
Automatic  Acquisition of Two-Level Morphological Rules 

Pie t e r  Theron  
Dept. of Computer Science 

Stellenbosch University 
Stellenbosch 7600, South Africa 

ptheron@cs, sun. ac. za 

Ian  Cloete  
Dept. of Computer Science 

Stellenbosch University 
Stellenbosch 7600~ South Africa 

ia/~@cs, sun. ac. za 

A b s t r a c t  

We describe and experimentally evaluate 
a complete method for the automatic ac- 
quisition of two-level rules for morphologi- 
cal analyzers/generators. The input to the 
system is sets of source-target word pairs, 
where the target is an inflected form of the 
source. There are two phases in the acquisi- 
tion process: (1) segmentation of the target 
into morphemes and (2) determination of 
the optimal two-level rule set with minimal 
discerning contexts. In phase one, a mini- 
mal acyclic finite state automaton (AFSA) 
is constructed from string edit sequences of 
the input pairs. Segmentaiion of the words 
into morphemes is achieved through view- 
ing the AFSA as a directed acyclic graph 
(DAG) and applying heuristics using prop- 
erties of the DAG as well as the elemen- 
tary edit operations. For phase two, the 
determination of the optimal rule set is 
made possible with a novel representation 
of rule contexts, with morpheme bound- 
aries added, in a new DAG. We introduce 
the notion of a delimiter edge. Delimiter 
edges are used to select the correct two- 
level rule type as well as to extract minimal 
discerning rule contexts from the DAG. Re- 
sults are presented for English adjectives, 
Xhosa noun locatives and Afrikaans noun 
plurals. 

1 In t roduc t ion  

Computational systems based on the two-level 
model of morphology (Koskenniemi, 1983) have been 
remarkably successful for many languages (Sproat, 
1992). The language specific information of such a 
system is stored as 

1. a morphotactic description of the words to be 
processed as well as 

2. a set of two-level morphonological (or spelling) 
rules. 

Up to now, these two components had to be coded 
largely by hand, since no automated method existed 
to acquire a set of two-level rules for input source- 
target word pairs. To hand-code a 100% correct 
rule set from word pairs becomes almost impossi- 
ble when a few hundred pairs are involved. Fur- 
thermore, there is no guarantee that  such a hand 
coded lexicon does not contain redundant rules or 
rules with too large contexts. The usual approach 
is rather to construct general rules from small sub- 
sets of the input pairs. However, these general rules 
usually allow overrecognition and overgeneration - -  
even on the subsets from which they were inferred. 

Simons (Simons, 1988) describes methods for 
studying morphophonemic alternations (using anno- 
tated interlinear text) and Grimes (Grimes, 1983) 
presents a program for discovering affix posi- 
tions and cooccurrence restrictions. Koskenniemi 
(Koskenniemi, 1990) provides a sketch of a discovery 
procedure for phonological two-level rules. Golding 
and Thompson (Golding and Thompson, 1985) and 
Wothke (Wothke, 1986) present systems to automat-  
icaily calculate a set of word-formation rules. These 
rules are, however, ordered one-level rewrite rules 
and not unordered two-level rules, as in our system. 
Kuusik (Kuusik, 1996) also acquires ordered one- 
level rewrite rules, for stem sound changes in Esto- 
nian. Daelemans et al. (Daelemans el al., 1996) use 
a general symbolic machine learning program to ac- 
quire a decision tree for matching Dutch nouns to 
their correct diminutive suffixes. The input to their 
process is the syllable structure of the nouns and a 
given set of five suffix allomorphs. They do not learn 
rules for possible sound changes. Our process au- 
tomatically acquires the necessary two-level sound 
changing rules for prefix and suffix allomorphs, as 
well as the rules for stem sound changes. Connec- 
tionist work on the acquisition of morphology has 
been more concerned with implementing psycholog- 
ically motivated models, than with acquisition of 
rules for a practical system ((Sproat, 1992, p.216) 
and (Gasser, 1994)). 

The contribution of this paper is to present a com- 
plete method for the automatic acquisition of an op- 
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timal set of two-level rules (i.e. the second com- 
ponent above) for source-target word pairs. It is 
assumed that  the target word is formed from the 
source through the addition of a prefix and/or  a 
suffix 1. Furthermore, we show how a partial acqui- 
sition of the morphotactic description (component 
one) results as a by-product of the rule-acquisition 
process. For example, the morphotactic description 
of the target word in the input pair 

[1] 
Source Target 
happy happier 

is computed as 

[2] 
happier = happy + er 

The right-hand side of this morphotactic description 
is then mapped on the left-hand side, 

[z] 

h a p p y + e r  
h a p p i  0 e r  

For this example the two-level rule 

[ 4] 
y:i ¢~ p:p - 

can be derived. These processes are described in de- 
tail in the rest of the paper: Section 2 provides an 
overview of the two-level rule formalism, Section 3 
describes the acquisition of morphotactics through 
segmentation and Section 4 presents the method for 
computing the optimal two-level rules. Section 5 
evaluates the experimental results and Section 6 
summarizes. 

2 T w o - l e v e l  R u l e  F o r m a l i s m  

Two-level rules view a word as having a lezical and 
a surface representation, with a correspondence be- 
tween them (Antworth, 1990), e.g.: 

[51 
Lexical: h a p p y  + e r 
Surface: h a p p i  0 e r 

Each pair of lexical and surface characters is called 
a feasible pair. A feasible pair can be written as 
lezicabcharac~er:surface-charac~er. Such a pair is 
called a default pair when the lexicai character and 
surface character are identical (e.g. h:h). When the 
lexical and surface character differ, it is called a spe- 
cial pair (e.g. y:i). The null character (0) may ap- 
pear as either a lexical character (as in +:0) or a 
surface character, but not as both. 

1Non-linear operations (such as infixation) are not 
considered here, since the basic two-level model deals 
with it in a round-about way. We can note that exten- 
sions to the basic two-level model have been proposed to 
handle non-linear morphology (Kiraz, 1996). 

Two-level rules have the following syntax (Sproat, 
1992, p.145): 

[ 6] 
CP op  L C  _ R C  

c e  (correspondence part), LC (le# contezt) and a c  
(right contez~) are regular expressions over the al- 
phabet of feasible pairs. In most, if not all, imple- 
mentations based on the two-level model, the corre- 
spondence part consists of a single special pair. We 
also consider only single pair CPs in this paper. The 
operator op  is one of four types: 

1. Exclusion rule: a:b / ~  L C  _ R C  

2. Context restriction rule: a:b ::~ L C  _ R C  

3. Surface coercion rule: a:b ~ L C  _ R C  

4. Composite rule: a:b ¢V L C  _ R C  

The exclusion rule ( / ~ )  is used to prohibit the ap- 
plication of another, too general rule, in a particular 
subcontext. Since our method does not overgener- 
alize, we will consider only the ~ ,  ~ and ~:~ rule 
types. 

3 A c q u i s i t i o n  o f  M o r p h o t a c t i c s  

The morphotactics of the input words are acquired 
by (1) computing the string edit difference between 
each source-target pair and (2) merging the edit se- 
quences as a minimal acyclic finite state automa- 
ton. The automaton, viewed as a DAG, is used to 
segment the target word into its constituent mor- 
phemes. 

3.1 D e t e r m i n i n g  S t r i n g  Ed i t  S e q u e n c e s  

A string edit sequence is a sequence of elementary  
operations which change a source string into a tar- 
get string (Sankoff and Kruskal, 1983, Chapter 1). 
The elementary operations used in this paper are 
single character deletion (DELETE),  insert ion (IN- 
SERT) and replacement (REPLACE).  We indicate 
the copying of a character by NOCHANGE. A cost 
is associated with each elementary operation. Typ- 
ically, INSERT and DELETE have the same (posi- 
tive) cost and NOCHANGE has a cost of zero. RE- 
PLACE could have the same or a higher cost than 
INSERT or DELETE.  Edit sequences can be ranked 
by the sum of the costs of the elementary opera- 
tions that  appear in them. The interesting edit se- 
quences are those with the lowest total cost. For 
most word pairs, there are more than one edit se- 
quence (or mapping) possible which have the same 
minimal total cost. To select a single edit sequence 
which will most likely result in a correct segmen- 
tation, we added a morphology-specific heuristic to 
a general string edit algorithm (Vidal et al., 1995). 
This heuristic always selects an edit sequence con- 
taining two subsequences which identify prefix-root 
and root-suffix boundaries. The heuristic depends 
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on the elementary operations being limited only to 
INSERT, DELETE and NOCHANGE,  i.e. no RE- 
PLACEs are allowed. We assume that  the tar- 
get word contains more morphemes than the source 
word. It  therefore follows that  there are more IN- 
SERTs than DELETEs  in an edit sequence. Fur- 
thermore, the letters forming the morphemes of the 
target  word appear  only as the right-hand compo- 
nents of INSERT operations. Consider the edit se- 
quence to change the string happy into the string 
unhappier: 

0:u INSERT 
0:n INSERT 
h:h NOCHANGE 
a:a NOCHANGE 
p:p NOCHANGE 
p:p NOCHANGE 
y:0 DELETE 
0:i INSERT 
0:e INSERT 
0:r INSERT 

[7] 

Note that  the prefix un- as well as the suffix - 
er consist only of INSERTs. Furthermore, the 
prefix-root morpheme boundary is associated with 
an INSERT followed by a NOCHANGE and the 
root-suffix boundary by a N O C H A N G E - D E L E T E -  
INSERT sequence. In general, the prefix-root 
boundary is just  the reverse of the root-suffix bound- 
ary, i.e. I N S E R T - D E L E T E - N O C H A N G E ,  with the 
DELETE operation being optional. The heuristic 
resulting from this observation is a bias giving high- 
est precedence to INSERT operations, followed by 
DELETE and NOCHANGE,  in the first half of the 
edit sequence. In the second half, the precedence is 
reversed. 

3.2 M e r g i n g  E d i t  S e q u e n c e s  

A single source-target edit sequence may contain 
spurious INSERTs which are not considered to form 
part  of a morpheme. For example, the O:i insertion 
in Example 7 should not contribute to the suffix - 
er to form - ier,  since - ier is an allomorph of -er. 
To combat these spurious INSERTs, all the edit se- 
quences for a set of source-target words are merged 
as follows: A minimal acyclic f ini te  state automaton 
(AFSA) is constructed which accepts all and only 
the edit sequences as input strings. This AFSA is 
then viewed as a DAG, with the elementary edit op- 
erations as edge labels. For each edge a count is kept 
of the number of different edit sequences which pass 
through it. A pa th  segment in the DAG consisting 
of one or more INSERT operations having a simi- 
lar count, is then considered to be associated with a 
morpheme in the target  word. The O:e O:r INSERT 
sequence associated with the -er suffix appears more 
times than the O:i O:e O:r INSERT sequence asso- 
ciated with the - ier  suffix, even in a small set of 

adjectively-related source-target pairs. This means 
that  there is a rise in the edge counts from O:i to O:e 
(indicating a root-suffix boundary) ,  while O:e and 
O:r have similar frequency counts. For prefixes a fall 
in the edge frequency count of an INSERT sequence 
indicates a prefix-root boundary. 

To extract the morphemes of each target  word, 
every path  through the DAG is followed and only 
the target-side of the elementary operations serving 
as edge labels, are written out. The null characters 
(0) on the target-side of DELETEs  are ignored while 
the target-side of INSERTs are only written if their 
frequency counts indicate that  they are not sporadic 
allomorph INSERT operations. For Example  7, the 
following morphotact ic  description results: 

is] 
Target Word -- Prefix + Source + Suffix 
unhappier = un + happy + er 

Phase one can segment only one layer of affix ad- 
ditions at a time. However, once the morpheme 
boundary markers (+)  have been inserted, phase 
two should be able to acquire the correct two-level 
rules for an arbi trary number of affix additions: 
pref iz l  +pref iz2+. . . +roo~+suff iz l  +su f f i z2+ . . . .  

4 Acquiring Optimal  Rules 
To acquire the optimal  rules, we first determine 
the full length lexical-sufface representation of each 
word pair. This representation is required for writ- 
ing two-level rules (Section 2). The morphotact ic  de- 
scriptions from the previous section provide source- 
target input pairs from which new string edit se- 
quences are computed: The right-hand side of the 
morphotact ic  description is used as the source and 
the left-hand side as the target string. For instance, 
Example 8 is written as: 

[ 9] 
Source: un+happy+er  
Target: unhappier 

The edit sequence 

[ 10] 
u:u n:n -t-:O h:h a:a p:p p:p y:i 4 : 0  e:e r : r  

maps the source into the target and provides the 
lexical and surface representation required by the 
two-level rules: 

[ 11] 

Lexical: u n + h a p p  y + e r 
Surface: u n 0 h a p p i  0 e r 

The REPLACE elementary string edit operations 
(e.g. y:i) are now allowed since the morpheme 
boundary markers (+) are already present in the 
source string. REPLACEs allow shorter edit se- 
quences to be computed, since one REPLACE does 
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the same work as an adjacent I N S E R T - D E L E T E  
pair. REPLACE,  INSERT and DELETE have the 
same associated cost and NOCHANGE has a cost 
of zero. The morpheme boundary marker (+)  is 
always mapped  to the null character (0), which 
makes for linguistically more understandable map- 
pings. Under these conditions, the selection of any 
minimal cost string edit mapping provides an ac- 
ceptable lexical-surface representation 2. 

To formulate a two-level rule for the source-target 
pair happy-unhappier, we need a correspondence 
pair (CP) and a rule type (op),  as well as a left con- 
text (LC) and a right context (RC) (see Section 2). 
Rules need only be coded for special pairs, i.e. IN- 
SERTs, DELETEs  or REPLACEs.  The only special 
pair in the above example is y:i, which will be the 
CP of the rule. Now the question arises as to how 
large the context of this rule must be? It  should 
be large enough to uniquely specify the positions 
in the lexical-surface input s t ream where the rule 
is applied. On the other hand, the context should 
not be too large, resulting in an overspecified con- 
text  which prohibits the application of the rule to 
unseen, but similar, words. Thus to make a rule as 
general as possible, its context (LC and RC) should 
be as short as possible s . By inspecting the edit se- 
quence in Example  10, we see that  y changes into 
i when y is preceded by a p:p, which serves as our 
first a t t empt  at a (left) context for y:i. Two ques- 
tions must be asked to determine the correct rule 
type to be used (Antworth, 1990, p.53): 

Q u e s t i o n  1 Is E the only environment in which L:S 
is allowed? 

Q u e s t i o n  2 Must L always be realized as S in E? 

The term environment denotes the combined left 
and right contexts of a special l~air. E in our ex- 
ample is "p:p_", L is y and S is i. Thus the answer 
to question one is true, since y:i only occurs after 
p:p in our example. The answer to question two is 
also true, since y is always realized as i after a p:p 
in the above edit sequence. Which rule type to use 
is gleaned from Table 1. Thus, to continue our ex- 
ample, we should use the composite rule type (¢:~): 

[ 12] 
y:i ¢~ p:p _ 

2Our assumption is that such a minimal cost mapping 
will lead to an optimal rule set. In most (if not all) of the 
examples seen, a minimal mapping was also intuitively 
acceptable. 

sit  abstractions (e.g. sets such as V denoting vow- 
els) over the regular pairs are introduced, it will not be 
so simple to determine what is "a more general con- 
text". However, current implementations require ab- 
stractions to be explicitly instantiated during the compi- 
lation process ((Karttunen and Beesley, 1992, pp.19-21) 
and (Antworth, 1990, pp.49-50)) . Thus, with the cur- 
rent state of the art, abstractions serve only to make the 
rules more readable. 

Q1 Q2 o p  
false false none 
true false 
false true 
true true ¢~z 

Table 1: Truth  table to select the correct rule type. 

This example shows how to go about  coding the 
set of two-level rules for a single source-target pair. 
However, this soon becomes a tedious and error 
prone task when the number of source-target pairs 
increases, due to the complex interplay of rules and 
their contexts. 

4.1 M i n i m a l  D i s c e r n i n g  R u l e  C o n t e x t s  

It  is impor tant  to acquire the minimal discerning 
context for each rule. This ensures that  the rules 
are as general as possible (to work on unseen words 
as well) and prevents rule conflicts. Recall tha t  one 
need only code rules for the special pairs. Thus it 
is necessary to determine a rule type with associ- 
ated minimal discerning context for each occurrence 
of a special pair in the final edit sequences. This is 
done by comparing all the possible contiguous 4 con- 
texts of a special pair against all the possible con- 
texts of  all the other feasible pairs. To enable the 
computat ional  comparison of the growing left and 
right contexts around a feasible pair, we developed 
a "mixed-context" representation. We call the par- 
ticular feasible pair for which a mixed-context is to 
be constructed, a marker pair (MP), to distinguish 
it from the feasible pairs in its context. The mixed- 
context representation is created by writing the first 
feasible pair to the left of the marker pair, then the 
first right-context pair, then the second left-context 
pair and so forth: 

[ 13] 

LC1, RC1, LC2, RC2, LC3, RC3, . . . ,  M P  

The marker pair at the end serves as a label. Special 
symbols indicate the start  (SOS) and end (EOS) of 
an edit sequence. If, say, the right-context o f a  MP is 
shorter than the left-context, an out-of-bounds sym- 
bol (OOB) is used to maintain the mixed-context 
format.  For example the mixed-context of y:i in the 
edit sequence in Example 10, is represented as: 

[ 14] 
p:p, +:0, p:p, e:e, a:a, r:r, h:h, EOS, +:0, OOB, 

n:n, OOB, u:u, SOS, OOB, y:i  

The common prefixes of the mixed-contexts are 
merged by constructing a minimal  AFSA which ac- 
cepts all and only these mixed-context sequences. 

4A two-level rule requires a contiguous context. 
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Question 2 
have the 

The transitions (or edges, when viewed as a DAG) of 
the AFSA are labeled with the feasible pairs and spe- 
cial symbols in the mixed-context sequence. There 
is only one final state for this minimal AFSA. Note 
that  all and only the terminal edges leading to this 
final state will be labeled with the marker pairs, 
since they appear  at the end of the mixed-context 
sequences. More than one terminal edge may be la- 
beled with the same marker pair. All the possible 
(mixed) contexts of a specific marker pair can be 
recovered by following every path  from the root to 
the terminal edges labeled with that  marker pair. 
I f  a path  is traversed only up to an intermediate 
edge, a shortened context surrounding the marker 
pair can be extracted. We will call such an interme- 
diate edge a d e l i m i t e r  edge ,  since it delimits a short- 
ened context. For example, traversing the mixed 
context pa th  of y : i  in Example 14 up to e:e  would 
result in the (unmixed) shortened context: 

[ 25] 
p : p  p : p  _ + : 0  e:e  

From the shortened context we can write a two-level 
rule 

[ 26] 
y : i  op  p : p  p : p  _ ÷ : 0  e:e  

which is more general than a rule using the full con- 
text: 

[ 27] 

y: i  op  S O S  u : u  n : n  h :h  a :a  p : p  p : p  _ + : 0  e:e  r : r  
E O S  

For each marker pair in the DAG which is also a 
special pair, we want to find those delimiter edges 
which produce the shortest contexts providing a t r u e  

answer to at least one of the two rule type de- 
cision questions given above. The mixed-context 
prefix-merged AFSA, viewed as a DAG, allow us to 
rephrase the two questions in order to find answers 
in a procedural way: 

Q u e s t i o n  1 Traverse all the paths from the root 
to the terminal edges labeled with the marker 
pair L : S .  Is there an edge el in the DAG which 
all these paths have in common? If  so, then 
question one is t r u e  for the environment E con- 
structed from the shortened mixed-contexts as- 
sociated with the path  prefixes delimited by el. 

Consider the terminal edges which 
same L-component as the marker pair 

L : S  and which are reachable from a common 
edge e2 in the DAG. Do all of these terminal 
edges also have the same S-component as the 
marker pair? If  so, then question two is t r u e  for 
the environment E constructed from the short- 
ened mixed-contexts associated with the path  
prefixes delimited by e2. 

For each marker pair, we traverse the DAG and mark  
the delimiter edges n e a r e s t  to the root which allow 
a true answer to either question one, question two 
or both (i.e. el = e2). This means that  each pa th  
from the root to a terminal edge can have at most 
three marked delimiter edges: One delimiting a con- 
text for a ~ rule, one delimiting a context for a 
rule and one delimiting a context for a ~ rule. The 
marker pair used to answer the two questions, serves 
as the correspondence part  (Section 2) of the rule. 
To continue with Example 14, let us assume that  the 
DAG edge labeled with e:e  is the closest edge to the 
root which answers true only to question one. Then 
the ~ rule is indicated: 

[ IS] 

y : i  ~ p : p  p : p  _ + : 0  e:e  

However, if the edge labeled with r : r  answers true 
to both questions, we prefer the composite rule (¢#) 
associated with it although this results in a larger 
context: 

[19] 
y : i  ¢* a:a  p : p  p : p  _ ÷ : 0  e:e  r : r  

The reasons for this preference are that  the ¢~ rule 

• provides a more precise s tatement  about  the ap- 
plicable environment of the rule and it 

• seems to be preferred in systems designed by 
linguistic experts. 

Furthermore, from inspecting examples, a delimiter 
edge indicating a ~ rule generally delimits the short- 
est contexts, followed by the delimiter for ¢~ and 
the delimiter for ~ .  The shorter the selected con- 
text, the more generally applicable is the rule. We 
therefore select only one rule per path,  in the fol- 
lowing preference order: (1) ¢~, (2) ~ and (3) ~ .  
Note that  any of the six possible precedence orders 
would provide an accurate analysis and generation 
of the pairs used for learning. However, our sug- 
gested precedence seems to strike the best balance 
between over- or underrecognition and over- or un- 
dergeneration when the rules would be applied to 
u n s e e n  pairs. 

The mixed-context representation has one obvious 
drawback: If  an optimal rule has only a left or only 
a right context, it cannot be acquired. To solve this 
problem, two additional minimal AFSAs are con- 
structed: One containing only the left context in- 
formation for all the marker pairs and one contain- 
ing only the right context information. The same 
process is then followed as with the mixed contexts. 
The final set of rules is selected from the output  of 
all three the AFSAs: For each special pair 

1. we select any of the ¢~ rules with the shortest 
contexts of which the special pair is the left- 
hand side, or 
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2. if no ¢~ rules were found, we select the shortest 
and ~ rules for each occurrence of the special 

pair. They are then merged into a single ¢~ rule 
with disjuneted contexts. 

The rule set learned is complete since all possible 
combinations of marker pairs, rule types and con- 
texts are considered by traversing all three DAGs. 
Furthermore, the rules in the set have the shortest 
possible contexts, since, for a given DAG, there is 
only one delimiter edge closest to the root for each 
path, marker pair and rule type combination. 

5 Resul ts  and Evaluation 

Our process works correctly for examples given in 
(Antworth, 1990). There were two incorrect seg- 
mentations in the twenty one adjective pairs given 
on page 106. It resulted from an incorrect string edit 
mapping of (un)happy to (un)happily. For the suf- 
fix, the sequence . .. O:i O:l y:y was generated instead 
of the sequence . . ,  y:O O:i 0:I O:y. The reason for this 
is that  the root word and the inflected form end in 
the same letter (y) and one NOCHANGE (y:y) has 
a lower cost than a DELETE (y:O) plus an INSERT 
(O:y). The acquired segmentation for the 21 pairs, 
with the suffix segmentation of (un)happily manu- 
ally corrected, is: 

[ 20] 

Target : Prefix + Source + Suffix 
bigger = big + er 
biggest = big + est 
unclear = un + clear 
unclearly -- un + clear ÷ ly 
unhappy = un + happy 
unhappier = un + happy ÷ er 
unhappiest = un ÷ happy + est 
unhappily : un + happy ÷ ly 
unreal = un + real 
cooler = cool -4- er 
coolest = cool -4- est 
coolly = cool -4- ly 
clearer -= clear -4- er 
clearest : clear -4- est 
clearly = clear -4- ly 
redder : red -4- er 
reddest = red + est 
really : real + ly 
happier : happy -4- er 
happiest : happy -4- est 
happily = happy -4- ly 

From these segmentations, the morphotactic com- 
ponent (Section 1) required by the morphological 
analyzer/generator is generated with uncomplicated 
text-processing routines. Three correct ~ rules, 
including two gemination rules, resulted for these 
twenty one pairsS: 

5The results in this paper were verified on the two- 
level processor PC-KIMMO (Antworth, 1990). The two- 

[ 21] 

0:d ~ d : d _ + : 0  
0:g ¢=~ g:g_ +:0 
y:i ~=~ _ +:0 

To better illustrate the complexity of the rules 
that can be learned automatically by our process, 
consider the following set of fourteen Xhosa noun- 
locative pairs: 

Source Word --~ Target Word 
inkosi --~ enkosini 
iinkosi ~ ezinkosini 
ihashe -~ ehasheni 
imbewu -~ embewini 
amanzi --~ emanzini 
ubuchopho -~ ebucotsheni 
ilizwe --, elizweni 
ilanga --* elangeni 
ingubo -~ engubeni 
ingubo - ,  engutyeni 
indlu - ,  endlini 
indlu --~ endlwini 
ikhaya ~ ekhayeni 
ikhaya --~ ekhaya 

[ 22] 

Note that this set contains ambiguity: The locative 
of ingubo is either engubeni or engutyeni. Our pro- 
cess must learn the necessary two-level rules to map 
ingubo to engubeni and engutyeni, as well as to map 
both engubeni and engutyeni in the other direction, 
i.e. to ingubo. Similarly, indlu and ikhaya each 
have two different locative forms. Furthermore, the 
two source words inkosi and iinkosi (the plural of 
inkosi) differ only by a prefixed i, but they have dif- 
ferent locative forms. This small difference between 
source words provides an indication of the sensitiv- 
ity required of the acquisition process to provide the 
necessary discerning information to a two-level mor- 
phological processor. At the same time, our pro- 
cess needs to cope with possibly radical modifica- 
tions between source and target words. Consider 
the mapping between ubuchopho and its locative 
ebucotsheni. Here, the only segments which stay 
the same from the source to the target word, are the 
three letters -buc-,  the letter - o -  (the deletion of 
the first - h -  is correct) and the second - h - .  

The target words are correctly segmented during 
phase one as: 

level rule compiler KGEN (developed by Nathan Miles) 
was used to compile the acquired rules into the state 
tables required by PC-KIMMO. Both PC-KIMMO and 
KGEN are available from the Summer Institute of Lin- 
guistics. 

108 



[ 23] 

Targe t  = Pref ix  + Source 
enkosini  = e + inkosi  
ezinkosini  = e + i inkosi  
ehasheni  = e + ihashe 
embewin i  = e + imbewu  
emanz in i  = e + amanz i  
ebucotshen i  = e + ubuchopho  
elizweni = e + ilizwe 
e langeni  = e + i l anga  
engubeni  = e + ingubo  
engutyen i  = e + ingubo  
endl ini  = e + ind lu  
endlwini  = e + ind lu  
ekhayeni  = e + i khaya  
ekhaya  = e + i khaya  

Note  t ha t  the  prefix e +  
pu t  t a rge t  words,  while 
a l t e rna t ive  of  e k h a y e n i )  

From this  segmented  
computes  24 m i n i m a l  context  rules: 

+ Suffix 
-4- nl 
+ m 
-4- nl 
-4- nl 
+ nl 
A- nl 
-4- m 
A- nl 
-4- m 
-4- nl 
-4- m 
-4- m 
-4- nl 

is c o m p u t e d  for all  the  in- 
all  bu t  e k h a y a  (a correct  
have + h i  as a suffix. 
da ta ,  phase  two correc t ly  

O:e ¢:~ o : y + : O  _ n:n 
O:i ¢:> u : w + : O  _ n:n 
O:s ¢~ p: t  _ h:h  

q-:O ~ e:e _ 
+ :0  ~ o:y _ 
+ :0  ~ u:w _ 
+ :0  ~ _ n:n 

[ 24] 

a:0 ¢~ _ m : m  
a:e ¢~ _ + : 0 n : n  
b: t  ¢=> _ o:y 
h:O ¢~ _ o:o 

i:O ~ + :0  _ n:n 
i:O ~ _ h:h 
i:O ~ _ k:k 
i:O ~ _ l:l 
i:O ~ _ m : m  
i:O =~ + :0  _ 

i:z ¢~ _ i:i 
o:e ~ _ + :0  n:n 
o:y ~:~ b: t  _ 
p: t  ¢~ o:o _ 
u:0 ¢=> + :0  _ b :b  
u:i ¢:~ _ + :0  n:n 
u:w ~-  1:1 - + : 0 0 : i  

The  ~ and  ~ rules o f  a special  pai r  can be merged  
in to  a single ~=~ rule. For example  the  four rules 
above  for the  special  pai r  q-:O can be merged  into  

[ 25] 

4-:0 ¢=~ e:e  _ [ o : y  _ ] u : w  _ [ _ n : n  

because  b o t h  the  two ques t ions  becomes  t r u e  for 
the  d i s junc ted  env i ronment  e:e  _ I o : y  _ I u : w  - I - 
n : n .  The  ver t ica l  ba r  ("1") is the  t r a d i t i o n a l  two- 
level n o t a t i o n  which ind ica te  the  d i s junc t ion  of  two 
(or more)  contexts .  The  five ~ rules and  the  single 

rule of  the  special  pa i r  i:O in E x a m p l e  24 can  be 
merged  in a s imi lar  way. In this  ins tance ,  the  con tex t  
of  the  ~ rule (4 - :0  -) needs to  be a d d e d  to some of  
the  contexts  of  the  ~ rules of  i:O. T h e  fol lowing ¢:~ 
rule results:  

[26] 

i:O ~ 4-:0 - n : n  I 4-:0 _ h :h  I 4-:0 _ k :k  I 4-:0 - l: l  I 
4-:0 _ m : m  

In this  way the 24 rules are reduced  to  a set of  16 
rules which conta in  only a single ¢~ rule for each 
special  pair .  This  merged  set of  16 two-level  rules 
ana lyze  and  genera te  the  i n p u t  word pa i rs  100% cor- 
rectly.  

The  next  s tep was to  show the  feas ib i l i ty  of  au-  
t o m a t i c a l l y  acqui r ing  a m i n i m a l  rule set for a wide 
coverage parser .  To get  hundreds  or even t housands  
of  inpu t  pairs ,  we i m p l e m e n t e d  rou t ines  to  ex t r ac t  
the  l emmas  ( "head  words")  and  the i r  inf lected forms 
f rom a mach ine - readab le  d ic t ionary .  In  th is  way 
we ex t r ac t ed  3935 Afr ikaans  noun-p lu ra l  pa i rs  which 
served as the  i npu t  to  our process.  Af r ikaans  plu- 
rals  are a lmos t  a lways  der ived  wi th  the  a d d i t i o n  of  
a suffix (mos t ly  - e  or - s )  to the  s ingular  form. Dif- 
ferent sound changes m a y  occur  dur ing  this  process.  
For example  6, gemina t ion ,  which ind ica tes  the  shor t -  
ening of  a preceding vowel, occurs  f requent ly  (e.g. 
h a t  ---* k a t t e ) ,  as well as consonan t - inse r t ion  (e.g. 
h a s  ---* h a s t e )  and  elision ( a m p s e e d  --~ a m p s e d e ) .  
Several  sound changes m a y  occur  in the  same word.  
For example ,  elision, consonant  r ep lacemen t  and  
gemina t ion  occurs in l o o f  ---* l o w w e .  Afr ikaans  (a 
G e r m a n i c  l anguage)  has bor rowed a few words  f rom 
Lat in .  Some of  these words  have two p lu ra l  forms,  
which in t roduces  a m b i g u i t y  in the  word mapp ings :  
One p lura l  is fo rmed wi th  a La t in  suffix ( - a )  (e.g. 
e m e t i k u m  --~ e m e t i k a )  and  one wi th  an ind igenous  
suffix (-s)  (emetih.m emetih ms). Allomorphs 
occur as well, for example  - e n s  is an  a l l omorph  of  
the  suffix - s  in bed  + s ---, b e d d e n s .  

During  phase  one, all  bu t  eleven (0.3%) of  the  
3935 inpu t  word pai rs  were segmented  correct ly.  To 
fac i l i ta te  the  eva lua t ion  of  phase  two, we define a 
s i m p l e  r u l e  as a rule which has  an  env i ronment  con- 
sist ing of  a single context .  Th is  is in con t ras t  wi th  
an envi ronment  consis t ing of  two or more  contex ts  
d i s junc ted  together .  Phase  two acqui red  531 s i m p l e  
r u l e s  for 44 special  pairs .  Of  these 531 s imple  rules, 
500 are ~ rules, n ineteen are  ¢~ rules and  twelve 
are ~ rules. The  average length  of  the  s imple  rule 
contexts  is 4.2 feasible pairs .  C o m p a r e  th is  wi th  the  

nAil the examples comes from the 3935 input word 
pairs. 
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average length of the 3935 final input edit sequences 
which is 12.6 feasible pairs. The 531 simple rules 
can be reduced to 44 ~ rules (i.e. one rule per spe- 
cial pair) with environments consisting ofdisjuncted 
contexts. These 44 ~ rules analyze and generate the 
3935 word pairs 100% correctly. The total number 
of feasible pairs in the 3935 final input edit strings 
is 49657. In the worst case, all these feasible pairs 
should be present in the rule contexts to accurately 
model the sound changes which might occur in the 
input pairs. However, the actual result is much bet- 
ter: Our process acquires a two-level rule set which 
accurately models the sound changes with only 4.5% 
(2227) of the input feasible pairs. 

To obtain a prediction of the analysis and gener- 
ation accuracy over unseen words, we divided the 
3935 input pairs into five equal sections. Each fifth 
was held out in turn as test data while a set of 
two-level rules was learned from the remaining four- 
fifths. The average recognition accuracy as well as 
the generation accuracy over the held out test data 
is 93.9%. 

6 S u m m a r y  

We have described and experimentally evaluated, for 
the first time, a process which automatically ac- 
quires optimal two-level morphological rules from 
input word pairs. These can be used by a pub- 
licly available two-level morphological processor. We 
have demonstrated that our acquisition process is 
portable between at least three different languages 
and that an acquired rule set generalizes well to 
words not in the training corpus. Finally, we have 
shown the feasibility of automatically acquiring two- 
level rule sets for wide-coverage parsers, with word 
pairs extracted from a machine-readable dictionary. 
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