREOLE modules to per-
form a task of specific interest.

5 V I E : A n A p p l i c a t i o n I n G A T E

To illustrate the process of converting pre-existing
LE systems into GATE-compat ible CREOLE sets
we use as an example the creation of VIE (Vanilla
Information Extract ion system) from LaSIE (Large-
Scale Information Extract ion system) (Gaizauskas
et al., 1995), Sheffield's entry in the MUC-6 sys-
tem evaluations. LaSIE module interfaces were not
standardised when originally produced and its CRE-
OLEization gives a good indication of the ease of in-
tegrating other LE tools into GATE. The resulting
system, VIE, is distributed with GATE.

5.1 LaSIE
LaSIE was designed as a research system for inves-
t igating approaches to information extraction and
to be entered into the MUC-6 conference (Grish-
man and Sundheim, 1996). As such it was a stand-

alone system tha t was aimed at specific tasks and,
while based on a modular design, none of its mod-
ules were specifically designed with reuse in mind,
nor was there any a t t empt to standardise da ta for-
mats passed between modules. Modules were writ-
ten in a variety of programming languages, includ-
ing C, C + + , Flex, Perl and Prolog. In this regard
LaSIE was probably typical of existing LE systems
and modules. The high-level tasks which LaSIE
performed include the four MUC-6 tasks (carried
out on Wall Street Journal articles) - named entity
recognition, coreference resolution and two template
filling tasks. The system was a pipelined architec-
ture which processes a text sentence-at-a-t ime and
consists of three principal processing stages: lexical
preprocessing, parsing plus semantic interpretation,
and discourse interpretation.

5.2 The CREOLEisation of LaSIE
As described in section 4.2, CREOLEisat ion of ex-
isting LE modules involves providing them with a
wrapper so tha t the modules communicate via the
GDM, by accessing TIPSTER-compl ian t document
annotations and updat ing them with new informa-
tion. The major work in converting LaSIE to VIE
involved defining useful module boundaries, unpick-
ing the connections between them, and then writing
wrappers to convert module output into annotat ions
relating to text spans and to convert GDM input
from annotations relating to text spans back into
the module 's native input format.

The complete VIE system comprises ten modules,
each of which is a C R E O L E object integrated into
GATE. The CREOLEisat ion took approximately
two person months. The resulting system has all the
functionality of the original LaSIE system. However,
the interface makes it much easier to use. And, of
course, it is now possible to swap in modules, such as
a different parser, with significantly less effort than
would have been the case before. For more details
of this process see (Cunningham et al., 1996).

VIE and its components are being deployed for
a number of purposes including IE in French, Ger-
man and Spanish. Experience so far indicates tha t
GATE is a productive environment for distributed
collaborative reuse-based software development.

6 C o n c l u d i n g R e m a r k s

Of course, GATE does not solve all the problems
involved in plugging diverse LE modules together.
There are three barriers to such integration:

• managing storage and exchange of information
about texts;

243

• incompatibility of representation of information
about texts;

• incompatibility of type of information used and
produced by different modules.

GATE provides a solution to the first two of these,
based on the work of the TIPSTER architecture
group. Because GATE places no constraints on the
linguistic formalisms or information content used
by CREOLE modules, the latter problem must
be solved by dedicated translation functions - e.g.
tagset-to-tagset mapping - and, in some cases, by
extra processing - e.g. adding a semantic processor
to complement a bracketing parser.

The recent completion of this work means a full
assessment of the strengths and weaknesses of GATE
is not yet possible. The implementation of VIE in
GATE, however, provides an existence proof that
the original conception is workable. We believe that
the environment provided by GATE will now allow
us to make significant strides in assessing alterna-
tive LE technologies and in rapidly assembling LE
prototype systems. Thus, to return to the themes of
section 3, GATE will not commit us to a particular
linguistic theory or formalism, but it will enable us,
and anyone who wishes to make use of it, to build,
in a pragmatic way, on the diverse efforts of others.

7 Acknowledgements

This work was supported by the UK Engineering and
Physical Sciences Research Council, grant number
GR/K25267, and the EC DG XIII Language Engi-
neering programme, grant number LE1-2238.

References

Amtrup, J.W. 1995. ICE - INTARC Communica-
tion Environment User Guide and Reference Man-
ual Version 1.4. Technical report, University of
Hamburg.

Cunningham, H., R.G. Gaizauskas, and Y. Wilks.
1995. A General Architecture for Text En-
gineering (GATE) - a new approach to Lan-
gnage Engineering R&D. Technical Report
CS - 95 - 21, Department of Computer Sci-
ence, University of Sheffield. Also available as
http ://xxx. lanl. gov/ps/cmp-lg/9601009.

Cunningham, H., K. Humphreys, R. Gaizauskas,
and M. Stower, 1996. CREOLE Devel-
oper's Manual. Department of Computer Sci-
ence, University of Sheffield. Available at
http ://www. dcs. shef. ac. uk/resear ch/groups/
nip/gate.

Cunningham, H., Y. Wilks, and R. Gaizauskas.
1996. GATE - a General Architecture for Text
Engineering. In Proceedings of the 16th Con-
ference on Computational Linguistics (COLING-
96), Copenhagen, August.

Gaizanskas, R., T. Wakao, K Humphreys, H. Cun-
ningham, and Y. Wilks. 1995. Description of the
LaSIE system as used for MUC-6. In Proceedings
of the Sixth Message Understanding Conference
(MUC-6). Morgan Kaufmann.

Gorz, G., M. Kessler, J. Spilker, and H. Weber.
1996. Research on Architectures for Integrated
Speech/Language Systems in Verbmobil. In Pro-
ceedings of COLING-96, Copenhagen.

Grishman, R. 1996. TIPSTER Architecture Design
Document Version 2.2. Technical report, DARPA.
Available at h t t p ://www. t i p s t e r , org/ .

Grishman, R. and B. Sundheim. 1996. Message
understanding conference - 6: A brief history. In
Proceedings of the 16th International Conference
on Computational Linguistics, Copenhagen, June.

McKelvie, D., C. Brew, and H. Thompson. 1997.
Using SGML as a Basis for Data-Intensive NLP.
In Proceedings of the fifth Conference on Applied
Natural Language Processing (ANLP-97).

Schiitz, J. 1994. Developing Lingware in ALEP.
ALEP User Group News, CEC Luxemburg, 1(1),
October.

Shieber, S. 1992. Constraint-Based Grammar For-
malisms. MIT Press.

Simkins, N. K. 1994. An Open Architecture for
Language Engineering. In First Language Engi-
neering Convention, Paris.

Sperberg-McQueen, C .M.and L. Burnard. 1994.
Guidelines for Electronic Text Encoding and In-
terchange (TEl P3). ACH, ACL, ALLC.

Thompson, H.S. and D. McKelvie. 1996. A Software
Architecture for Simple, Efficient SGML Applica-
tions. In Proceedings of SGML Europe '96, Mu-
nich.

Zajac, R. 1997. An Open Distributed Architecture
for Reuse and Integration of Heterogenous NLP
Components. In Proceedings of the 5th conference
on Applied Natural Language Processing (ANLP-
97).

244

