
An Information Extract ion Core Sys tem for 
Real World German Text Process ing  

G f i n t e r  N e u m a n n *  R o l f  B a c k o f e n  t J u d i t h  B a u r  t M a r k u s  B e c k e r ~  C h r i s t i a n  B r a u n  ~ 

A b s t r a c t  

This paper describes SMES, an informa- 
tion extraction core system for real world 
German text processing. The basic design 
criterion of the system is of providing a set 
of basic powerful, robust, and efficient nat- 
ural language components and generic lin- 
guistic knowledge sources which can easily 
be customized for processing different tasks 
in a flexible manner.  

1 I n t r o d u c t i o n  

There is no doubt that  the amount of textual infor- 
mation electronically available today has passed its 
critical mass leading to the emerging problem that  
the more electronic text data  is available the more 
difficult it is to find or extract  relevant information. 
In order to overcome this problem new technologies 
for future information management  systems are ex- 
plored by various researchers. One new line of such 
research is the investigation and development of in- 
formation extraction (IE) systems. The goal of IE 
is to build systems that  find and link relevant infor- 
mation from text data  while ignoring extraneous and 
irrelevant information (Cowie and Lehnert, 1996). 

Current IE systems are to be quite successfully in 
automatically processing large text collections with 
high speed and robustness (see (Sundheim, 1995), 
(Chinchor et al., 1993), and (Grishman and Sund- 
heim, 1996)). This is due to the fact tha t  they can 
provide a partial understanding of specific types of 
text with a certain degree of partial  accuracy using 
fast and robust shallow processing strategies (basi- 
cally finite state technology). They have been "made 
sensitive" to certain key pieces of information and 

*DFKI GmbH, Stuhlsatzenhausweg 3, 66123 
Saarbriicken, Germany, neumannOdfki, uni-sb,  de 

~LMU, Oettingenstrasse 67, 80538 Miinchen, Ger- 
many, backofen@informatik, uni-muenchen, de 

*DFKI GmbH, baur@dfki, uni-sb,  de 
~DFKI GmbH, mbecker0dfki, uni-sb,  de 
~DFKI GmbH, cbraun@dfki, uni-sb,  de 

thereby provide an easy means to skip text without 
deep analysis. 

The majori ty of existing information systems are 
applied to English text. A major  drawback of previ- 
ous systems was their restrictive degree of portabil- 
ity towards new domains and tasks which was also 
caused by a restricted degree of re-usability of the 
knowledge sources. Consequently, the major  goals 
which were identified during the sixth message un- 
derstanding conference (MUC-6) were. on the one 
hand, to demonstrate  task-independent component  
technologies of information extraction, and, on the 
other hand, to encourage work on increasing porta-  
bility and "deeper understanding" (of. (Grishman 
and Sundheim, 1996)). 

In this paper  we report  on SMES an information 
extraction core system for real world German text 
processing. The main research topics we are con- 
cerned with include easy portabil i ty and adaptabil-  
ity of the core system to extraction tasks of differ- 
ent complexity and domains. In this paper  we will 
concentrate on the technical and implementational 
aspects of the IE core technology used for achieving 
the desired portability. We will only briefly describe 
some of the current applications built on top of this 
core machinery (see section 7). 

2 T h e  o v e r a l l  a r c h i t e c t u r e  o f  SMES 

The basic design criterion of the SMES system is to 
pr(r,-:de a set of basic powerful, robust, and efficient 
natural  language components and generic linguistic 
knowledge sources which can easily be customized 
for processing different tasks in a flexible manner.  
Hence, we view SMES as a core information extrac- 
tion system. Customization is achieved in tile fol- 
lowing directions: 

• defining the flow of control between modules 
(e.g., cascaded and /or  interleaved) 

• selection of the linguistic knowledge sources 

• specifying domain specific knowledge 

• defining task-specific additional functionality 

209 



ASCII Text 

Tokenizer 

Morph./Lex. 
Processing 

Fragment 
Processing 

Fragment comb. 

Template gen. 

Netscape 

_ ~  Browser 

HTML 
Interfac~ 

Marked-up Text 

Templates 

Figure 1: A blueprint of the core system 

Figure 1 shows a blueprint of the core system 
(which roughly follows the design criteria of the 
generic information extraction system described in 
(Hobbs, 1992)) . The main components are: 

A tokenizer based on regular expressions: it scans 
an ASCII text  file for recognizing text  structure, spe- 
cial tokens like date and time expressions, abbrevi- 
ations and words. 

A very efficient and robust German morphological 
component which performs morphological infection 
and compound processing. For each analyzed word 
it returns a (set of) triple containing the stem (or 
a list of stems in case of a compound), the part  of 
speech, and inflectional information. Disambigua- 
tion of the morphological output  is performed by a 
set of word-case sensitive rules, and a Brill-based 
unsupervised tagger. 

A declarative specification tool for expressing fi- 
nite state grammars for handling word groups and 
phrasal entities (e.g., general NPs, PPs,  or verb 
groups, complex time and date expressions, proper 
name expressions). A finite state grammar con- 
sists of a set of fragment extraction patterns defined 
as finite state transducers (FST), where modular- 
ity is achieved through a generic input /output  de- 
vice. FST are compiled to Lisp functions using an 
extended version of the compiler defined in (Krieger, 
1987). 

A bidirectional lexical-driven shallow parser for 
the combination of extracted fragments. Shal- 
low parsing is basically directed through frag- 
ment combination patterns FCP of the form 
(FSTtelt, anchor, FSTright), where anchor is a lex- 
ical entry (e.g., a verb like "to meet")  or a name 
of a class of lexical entries (e.g., "transitive-verb"). 
FCPs are attached to lexical entries (e.g., verbs), and 
are selected right after a corresponding lexical entry 
has been identified. They are applied to their left 
and right stream of tokens of recognized fragments. 
The fragment combiner is used for recognizing and 
extracting clause level expressions, as well as for the 
instantiation of templates. 

An interface to TDL, a type description language 
for constraint-based grammars (Krieger and Sch~fer, 
1994). TDL is used in SMES for performing type- 
driven lexical retrieval, e.g., for concept-driven fil- 
tering, and for the evaluation of syntactic agreement 
tests during fragment processing and combination. 

The knowledge base is the collection of differ- 
ent knowledge sources, viz. lexicon, subgram- 
mars, clause-level expressions, and template pat- 
terns. Currently it includes 120.000 lexical root en- 
tries, subgra.mmars for simple and complex date and 
time expressions, person names, company names, 
currency expressions, as well as shallow grammars 
for general nominal phrases, prepositional phrases, 
and general verb-modifier expressions. 

Additionally to the above mentioned components 
there also exists a generic graphical editor for text 
items and an HTML interface to the Netscape 
browser which performs marking of the relevant text 
parts by providing typed parentheses which also 
serve as links to the internal representation of the 
extracted information. 

There are two important  properties of the system 
for supporting portability: 

• Each component outputs the resulting struc- 
tures uniformly as feature value structures, to- 
gether with its type and the corresponding start 
and end positions of the spanned input expres- 
sions. We call these output  structures text 
items. 

• All (un-filtered) resulting structures of each 
component are cached so that  a component can 
take into account results of all previous compo- 
nents. This allows for the definition of cascaded 
as well as interleaved flow of control. The for- 
mer case means that  it is possible to apply a 
cascade of finite state expressions (comparable 
to that  proposed in (Appelt et al., 1993))~ and 
the latter supports the definition of finite state 
expressions which incrementally perform a mix 
of keyword spotting, fragment processing: and 
template instantiation. I 

1Of course, it is also possible---and usually the case 
in our current applications--to combine both sorts of 

210 



The system has already successfully been ap- 
plied to classifying event announcements made via 
email, scheduling of meetings also sent via email, 
and extraction of company information from on-line 
newswires (see 7 for more details). In the next sec- 
tion, we are describing some of the components'  
properties in more detail. 

3 W o r d  l e v e l  p r o c e s s i n g  

T e x t  s c a n n i n g  Each file is firstly preprocessed by 
the text scanner. Applying regular expressions (the 
text scanner is implemented in lex, the well-known 
Unix tool), the text scanner identifies some text 
structure (e.g., paragraphs, indentations), word, 
number, date and time tokens (e.g, "1.3.96", "12:00 
h"), and expands abbreviations. The output  of the 
text scanner is a stream of tokens, where each word 
is simply represented as a string of alphabetic char- 
acters (including delimiters, e.g. "Daimler-Benz"). 
Number, date and time expressions are normalized 
and represented as at tr ibute values structures. For 
example the character stream "1.3.96" is represented 
as (:date ((:day l)(:mon 3)(:year 96)), and "13:15 h" 
as (:time ((:hour 13)(:min 15))). 

M o r p h o l o g i c a l  p r o c e s s i n g  follows text scanning 
and performs inflection, and processing of com- 
pounds. The capability of efficiently processing com- 
pounds is crucial since compounding is a very pro- 
ductive process of the German language. 

The morphological component called MONA is a 
descendant of MORPHIX, a fast classification-based 
morphology component for German (Finkler and 
Neumann, 1988). MONA improves MORPHIX in that  
the classification-based approach has been combined 
with the well-known two-level approach, originally 
developed by (Koskenniemi, 1983). Actually, the 
extensions concern 

• the use of tries (see (Aho et al., 1983)) as the 
sole storage device for all sorts of lexical infor- 
mation in MONA (e.g., for lexical entries, prefix, 
inflectional endings) , and 

• the analysis of compound expressions which is 
realized by means of a recursive trie traversal. 
During traversal two-level rules are applied for 
recognizing linguistically well-formed decompo- 
sitions of the word form in question. 

The output  of MONA is the word form together 
with all its readings. A reading is a triple of the form 
(stem, in f lec t ion ,pos) ,  where s t em is a string or a 
list of strings (in the case of compounds), in f l ec t ion  
is the inflectional information, and pos is the part  of 
speech. 

Currently, MONA is used for the German and Ital- 
ian language. The German version has a very broad 

control flow. 

coverage (a lexicon of more then 120.000 stem en- 
tries), and an excellent speed (5000 words/sec with- 
out compound handling, 2800 words/sec with com- 
pound processing (where for each compound all lex- 
ically possible decompositions are computed). 2 

P a r t - o f - s p e e c h  d i s a m b i g u a t i o n  Morphological 
ambiguous readings are disambiguated wrt. part- 
of-speech using case-sensitive rules 3 and filtering 
rules which have been determined using Brill's un- 
supervised tagger (Brill, 1995). The filtering rules 
are also used for tagging unknown words. 

The filtering rules are determined on the basis 
of unannotated corpora. Starting from untagged 
c o r p o r a ,  MONA is used for initial tagging, where 
unknown words are ambiguously tagged as noun, 
verb, and adjective. Then, using contextual informa- 
tion from unambiguously analysed word forms, filter 
rules are determined which are of the form change 
tag of word form from noun or verb to noun if the 
previous word is a determiner. 

First experiments using a training set of 100.000 
words and a set of about 280 learned filter rules 
yields a tagging accuracy (including tagging of un- 
known words) of 91.4%. 4 

Note that  the un-supervised tagger required 
no hand-tagged corpora and considered unknown 
words. We expect to increase the accuracy by im- 
proving the un-supervised tagger through the use 
of more linguistic information determined by MONA 
especially for the case of unknowns words. 

4 F r a g m e n t  p r o c e s s i n g  

Word group recognition and extraction is performed 
through fragment extraction patterns which are ex- 
pressed as finite state transducers (FST) and which 
are compiled to Lisp functions using a compiler 
based on (Krieger, 1987). An FST consists of a 
unique name, the recognition part,  the output  de- 
scription, and a set of compiler parameters.  

T h e  r e c o g n i t i o n  p a r t  An FST operates on a 
stream of tokens. The recognition part  of an FST is 
used for describing regular patterns over such token 

2Measurement has been performed on a Sun 20 using 
an on-line lexicon of 120.000 entries. 

3Generally, only nouns (and proper names) axe writ- 
ten in standard German with an capitalized initial letter 
(e.g., "der Wagen" the car vs. "wit wagen" we venture). 
Since typing errors are relatively rare in press releases 
(or similar documents) the application of case-sensitive 
rules are a reliable and straightforward tagging means 
for the German language. 

4Brill reports a 96% accuracy using a training set of 
350.000 words and 1729 rules. However, he does not 
handle unknown words. In (Aone and Hausman, 1996), 
an extended version of Brill's tagger is used for tagging 
Spanish texts, which includes unknown words. They re- 
port an accuracy of 92.1%. 

211 



streams. For supporting modularity the different 
possible kind of tokens are handled via basic edges, 
where a basic edge can be viewed as a predicate for a 
specific class of tokens. More precisely a basic edge 
is a tuple of the form (name, test, variable), where 
name is the name of the edge, test is a predicate, and 
variable holds the current token Tc , if test applied 
on Tc holds. For example the following basic edge 
(:mona-cat "partikel" pre) tests whether Tc produced 
by MONA is a particle, and if so binds the token to 
the variable pre (more precisely, each variable of a 
basic edge denotes a stack, so that  the current token 
is actually pushed onto the stack). 

We assume that  for each component of the sys- 
tem for which fragment extraction patterns are to 
be defined, a set of basic edges exists. Furthermore, 
we assume that  such a set of basic edges remains fix 
at some point in the development of the system and 
thus can be re-used as pre-specified basic building 
blocks to a grammar wr i te r .  

Using basic edges the recognition part  of an FST 
is then defined as a regular expression using a func- 
tional notation. For example the recognition part  for 
simple nominal phrases might be defined as follows: 

:conc 

(:star<_n (:mona-cat "det" det) 1) 
(:star (:mona-cat "adj" adj)) 
(:mona-cat "n" noun)) 

Thus defined, a nominal phrase is the concatena- 
tion of one optional determiner (expressed by the 
loop operator  :star<n, where n starts from 0 and 
ends by 1), followed by zero or more adjectives fol- 
lowed by a noun. 

O u t p u t  description part The output  structure 
of an FST is constructed by collecting together the 
variables of the recognition part 's  basic edges fol- 
lowed by some specific construction handlers. In or- 
der to support  re-usability of FST to other applica- 
tions, it is important  to separate the construction 
handlers from the FST definition. Therefore, the 
output  description part  is realized through a func- 
tion called BUILD-ITEM which receives as input the 
edge variables and a symbol denoting the class of 
the FST. For example, if :np is used as a type name 
for nominal phrases then the output  description of 
the above NP-recognition part  is 

(build-item :type :np :out (list det adj noun)). 
The function BUILD-ITEM then discriminates ac- 

cording to the specified type and constructs the de- 
sired output  to some pre-defined requests (note, that  
in the above case the variables DET and ADJ might 
have received no token. In that  case their default 
value NIL is used as an indication of this fact). Using 
this mechanism it is possible to define or re-define 
the output  structure without changing the whole 
FST. 

Special edges There exist some special ba- 
sic edges namely (:var var), (:current-pos pos) and 
(:seek name var). The edge (:var var) is used for 
simply skipping or consuming a token without any 
checks. The edge :current-pos is used for storing the 
position of the current token in the variable pos, and 
the edge :seek is used for calling the FST named 
name, where var is used as a storage for the output  
of name. This is similar to the :seek edge known 
from Augmented Transition Networks with the no- 
tably distinction that  in our system recursive calls 
are disallowed. Thus :seek can also be seen as a 
macro expanding operator.  The :seek mechanism 
is very useful in defining modular grammars, since 
it allows for a hierarchical definition of finite state 
grammars, from general to specific constructions (or 
vice versa). The following example demonstrates the 
use of these special edges: 

(compile-regexp 
:conc 

(:current-pos start) 
(:alt 

(:seek time-phase time) 
(:conc 

(:star_<n (:seek time-expr-vorfield vorfield) 1) 
(:seek mona-time time))) 

(:current-pos end)) 
:name time-expr 
:output-desc 

(build-item :type time-expr :start start 
:end end :out (list vorfield time)))) 

This FST recognizes expressions like "sp~testens 
um 14:00 h" (by two o'clock at the latest) with the 
output  description ((:out (:time-rel . "spaet") (:time- 
prep.  "urn") (:minute.  0) ( :hour.  14)) (:end . 4) 
(:start .  0) ( : type.  time-expr)) 

Interface to T D L  The interface to TDL, a typed 
feature-based language and inference system is also 
realized through basic edges. TDL allows the user 
to define hierarchically-ordered types consisting of 
type constraints and feature constraints, and has 
been originally developed for supporting high-level 
competence grammar development. 

In SMES we are using TDL for two purposes: 

1. defining domain-specific type lattices 

2. expressing syntactic agreement constraints 

The first knowledge is used for performing 
concept-based lexical retrieval (e.g., for extracting 
word forms which are compatible to a given super- 
type, or for filtering out lexical readings which are 
incompatible wrt. a given type), and the second 
knowledge is used for directing fragment process- 
ing and combination, e.g., for filtering out certain 
un-grammatical phrases or for extracting phrases of 
certain syntactic type. 

2 1 2  



The integration of TDL and finite state expres- 
sions is easily achieved through the definition of ba- 
sic edges. For example the edge 

(:mona-cat-type (:and "n .... device") var) 
will accept a word form which has been analyzed 
as a noun and whose lexical entry type identifier is 
subsumed by "device". As an example of defining 
agreement test consider the basic edge 

(:mona-cat-unify "det" 
"[(num %l)(case %2 = gen-val) (gender %3)]" 

agr det) 
which checks whether the current token is a deter- 
miner and whether its inflection information (com- 
puted by MONA) unifies with the specified con- 
straints (here, it is checked whether the determiner 
has a genitive reading, where structure sharing is 
expressed through variables like %1). If so, agr is 
bound to the result of the unifier and token is bound 
to det. If in the same FST a similar edge for noun 
tokens follows which also makes reference to the vari- 
able agr, the new value for agr is checked with its old 
value. In this way, agreement information is propa- 
gated through the whole FST. 

An important  advantage of using TDL in this way 
is that  it supports the specification of very compact 
and modular finite expressions. However, one might 
argue that  using TDL in this way could have dra- 
matic effects on the efficiency of the whole system, 
if the whole power of TDL would be used. In some 
sense this is true. However, in our current system 
we only allow the use of type subsumption which is 
performed by TDL very efficiently, and constraints 
used very carefully and restrictively. Furthermore, 
the TDL interface opens up the possibility of inte- 
grating deeper processing components very straight- 
forwardly. 

Control parameters In order to obtain flexible 
control mechanisms for the matching phase it is pos- 
sible to specify whether an exact match is requested 
or whether an FST should already succeed when the 
recognition part  matches a prefix of the input string 
(or suffix, respectively). The prefix matching mech- 
anism is used in conjunction with the Kleene :star 
and the identity edge :var, to allow for searching 
the whole input stream for extracting all matching 
expressions of an FST (e.g., extracting all NP's, or 
time expressions). For example the following FST 
extracts all genitive NPs found in the input stream 
and collects them in a list : 

(compile-regexp 
(:star 

(:alt 
(:seek gen-phrase x) 
(:var dummy))) 

:output-desc (build-item :type list :out x ) 
:prefix T 
:suffix NIL 

5 F r a g m e n t  c o m b i n a t i o n  a n d  
t e m p l a t e  g e n e r a t i o n  

Bidirectional shallow parsing The combina- 
tion of extracted fragments is performed by a lexical- 
driven bidirectional shallow parser which operates 
on fragment combination patterns FCP which are 
attached to lexical entries (mainly verbs). We call 
these lexical entries anchors. 

The input stream for the shallow parser consists of 
a double-linked list of all extracted fragments found 
in some input text,  all punctuation tokens and text 
tokens (like newline or paragraph) and all found an- 
chors (i.e., all other tokens of the input text  are ig- 
nored). The shallow parser then applies for each 
anchor its associated FCP. An anchor can be viewed 
as splitting the input stream into a left and right in- 
put part. Application of an FCP then starts directly 
from the input position of the anchor and searches 
the left and right input parts for candidate frag- 
ments. Searching stops either if the beginning or 
the end of a text has been reached or if some punc- 
tuation, text tokens or other anchors defined as stop 
markers have been recognized. 

General f o r m  o f  f r a g m e n t  c o m b i n a t i o n  pat- 
terns A FCP consists of a unique name, an recog- 
nition part  applied on the left input part  and one for 
the right input part,  an output  description part  and 
a set of constraints on the type and number of col- 
lected fragments. As an prototypical case, consider 
the following FCP defined for intransitive verbs like 
to c o m e  or to begin: 

(com pile-a nchored-regexp 
((:set (cdr (assoc :start ?*)) anchor-pos) 

(:set ((:np (1 1) (nom-val (1 1)))) nec) 
(:set ((:tmp (0 2))) opt)) 

((:dl-list-left 
(:star 

(:alt 
(:ignore-token (", .... ;")) 
(:ignore-fragment :type (:time-phase :pp)) 
(:add-nec (:np :name-np) 

:np nec Icompl) 
(:add-opt (:time-expr :date-expr) 

:tmp opt Icompl)))) 
(:dl-list-right 

(:star 
(:alt 

(:ignore-token (", .... ;" )) 
(:add-nec (:np) :np nec rcompl) 
(:add-opt (:time-expr :date-expr) 

:name gen-star) 
Additionally, a boolean parameter  can be used to 

specify whether longest or shortest matches should 
be prefered (the default is longest match, see also 
(Appelt et al., 1993) where also longest subsuming 
phrases are prefered). 

2 1 3  



:tmp opt rcompl))))) 
:name intrans 
:output-desc (build-item :type :intrans 

:out (list anchor-pos Icompl rcompl))) 
The first list remembers the position of the active 

anchor and introduces two sets of constraints, which 
are used to define restrictions on the type and num- 
ber of necessary and optional fragments, e.g., the 
first constraint says that  exactly one :np fragment 
(expressed by the lower and upper bound in (1 1)) 
in nominative case must be collected, where the sec- 
ond constraint says that  at most two optional frag- 
ments of type :tmp can be collected. The two con- 
straints are maintained by the basic edges :add-nec 
and :add-opt. :add-nec performs as follows. If the 
current token is a fragment of type :np or :name-np 
then inspect the set named nec and select the con- 
straint set typed :np . If the current token agrees 
in case (which is tested by type subsumption) then 
push it to lcompl and reduce the upper bound by 
1. Since next time the upper bound is 0 no more 
fragments will be considered for the set nec. 5 In a 
similar manner :add-opt is processed. 

The edges :ignore-token and :ignore-fragment are 
used to explicitly specify what sort of tokens will 
not be considered by :add-nec or :add-opt. In other 
words this means, tha t  each token which is not men- 
tioned in the FCP will stop the application of the 
FCP on the current input part  (left or right). 

C o m p l e x  v e r b  c o n s t r u c t i o n s  In our current 
system, FCPs are attached to main verb entries. 
Expressions which contain modal, auxiliary verbs 
or separated verb prefixes are handled by lexical 
rules which are applied after fragment processing 
and before shallow processing. Although this mech- 
anism turned out to be practical enough for our 
current applications, we have defined also complex 
verb group fragments VGF. A VGF is applied after 
fragment processing took place. It collects all verb 
forms used in a sentence, and returns the underlying 
dependency-based structure. Such an VGF is then 
used as a complex anchor for the selection of appro- 
priate fragment combination patterns as described 
above. The advantage of verb group fragments is 
that  they help to handle more complex construc- 
tions (e.g., time or speech act) in a more systematic 
(but still shallow) way. 

Template generation An FCP expresses restric- 
tions on the set of candidate fragments to be col- 
lected by the anchor. If successful the set of found 
fragments together with the anchor builds up an in- 
stantiated template or frame. In general a template 
is a record-like structure consisting of features and 
their values, where each collected fragment and the 

5In some sense this mechanism behaves like the sub- 
categorization principle employed in constraint-based 
lexical grammars. 

anchor builds up a feature/value pair. An FCP also 
defines which sort of fragments are necessary or op- 
tional for building up the whole template. FCPs are 
used for defining linguistically oriented general head- 
modifier construction (linguistically based on depen- 
dency theory) and application-specific database en- 
tries. The "shallowness" of the template construc- 
t ion/instantiat ion process depends on the weakness 
of the defined FST of an FCP. 

A major drawback of our current approach is that  
necessary and optional constraints are defined to- 
gether in one FCP. For example, if an FCP is used 
for defining generic clause expressions, where com- 
plements are defined through necessary constraints 
and adjuncts through optional constraints then it 
has been shown that  the constraints on the adjuncts 
can change for different applications. Thus we ac- 
tually lack some modulari ty concerning this issue. 
A bet ter  solution would be to at tach optional con- 
straints directly with lexical entries and to "splice" 
them into an FCP after its selection. 

6 C o v e r a g e  o f  k n o w l e d g e  s o u r c e s  

The lexicon in use contains more than 120.000 stem 
entries (concerning morpho-syntactic information). 

The time and date subgrammar covers a wide 
range of expressions including nominal, preposi- 
tional, and coordinated expressions, as well as com- 
bined date-time expressions (e.g., "vom 19. (8.00 
h) his einschl. 21. Oktober (18.00 h)" yields: (:pp 
(from :np (day. 19) (hour. 8) (minute. 0)) (to :np 
(day. 21) (month. 10) (hour. 18) (minute. 0)))) 

The N P / P P  subgrammars cover e.g., coordinate 
NPs, different forms of adjective constructions, gen- 
itive expressions, pronouns. The output  struc- 
tures reflects the underlying head-modifier relations 
(e.g., " Die neuartige und vielf~ltige Gesellschaft " 
yields: (((:sere (:head "gesellschaft") (:mods "neuar- 
tig .... vielfaeltig") (:quantifier "d-det")) (:agr nom-acc- 
val) (:end. 6) (:start. 1) (:type. :np))) 

30 generic syntactic verb subcategorization frames 
are defined by fragment combination patterns (e.g, 
for transitive verb frame). Currently, these verb 
frames are handled by the shallow parser with no or- 
dering restriction, which is reasonably because Ger- 
man is a language with relative free word order. 
However, in future work we will investigate the in- 
tegration of shallow linear precedence constraints. 

The specification of the current data  has been 
performed on a tagged corpora of about  250 texts 
(ranging in size from a third to one page) which are 
about event announcement,  appointment scheduling 
and business news following a bot tom-up grammar 
development approach. 

7 Current applications 
On top of SMES three application systems have been 
implemented: 

2 1 4  



1. appointment scheduling via email: extraction of 
co-operate act, duration, range, appointment,  
sender, receiver, topic 

2. classification of event announcements sent via 
email: extraction of speaker, title, time, and 
location 

3. extraction of company information from news- 
paper articles: company name, date, turnover, 
revenue, quality, difference 

For these applications the main architecture (as 
described above), the scanner, morphology, the set 
of basic edges, the subgrammars for t ime/date  and 
phrasal expressions could be used basically un- 
changed. 

In (1) SMES is embedded in the COSMA system, 
a German language server for existing appointment 
scheduling agent systems (see (Busemann et al., 
1997), this volume, for more information). In case 
(2) additional FST for the text structure have been 
added, since the text structure is an important  
source for the location of relevant information. How- 
ever, since the form of event announcements is usu- 
ally not standardized, shallow NLP mechanisms are 
necessary. Hence, the main strategy realized is a mix 
of text structure recognition and restricted shallow 
analysis. For application (3), new subgrammars for 
company names and currency expressions have to be 
defined, as well as a task-specific reference resolution 
method. 

Processing is very robust and fast (between 1 and 
10 CPU seconds (Sun UltraSparc) depending on the 
size of the text which ranges from very short texts 
(a few sentences) upto short texts (one page)). In all 
of the three applications we obtained high coverage 
and good results. Because of the lack of compara- 
ble existing IE systems defined for handling German 
texts in similar domains and the lack of evaluation 
standards for the German language (comparable to 
that  of MUC), we cannot claim that  these results 
are comparable. 

However, we have now started the implementa- 
tion of a new application together with a commer- 
cial partner,  where a more systematic evaluation of 
the system is carried out. Here, SMES is applied on a 
quite different domain, namely news items concern- 
ing the German IFOR mission in former Yugoslavia. 
Our task is to identify those messages which are 
about violations of the peace treaty and to extract 
the information about location, aggressor, defender 
and victims. 

The corpus consists of a set of monthly reports 
(Jan. 1996 to Aug. 1996) each consisting of about 
25 messages from which 2 to 8 messages are about 
fighting actions. These messages have been hand- 
tagged with respect to the relevant information. Al- 
though we are still in the development phase we 
will briefly describe our experience of adapting SMES 
to this new domain. Starting from the assumption 

that  the core machinery can be used un-changed we 
first measured the coverage of the existing linguistic 
knowledge sources. Concerning the above mentioned 
corpus the lexicon covers about  90%. However, from 
the 10% of unrecognized words about  70% are proper 
names (which we will handle without a lexicon) and 
1.5% are spelling errors, so that  the lexicon actually 
covers more then 95% of this unseen text corpus. 
The same "blind" test was also carried out for the 
date, time, and location subgrammar, i.e., they have 
been run on the new corpus without any adaption to 
the specific domain knowledge. For the date- / t ime 
expressions we obtained a recall of 77% and a pre- 
cision of 88%, and for the location expressions we 
obtained 66% and 87%, respectively. In the latter 
case, most of the unrecognized expressions concern 
expressions like "nach Taszar /Ungarn",  "im serbis- 
chen bzw. kroatischen Teil Bosniens", or "in der 
Moslemisch-kroatischen FSderation". For the gen- 
eral NP and P P  subgrammars we obtained a recall 
of 55% and a precision of 60% (concerning correct 
head-modifier structure). The small recall is due to 
some lexical gap (including proper names) and un- 
foreseen complex expressions like "die Mehrzahl der 
auf 140.000 gesch~itzten moslemischen Fltichtlinge". 
But note that  these grammars have been written on 
the basis of different corpora. 

In order to measure the coverage of the fragment 
combination patterns FCP, the relevant main verbs 
of the tagged corpora have been associated with 
the corresponding FCP (e.g., the FCP for transi- 
tive verbs), without changing the original definition 
of the FCPs. The only major change to be done 
concerned the extension of the output  description 
function BUILD-ITEM for building up the new tem- 
plate structure. After a first trial run we obtained an 
unsatisfactory recognition rate of about  25%. One 
major problem we identified was the frequent use of 
passive constructions which the shallow parser was 
not able to process. Consequently, as a first actual 
extension of SMES to the new domain we extended 
the shallow parser to cope with passive construc- 
tions. Using this extension we obtained an recogni- 
tion of about 40% after a new trial run. 

After the analysis of the (partially) unrecognized 
messages (including the misclassified ones), we iden- 
tified the following major bottlenecks of our current 
system. First, many of the partially recognized tem- 
plates are part  of coordinations (including enumera- 
tions), in which case several (local) templates share 
the same slot, however this slot is only mentioned 
one time. Resolving this kind of "slot sharing" re- 
quires processing of elliptic expressions of different 
kinds as well as the need of domain-specific inference 
rules which we have not yet foreseen as part  of the 
core system. Second, the wrong recognition of mes- 
sages is often due to the lack of semantic constraints 
which would be applied during shallow parsing in a 
similar way as the subcategorization constraints. 

215 



Although these current results should and can be 
improved we are convinced that  the idea of develop- 
ing a core IE-engine is a worthwhile venture. 

8 R e l a t e d  work 

In Germany, IE based on innovative language tech- 
nology is still a novelty. The only groups which we 
are aware of which also consider NLP-based IE are 
(Hahn, 1992; Bayer et al., 1994). None of them make 
use of such sophisticated components,  as we do in 
SMES. Our work is mostly influence by the work of 
(Hobbs, 1992; Appelt  et al., 1993; Grishman,  1995) 
as well as by the work described in (Anderson et al., 
1992; Dowding et al., 1993). 

9 C o n c l u s i o n  

We have described an information extraction core 
system for real world German text  processing. The 
basic design criterion of the system is of providing 
a set of basic powerful, robust,  and efficient natural  
language components and generic linguistic knowl- 
edge sources which can easily be customized for pro- 
cessing different tasks in a flexible manner.  The  
main features are: a very efficient and robust  mor- 
phological component,  a powerful tool for expressing 
finite s tate  expressions, a flexible bidirectional shal- 
low parser, as well as a flexible interface to an ad- 
vanced formalism for typed feature formalisms. The 
system has been fully implemented in Common Lisp 
and C. 

Future research will focus towards automat ic  
adapt ion and acquisition methods,  e.g., automat ic  
extraction of subgrammars  from a competence base 
and learning methods for domain-specific extraction 
patterns.  

10 Acknowledgement 

The research underlying this paper  was supported 
by research grants from the German Bundesmin- 
isterium fiir Bildung, Wissenschaft, Forschung 
und Technologie (BMBF) to the D F K I  projects 
PARADICE, FKZ I T W  9403 and PARADIME, 
FKZ I T W  9704. We would like to thank the follow- 
ing people for fruitful discussions: Hans Uszkoreit, 
Gregor Erbach, and Luca Dini. 

References 
A. Aho, J. Hopcraft, and J. Ullmann. 1983. Data struc- 

tures and algorithms. Addison Wesley, Reading, Mass. 

P. Anderson, P. Hays, A. Huettner, L. Schmandt, 
I. Nirenburg, and S. Weinstein. 1992. Automatic ex- 
traction of facts from press releases to generate news 
stories. In 3rd ANLP, pages 170-177, Trento, Italy. 

C. Aone and K. Hausman. 1996. Unsupervised learning 
of a rule-based Spanish part of speech tagger. In Pro- 

ceedings of COLING-96, pages 53-58, Kopenhagen, 
Denmark, Europe. 

D. Appelt, J. Hobbs, J. Bear, D. Israel, and M. Tyson. 
1993. Fastus: A finite state processor for information 
extraction from real world text. In Proceedings of the 
13th IJCAI, Chambery, France, August. 

T. Bayer, U. Bohnacker, and H. Mogg-Schneider. 1994. 
Infoportlab - an experimental document understand- 
ing system. In Proceedings of the 1st DAS. 

E. Brill. 1995. Unsupervised learning of disambiguation 
rules for part of speech tagging. In Very Large Corpora 
Workshop. 

S. Busemann, T. Declereck, A. Diagne, L. Dini, J. Klein, 
and S. Schmeier. 1997. Natural language dialogue ser- 
vice for appointment scheduling agents. This volume. 

N. Chinchor, L. Hirschman, and D. Lewis. 1993. Evalu- 
ating message understanding systems: An analysis of 
the third message understanding conference (muc-3). 
Computational linguistics, 19(3). 

J. Cowie and W. Lehnert. 1996. Information extraction. 
Communications of the ACM, 39(1):51-87. 

J. Dowding, J. Gawron, D. Appelt, J. Bear, L. Cherny, 
R. Moore, and D. Moran. 1993. Gemini: A natural 
language system for spoken-language understanding. 
In 31th ACL, Ohio. 

W. Finkler and G. Neumann. 1988. Morphix: A fast 
realization of a classification-based approach to mor- 
phology. In H. Trost, editor, Proceedings of 4th OFAI, 
Berlin, August. Springer. 

R. Grishman and B. Sundheim. 1996. Message Under- 
standing Conference - 6: A Brief History. In Pro- 
ceedings of COLING-96, pages 466-471, Kopenhagen, 
Denmark, Europe. 

R. Grishman. 1995.  The NYU MUC-6 System or 
Where's the Syntax? In Sixth Message Understanding 
Conference (MUC-6). Morgan Kaufmann, November. 

U. Hahn. 1992. On text coherence parsing. In Pro- 
ceedings of COLING-92, pages 25-31, Nantes, France, 
Europe. 

J. Hobbs. 1992. The generic information extraction sys- 
tem. In B. Sundheim, editor, Fourth Message Un- 
derstanding Conference (MUC-4), McLean, Virginia, 
June. Distributed by Morgan Kaufmann Publishers, 
Inc.,San Mateo, California. 

K. Koskenniemi. 1983. Two-level model for morphologi- 
cal analysis. In 8th IJCAI, pages 683-685, Karlsruhe. 

Hans-Ulrich Krieger and Ulrich Sch~ifer. 1994. 7"D/:--a 
type description language for constraint-based gram- 
mars. In Proceedings of COLING-94, pages 893-899. 

Hans-Ulrich Krieger. 1987 .  Nil--eine Lisp-basierte 
nat/irlichsprachliche Schnittstelle zu Ramses. Un- 
terst/itzung der NMR-Diagnostik von Him- und Mam- 
matumoren. Master's thesis, RWTH Aachen. 

B. Sundheim, editor. 1995. Sixth Message Understand- 
ing Conference (MUC-6), Washington. Distributed bY 
Morgan Kaufmann Publishers, Inc.,San Mateo, Cali- 
fornia. 

216 


