
Natural Language Dialogue Service
for Appointment Scheduling Agents*

S t e p h a n B u s e m a n n , T h i e r r y D e c l e r c k , A b d e l K a d e r D i a g n e ,

L u c a D i n i , J u d i t h K l e i n , S v e n S c h m e i e r

D F K I G m b H
S tuh l sa t zenhausweg 3, 66123 Saarbri icken, G e r m a n y

busemann©dfk±, u n i - s b , de

A b s t r a c t

Appointment scheduling is a problem faced
daily by many individuals and organiza-
tions. Cooperating agent systems have
been developed to partially automate this
task. In order to extend the circle of par-
ticipants as far as possible we advocate the
use of natural language transmitted by e-
mail. We describe COSMA, a fully imple-
mented German language server for exist-
ing appointment scheduling agent systems.
COSMA can cope with multiple dialogues in
parallel, and accounts for differences in di-
alogue behaviour between human and ma-
chine agents. NL coverage of the sub-
language is achieved through both corpus-
based grammar development and the use of
message extraction techniques.

1 M o t i v a t i o n

Appointment scheduling is a problem faced daily
by many individuals and organizations, and typical-
ly solved using communication in natural language
(NL) by phone, fax or by mail. In general, cooper-
ative interaction between several participants is re-
quired. Since appointments are often scheduled only
after a sequence of point-to-point connections this
will, at times, necessitate repeated rounds of com-
munication until all participants agree to some date
and place. This is a very time-consuming task that
should be automated.

Systems available on the market allow for calendar
and contact management. As (Busemann and Mer-
get, 1995) point out in a market survey, all planning
and scheduling activity remains with the user. Co-
operative agent systems developed in the field of Dis-
tributed AI are designed to account for the schedul-
ing tasks. Using distributed rather than centralized

*This work has been supported by a grant from the
German Federal Ministry of Education, Science, Re-
search and Technology (FKZ ITW-9402).

calendar systems, they not only guarantee a maxi-
mum privacy of calendar information but also offer
their services to members or employees in external
organizations. Although agent systems allow users
to automate their scheduling tasks to a considerable
degree, the circle of participants remains restricted
to users with compatible systems.

To overcome this drawback we have designed and
implemented COSMA, a novel kind of NL dialogue
systems that serves as a German language front-
end system to scheduling agents. Human language
makes agent services available to a much broader
public. COSMA allows human and machine agents
to participate in appointment scheduling dialogues
via e-mall. We are concerned with meetings all par-
ticipants should attend and the date of which is ne-
gotiable.

2 D e s i g n g u i d e l i n e s

COSMA is organized as a client/server architecture.
The server offers NL dialogue service to multiple
client agent systems. Up to now, three different
types of agent systems have been hooked up to the
NL server. Agents developed in-house were used
for the early system described in (Busemann et al.,
1994). In a subsequent version, the MEKKA agents
developed by Siemens AG (Lux et al., 1992) have
been adapted. We present in Section 4 a third kind
of client system, the PASHA II user agent.

Given the use of distributed calendar systems,
techniques used by both human and machine agents
for cooperatively scheduling appointments must be
based on negotiation dialogues. However, human
dialogue behaviour differs from interaction between
machine agents considerably, as will be discussed in
Section 4. A human-machine interface to existing
appointment scheduling agent systems should com-
ply to the following requirements:

• Human utterances must be analyzed to corre-
spond closely to agent actions.

• Machine utterances must conform to human di-
alogue strategies.

25

Artificial communication languages have been de-
signed for human discourse, e.g. (Sidner, 1994), as
well as for agent-agent interaction, e.g. (Steiner et
al., 1995). What would be needed for COSMA is
a mapping between strategies implemented in such
languages. Since the type of agent system connect-
ed to the COSMA server is not restricted by its dia-
logue behaviour, preference was given to implement
application-dependent mappings instead of develop-
ing a generic formalism. As a consequence, COSMA
operates with general and reusable processing mod-
ules that interpret domain- and task-specific data.

The same principle was also adopted for NL anal-
ysis. The server must analyze human-generated text
and verbalize machine-initiated goals. For a plausi-
ble application, the server must be:

• complete with respect to a sublanguage: all rel-
evant information related to appointments must
be analyzed,

• sufficiently robust to deal with inconsistent
analysis results.

Within the HPSG-based approach to grammar de-
scription adopted for the early system (Uszkoreit et
al., 1994), achieving these goals turned out to be
difficult. This "deep" approach to NLU describes
NL expressions at general linguistic levels (syntax
and surface semantics), and at tempts to capture the
complete meanings of all and only the grammati-
cal sentences. However, an NL system in a realis-
tic application should not fail on unexpected input.
Moreover, the surface semantic representations de-
rived by the grammar were too close to NL for an
agent system to deal with.

With the present version of the NL server these
problems are solved by adopting a "shallow" anal-
ysis approach, which extracts meanings from those
portions of a text that are defined as interesting and
represents them in an agent-oriented way. Instead of
failing on unexpected input, shallow parsing meth-
ods always yield results, although they may not cap-
ture all of the meaning intended by the user. By just
describing the verbalizations of relevant information,
shallow parsing grammars are highly domain-specific
and task-oriented. In COSMA, shallow analysis is di-
vided up into an application of the message extrac-
tion component sines (discussed in Section 5) and
a semantic analysis component IMAS (Section 6).
The former extracts appointment-related informa-
tion from users' input texts. It is based on finite-
state automata that were defined with help of an
annotated corpus of e-mail messages. The task of
the latter is to derive a client-oriented semantic rep-
resentation, including the communicative intention
and the complete specification of time points needed,
which is based on context and semantic inferences.

The robustness requirement is fulfilled by recog-
nizing failures within the server during semantic
analysis, and possibly within the client systems, and

by clarification dialogues (cf. Section 6.1).

After an overview of generation in COSMA (Sec-
tion 7) we discuss component interaction in Sec-
tion 8. A novel type of object-oriented architecture
is needed to t reat multiple dialogues in parallel. Vir-
tual partial system instances are maintained as long
as a dialogue is going on. One such instance is shown
in Figure 1.

3 A c o m p l e t e s a m p l e d i a l o g u e

A complete sample dialogue taken from the sys-
tem's present performance will serve as a reference
throughout the paper. Every utterance is numbered
and labeled; the labels indicate speakers. We as-
sume a three-party e-mail negotiation between a hu-
man (H), who does not use a scheduling agent sys-
tem, and two machine agents (A, B) that schedule
appointments for their respective owners. In the
server, human interactions with multiple machine
partners are treated as different NL dialogues (in
the present case between H and A, and H and B).
In what follows, H is the initiator, but COSMA al-
so copes with machine-initiated dialogues (cf. Sec-
tion 4). 1

(01)
H

(02)
A, B

Ich wiirde Sie gem am Montag, dem 2 .11 .96
wegen der bevorstehenden Projektbegutach-
tung treffen. [I would like to meet you on
Monday Nov. 2 1996 about the upcoming
project review.]

COSMA hat die folgende Zeitangabe ver-
standen, die nicht konsistent ist: Mon-
tag, den 2. 11. 1996. KSnnten Sie bitte
den Wochentag oder das Datum korrigieren?
[COSMA has understood the following time
expression, which is not consistent: Monday,
Nov. 2 1996. Could you please correct the
weekday or the date?]

(03) Ich meinte natiirlich Montag den 4. 11. [I
H meant of course Monday, Nov. 4.]

(04) Am 4. 11. 1996 pat3t es bei mir zwischen 13
A und 18 Uhr. [Nov. 4, 1996 would suit me

between 1 and 6 p.m.]

(05) Leider kann ich am 4.11. 1996 nicht kommen.
B [Unfortunately I can' t come on Nov. 4 1996.]

(06)
H

Der vorige Vorschlag wurde abgelehnt.
KSnnen wit uns stattdessen am Dienstag
treffen? [The previous proposal was reject-
ed. Can we meet instead on Tuesday?]

1Agent-agent interaction is based on a formal repre-
sentation language rather than on NL.

2 6

Shallow Analysis i!i!i!iiiii!i!i!!iii!i!iiiiiiili!ilili!ililili!i!ii!!iiii!

Figure 1: The COSMA architecture: a client connected to a server instance may issue requests to receive a
semantic representation for a text, or to generate a text from a semantic representation. The generic server
interface invokes the necessary server processes and maintains interaction with the client.

(07)
A

(0s)
B

(09)
H

(10)
A ,B

(11)
H

Zu folgenden Zeiten geht es bei mir: am 5.
11. 1996 zwischen 8 und 12 Uhr und zwischen
16 und 18 Uhr. [The following times would
suit me: Nov. 5, 1996 between 8 and 12 a.m.
and between 4 and 6 p.m.]

Am 5. 11. 1996 pagt es bei mir zwischen 10
und 12 Uhr. [Nov. 4, 1996 would suit me
between 10 and 12 a.m.]

Wie w~re es dann um 10? [How about 10
then?]

Ich sage den 5. 11. 1996 um 10 Uhr zu. [I
accept Nov. 5, 1996 at 10 a.m.]

Das Treffen wird also am 5. 11. 1996 um 10
Uhr stattfinden. [The meeting will take place
on Nov. 5, 1996 at 10 a.m.]

In (01) H sends by mistake an inconsistent tempo-
ral expression to A and B, giving rise to clarification
dialogues initiated by each of A and B (02). The
repair provided by H (03) is underspecified with re-
spect to clock t ime (see also (06)), hence the agents
offer free t ime slots in accordance to their calendars
(04, 07, 08). These t ime slots are blocked until fur-
ther notice? Since B rejects the proposed date (05),
a new loop is s tar ted by H (06). When H notices
that Tuesday is promising, she chooses to refine her
proposal by suggesting a clock t ime (09). Dynamic
context knowledge allows the server to reconstruct
a full t ime specification that is interpreted by the
agents as an alternative proposal. Refinements can

2Cancellations of reserved slots due to a high-priority
requcst are a straight-forward extension of the present
coverage.

thus be dealt with completely in the server, whereas
the agents may or may not have a concept of refine-
ment. After all agents accept a proposal, the date
is confirmed by the initiator (11). Upon receipt of
the confirmation, the agents fix the date in their cal-
endars. Server and agents consider the dialogues as
completed.

4 D i a l o g i n g s c h e d u l i n g agents

4.1 The PASHA II system
PASHA II agents (Schmeier and Schupeta, 1996)
are designed according to the In te rRaP agent ar-
chitecture (Fischer et al., 1995), a layer-based agent
model tha t combines deliberative and reactive be-
haviour. The "heart" of an agent is the cooperative
planning layer, in which negotiation strategies are
represented as programs and executed by a language
interpreter. This supports easy modification and ex-
change of plans. The local planning layer consists
of a constraint planner which reasons about t ime
slots in the agent 's (i.e. its owner's) calendar. In
contrast to the planning layers, the behaviour-bascd
layer consists of the agent 's basic reactive behaviour
and its procedural knowledge. The world interface
realizes the agent 's sensing and acting capabilities
as well as the connection to its owner. PASHA II
agents are connected to the Unix CM calendar man-
agement tool, but can easily be hooked up to other
calendar systems.

PASHA II agents are easily adapted to the owner's
preferences. For instance, any t ime slots the owner
does not wish the agent to use can be blocked. By
virtue of this mechanism, a working day could be
defined as an interval from e.g. 8 a.m. until 6 p.m.

27

except for Saturdays, Sundays and holidays. More-
over, gaps between appointments may be specified
in order to permit sufficient time between meetings.

4.2 A d a p t i n g agen t s to t h e COSMA s e r v e r

Taking PASHA II as a representative, we describe
the requirements for an agent system to connect to
the COSMA server.

I n t e r f a c e to t h e se rve r . The four main modules
include the basic T C P / I P connection to the server;
a parser of semantic representations of the server's
analysis results, which yields PASHA II structures;
an instantiation mechanism for semantic generation
templates; and a control regime that keeps track of
the current dialogue. The control regime confirms
results of the server, or it activates the server's back-
track mechanism if the semantic representation re-
ceived does not fit within the current dialogue step,
or it issues a request for repair if backtracking should
not yield any further results.

R e c e i v i n g a n d s e n d i n g e -mai l . The PASHA II
interaction mechanism includes, besides communica-
tion via T C P / I P protocols, e-mail interaction. The
agent may poll its owner's mailbox or have one of its
own. Either the agent or its owner is referred to as
actor in the agent's e-mail messages (see Section 7).

D i a l o g u e b e h a v i o u r . An agent has to generate
and understand different dialogue actions represent-
ed by corresponding cooperation primitives such as
proposing, accepting, rejecting, canceling or fixing a
meeting (Steiner et ai., 1995).

Agent-agent interaction usually relies on an ini-
tiating agent being responsible for the success of a
negotiation. The initiator's broadcast proposal is
triggered by its owner, who determines partners, du-
ration and an interval within which the appointment
should be scheduled. The agent proposes the first
slot in the interval that is available according to its
calendar. In case of a rejection of one or more partic-
ipants, the initiator would continue to propose new
time slots to all partners until everyone agrees to
a common date or there is no such slot within the
interval. Note that in case of rejection (see (05))
PASHA II agents do not use counter-suggestions.

In human-human negotiation, efficiency is a major
goal. Humans often follow the least effort principle
(Dahlb/ick, 1992): the initiator broadcasts a propos-
al including a time interval within which the meeting
should take place (e.g. (03)) and expects refinements
or counter-proposals from the participants. As the
example shows this may imply the use of underspec-
ified temporal descriptions. This strategy requires
less communication because a greater amount of in-
formation is exchanged in one dialogue step between
the participants.

Handling underspecified temporal information by
offering free time slots (see (04), (07), and (08)) is
among the extensions of PASHA II at the local plan-
ning layer. Note that this strategy can be instanti-

ated in different ways, as becomes clear from dealing
with expression such as next week: Only a selection
of free time slots can be provided here, which is ex-
plicitly marked using e.g. for instance. Moreover, we
consider it indispensable to have agents understand
and generate counter-proposais to avoid inefficient
plain rejections like (05).

5 C o v e r i n g t h e d o m a i n l a n g u a g e

5.1 C o r p u s - b a s e d a n n o t a t i o n

In order to determine the coverage of the sub-
language relevant for the application and to measure
progress during system development, a corpus of 160
e-mails was selected as reference material from sev-
eral hundred e-mails collected from the domain of
appointment scheduling. The e-mails were manual-
ly analyzed and annotated with major syntactic and
semantic features as well as speechact information.
A combination of two relational database systems
was employed to ease the storage, maintenance, ex-
tension and retrieval of the NL data:
(i) D ITo (Nerbonne et al., 1993), a full text
database where the e-mails can be accessed,
(ii) tsdb (Oepen et al., 1995), an elaborated fact
database which permits the extraction of specific
linguistic constructions together with the associat-
ed linguistic annotations. 3

Annotation] Example
Prepos i t ional Phrases: Wie wgre es [How about] ...
PP_temp
PP_temp-date
PP_temp-day
PP_temp-dur
PP_temp-time

in dieser Woche? [in this week.~
am 4.117 [on the 4th of Nov..~
am Montag? [on Monday.~
yon 8 bis 127 [from 8 to 12.~
um I07 [at 10.~

Ich komme [I come] ...
NP_temp

NP_temp-date

NP_temp-day
NPAemp-time

zwei Stunden spllter.
[two hours later.]
am Montag, den 4. 11.
[on Monday, the 4th of Nov.]
Montag, 14 h. [Monday, 2 pm.]
Montag, 14 h. [Monday, 2 pm.]

Figure 2: Semantic annotation of PPs and NPs (an-
notated linguistic material in italics)

The annotation work is based on the TSNLP
framework (Lehmann et al., 1996) where detailed
category and function lists are defined for the struc-
turai and dependency structure annotation of lin-
guistic material for NLP test suites. For COSMA,
the classification has been extended according to se-
mantic information relevant for the appointment do-
main. For instance, PPs and NPs were specified fur-
ther, introducing a more fine-grained semantic anno-

SDiTo and tsdb entries are linked via e-mail
identifiers.

28

tation for temporal expressions, as is shown in Fig-
ure 2.

The results of database queries provided valu-
able insights into the range of linguistic phenome-
na the parsing system must cope with in the do-
main at hand. Grammar development is guided by
a frequency-based priority scheme: The most im-
portant area - temporal expressions of various cate-
gories - followed by basic phenomena including dif-
ferent verbal subcategorizations, local and thematic
PPs, and the verbal complex are successfully cov-
ered.

5.2 M e s s a g e e x t r a c t i o n w i t h s m e s

The message extraction system sines (Neumann et
al., 1997) is a core engine for shallow processing with
a highly modular architecture. Given an ASCII text,
sines currently produces predicate argument struc-
tures containing shallow semantic analyses of PPs
and NPs. The core of the system consists of:

• a tokenizer, which scans the input using a set
of regular expressions to identify the fragment
patterns (e.g. words, date expressions, etc.),

• a fast lexical and morphological processing of
1,5 million German word forms,

• a shallow parsing module based on a set of finite
state transducers,

• a result combination and output presentation
component.

Based on the information delivered by the mor-
phological analysis of the identified fragment pat-
terns, the system performs a constituent analysis.
In order to combine complements and adjuncts into
predicate-argument structures, special automata for
verbs are then activated over the sequence of con-
stituents analyzed so far. Starting from the main
verb 4, a bidirectional search is performed whose do-
main is restricted by special clause markers, sines
output yields information about the utterance rele-
vant for the subsequent semantic analysis.

5.3 S e m i - a u t o m a t i c g r a m m a r d e v e l o p m e n t

The concrete realization of the automata is based
on the linguistic annotations of the e-mail frag-
ments in the corpus. The annotations render a semi-
automatic description of automata possible. For in-
stance, verb classification directly leads to the lexical
assignment of a corresponding automaton in s i n e s .

By deriving parts of the grammar directly from cor-
pus annotations, maintenance and extension of the
grammars are eased considerably.

On the other hand, corpus extension can be sup-
ported by sines analyses. Existing automata can be

4If no vcrb is found, a "dummy" entry triggers pro-
ccssing of verbless expressions, which occur frequently in
c-mail communication.

used to annotate new material with available linguis-
tic information. Manual checking of the results re-
veals gaps in the coverage and leads to further refine-
ment and extension of the automata by the grammar
writer.

This way, grammar development can be achieved
in subsequent feedback cycles between the annotated
corpus and sines automata. The implementation of
the annotation procedure based on the sines output
format is underway.

6 S e m a n t i c i n t e r p r e t a t i o n

Semantic representations produced by sines are
mapped into a format suitable for the PASHA-II
client by the IMAS component (Information extrac-
tion Module for Appointment Scheduling). IMAS
is based on a domain-dependent view of semantic
interpretation: information-gathering rules explore
the input structure in order to collect all and on-
ly the relevant information; the resulting pieces of
information are combined and enriched in a mono-
tonic, non-compositional way, thereby obtaining an
IL (Interface Level) expression, which can be inter-
preted by the agent systems. In spite of the non-
compositionality of this process, the resulting ex-
pressions have a clear model-theoretic interpretation
and could be used by any system accepting first or-
der logic representations as input.

IL expressions have been designed with the goal
of representing both a domain action that is eas-
ily mapped onto an agent system's cooperation
primitive, and the associated temporal informa-
tion, which should be fully specified due to con-
textual knowledge. Temporal information is par-
titioned into RANGE, APPOINTMENT and DURATION
information. RANGE denotes the interval within
which a certain appointment has to take place
(e.g. in (03)). APPOINTMENT denotes the interval
of the appointment proper (e.g. in (10)). Inter-
vals in general are represented by their boundaries.
DURATION, on the contrary, encodes the duration of
the appointment expressed in minutes. The back-
bone of an IL expression is thus the following:

COOP

R A N G E

identifier

L E F T - B O U N D

R I G H T - B O U N D

A P P T
D U R A T I O N digi t

H O U R digi t
M I N U T E digit

H O U R digi t
M I N U T E digit

IMAS relies on three basic data structures. The
s e n t e n c e s t r u c t u r e contains all the IL expressions
obtained from the analysis of a single sentence. They
are ranked according to their informativeness.

The t e x t s t r u c t u r e contains all the sentence
structures obtained from the analysis of a whole mes-
sage. Here ranking depends not only on informative-

2 9

ness but also on "dialogue expectation": sentence
structures are favoured that contain a domain ac-
tion compatible with the IL expression previously
stored in the discourse memory. As a result, the NL
server will pass to the client the most informative IL
expression of the most informative and contextually
most relevant sentence of the analyzed text. 5

The d i s c o u r s e m e m o r y is structured as a se-
quence containing all information collected during
the dialogue. Thus it contains both IL expressions
committed by the client and semantic input struc-
tures from generation. The discourse memory is
used by IMAS as a s t a c k . -

The procedural core of IMAS is represented by the
transformation of the input sines representation into
a set of IL expressions. This process is organized
into three steps:

Linguistic extraction. The semantic represen-
tation of the input sines structure is explored by a
set of rules in such a way that all information rele-
vant for the appointment domain is captured. For
every type of information (e.g. domain action, hour
of appointment, duration, etc.) a different set of
rules is used. The rules are coded in a transparent
and declarative language that allows for a (possibly
underspecified) description of the sines input (rep-
resented as a feature structure) with its associated
"information gathering" action.

Anchoring. Most utterances concerning the do-
main of appointment scheduling are incomplete at
least in two respects. Either they contain expres-
sions which need to be delimited in order to be prag-
matically plausible (underspecification, e.g. (09)), or
they refer to intervals which are not explicitly men-
tioned in the sentence (temporal anaphora). The
first class includes probably any NL time expres-
sion; even a simple expression such as (01) requires
some extralinguistic knowledge to be understood in
its proper contextual meaning (in (01) the "working
day" interval of the respective day must be known).
The reconstruction of underspecified temporal ex-
pressions is performed by a set of template filling
functions which make use of parameters specified by
the client system at the beginning of the dialogue.

Temporal anaphora include expressions such as
on Monday, tomorrow, next month, whose inter-
pretation depends on the discourse context. Solv-
ing anaphoric and deictic relations involves a rather
complex machinery which borrows many concepts
from Discourse Representation Theory. In particu-
lar, we assume a procedure according to which the
antecedent of an anaphoric temporal expression is
first looked up in the IL expressions of the text al-
ready parsed (with a preference for the most recent
expressions); if no one is found, the discourse memo-
ry is consulted to retrieve from previous parts of the

~If the client is not satisfied with such an expression,
backtracking will pass the next-bcst structure etc.

dialogue a temporal expression satisfying the con-
straints under analysis. If the search fails again,
the expression is interpreted deictically, and resolved
w.r.t, to the time the message was sent.

Inferences. IL expressions can be enriched and
disambiguated by performing certain inferences in-
volving temporal reasoning. Besides trivial cases of
temporal constraint resolution, such as guessing the
endpoint of an appointment from its startpoint and
its duration, our inference engine performs disam-
biguation of domain actions by comparing intervals
referred to by different dialogue utterances. For in-
stance, if an utterance u describing an interval I is
ambiguous between a refinement and a modification
and the previous utterance refers to an interval J in-
cluding I , then u can be disambiguated safely as de-
noting a refinement. Analogous inferences are drawn
by just checking the possible combinations of domain
actions across the current dialogue (a rejection can
hardly be followed by another cancellation, a fixing
cannot occur after a rejection, etc.). The constraints
guiding this disambiguation procedure are encoded
as filters on the output of IMAS and reduce the set
of pragmatically adequate IL expressions.

6.1 Handling of analysis failures

Sometimes IMAS produces an output which cannot
be used by the PASHA-II client. This happens when
the human message is either too vague (What about
a meeting?), or contains an inconsistent temporal
specification (as in (01)). In these cases IMAS stores
the available information, and the server generates a
request for clarification in order to recover the nec-
essary temporal specifications or to fix the already
available ones. This request is mailed to the hu-
man partner. It includes the list of misspelled words
found in the input message, which may give the part-
ner a clue for understanding the source of the error.
Once a clarification is provided, the server a t tempts
to build an IL expression by merging and /or replac-
ing the information already available with the newly
extracted one (cf. (03)). If the resulting IL expres-
sion satisfies the constraints on well-formedness, it is
shipped to the PASHA-II client. Otherwise the clar-
ification subdialogue goes on along the same lines.

7 G e n e r a t i o n

Client systems usually want to express in NL a coop-
eration primitive and a date expression. Hence NL
generation is based on a semantic template filled by
the client. Depending on its content the template
is unified with a prefabricated structure specifying
linguistic-oriented input to the generator. The same
holds for failure messages, such as (02), and for spec-
ifications of free time slots, as in (07), where simple
rules of aggregation take care not to repeat the full
date specification for each clock time mentioned.

The production system T G / 2 (Busemann, 1996)

3 0

proved to be sufficiently flexible to accomplish this
task by its ability to generate preferred formulations
first. For instance, COSMA clients can parameterize
T G / 2 so as to refer to their owner by a first per-
son pronoun or by a full name, or to use formal or
informal form of addressing the human hearer, or
to prefer deictic time descriptions over anaphorical
ones.

8 A n o v e l a r c h i t e c t u r e

A NLP server which can both provide a range of nat-
ural language services and process multiple dialogues
for a variety of applications in parallel requires (1) an
architecture that ensures a high degre of reusability
of NLP resources, (2) the availability of a robust in-
terface that guarantees transparency and flexibility
with respect to data representation and task spec-
ification, (3) client-driven server parametrization,
(4) support for incremental, distributed and asyn-
chronous robust data processing, and (5) advanced
concepts for synchronization with respect to parallel
dialogue processing for multiple clients. Due to the
limited functionality of common architectural styles
(Garlan and Shaw, 1993) with respect to these re-
quirements, a novel object-oriented, manager-based
and generic architecture has been designed and im-
plemented. It combines techniques from different ar-
eas - in particular, from object technology (Booch,
1994) and from coordination theory including work-
flow management (Malone and Crowston, 1991) -
and is based on two main concepts: the cooperat-
ing managers approach (COCONUTS) and the virtual
system architecture model.

8.1 A manager-based approach

Managers in the COCONUTS model are control units
which coordinate or perform specific activities and
cooperate with each other in a client/server form.
Their responsabilities, properties, behaviour and in-
terface are determined by the classes they belong to.
The prominent COCONUTS managers are: the da-
ta manager, which provides services related to rep-
resentation, printing, conversion and transmission
of data; the report manager, which supports spec-
ification, generation and printing of processing re-
ports; the global interface manager, which provides a
generic server interface; the computing components
managers (toMs), which encapsulates the system's
components and let them appear as servers; and, fi-
nally, the workflow manager, which is the main con-
trol unit.

8.2 Coordinat ion and control

Coordinating internal system activities with respect
to parallel dialogue processing (including backtrack-
ing and failure recovery facilities) requires very pow-
erful and flexible mechanisms for task scheduling,
synchronization and control. In COCONUTS this task

is carried out by the workflow manager, which al-
so manages interdependencies between these activ-
ities while avoiding redundant ones and controlling
the flow of work among the involved managers (e.g.,
passing subtasks from one manager to another in
a correct sequence, ensuring that all fulfill their re-
quired contributions and taking default actions when
necessary). The behaviour and function of the work-
flow manager are determined by the following se-
quence of operations: identifying and formulating
a workflow goal, decomposing it into subgoals, de-
termining and allocating resources for achieving the
subgoals, elaborating and, eventually, executing an
operation plan. It also provides a range of special-
ized exception handlers to ensure robustness (see
Section 6.1).

8.3 A generic server interface

Flexible and reliable client/server communication is
made possible by the generic server interface module
GSI. It includes a declarative, feature-based repre-
sentation and task specification language CCL and
an object-oriented communication and data trans-
fer module ccI. For CCL a parser, a printer and an
inference engine are available, ccI contains various
kinds of interlace objects containing higher-level pro-
tocols and methods for reliable TCP/ IP-based com-
munication, data encoding/decoding and buffering,
as well as priority and reference management. Note
that interface objects are accessible through their
TCP/ IP-based internet addresses and can be asso-
ciated to any component (cf. Figure 1). This way,
subsystems can, on demand, be used as servers, e.g.
sines or the generator.

8.4 Integrat ing heterogenous c o m p o n e n t s

Each COSMA server component is encapsulated by a
CCM (computing component manager), which makes
its functionality available to other managers. A
CCM has, among other things, a working (short-
term) memory, a long-term memory and a variety of
buffers for storing and managing computed solutions
for subsequent use. Using these features a CCM eas-
ily simulates incrementality and realizes intelligent
backtracking by providing the computed solutions
in a selective manner. A component can be released
by a CCM it is bound to when the latter does no
longer need its services; e.g. if the component has al-
ready computed all solutions. This permits efficient
resource sharing, as several CCMS can be associat-
ed to one component. Thus, associating interface
objects with CCMs provides a flexible way of realiz-
ing distributed processing performed by components
implemented in different languages and running on
different machines.

8.5 T h e v i r t u a l s y s t e m architecture

The virtual system architecture allows for efficient
parallel dialogue processing. It is based on the con-

31

cept of cooperating object-oriented managers with
the ability to define one-to-many relationships be-
tween components and ¢CMs. The key idea consists
in adopting a manager-based/object-based view of
the architecture shown in Figure 1. This architec-
ture represents a virtual system (also called opera-
tion context), which is a highly complex object con-
sisting of a variety of interacting managers. It may
inherit from different classes of operation contexts,
whose definitions are determined by the underlying
domains of application. Thus, multiple dialogues are
processed in parallel just by running each dialogue
in a separate virtual system. As soon as a dialogue is
completed, the assigned virtual system can be reused
to process another one. Conceptually, no constraints
are made on the number of active virtual systems in
the server software. In order to ensure correct pro-
cessing, a manager may operate in only one virtual
system at a time. Note that managers can still be
shared by virtual systems and they behaviour can
vary from one system to another.

9 C o n c l u s i o n

We described COSMA, a NL server system for exist-
ing machine agents in the domain of appointment
scheduling. The server is implemented in Common
Lisp and C. The PASHA II agent is implemented in
DFKI-Oz (Smolka, 1995).

Robust analysis of human e-mail messages is
achieved through message extraction techniques,
corpus-based grammar development, and client-
oriented semantic processing and representation.
The virtual server architecture is a basis for the flex-
ible use of heterogeneous NLP systems in real-world
applications including, and going beyond, COSMA.

Future work includes extensive in-house tests that
will provide valuable feedback about the perfor-
mance of the system. Further development of Cos-
MA into an industrial prototype is envisaged.

R e f e r e n c e s

Grady Booch. 1994. Object-Oriented Analysis and
Design with Applications. Benjamin/Cummings,
Menlo Park.

Stephan Busemann and Iris Merget. 1995. Eine
Untersuchung kommerzieller Terminverwaltungs-
Software im Hinblick auf die Kopplung mit
natiirlichsprachlichen Systemen. Technical Doc-
ument D-95-11, DFKI, Saarbriicken.

Stephan Busemann et al. 1 9 9 4 . COSMA-
multi-participant NL interaction for appointment
scheduling. Technical Report RR-94-34, DFKI,
Saarbrficken.

Stephan Busemann. 1996. Best-first surface realiza-
tion. In Donia Scott, editor, Eighth International

Natural Language Generation Workshop. Proceed-
ings, Herstmonceux, Univ. of Brighton.

Nils Dahlb~ck. 1992. Representations of Discourse.
Cognitive and Computational Aspects. Ph.D. the-
sis, Department of Computer and Information Sci-
ence. LinkSping University.

Klans Fischer et al. 1995. Unifying control in a
layered agent architecture. Technical Memo TM-
94-05, DFKI, Saarbrficken.

David Garlan and Mary Shaw. 1993. An intro-
duction to software architecture. SEI-93-TR-033,
Software Engineering Institute, Carnegie Mellon
University, Pittsburg, Pennsylvania 15213.

Sabine Lehmann et al. 1996. TSLNP - Test Suites
for Natural Language Processing. In Proceedings
of COLING-96, pages 711-716, Copenhagen.

Andreas Lux et al. 1992. A Model for Supporting
Human Computer Cooperation. In AAAI Work-
shop on Cooperation among Heterogeneous Intel-
ligent Systems, San Jose, Ca.

Thomas W. Malone and Kevin Crowston. 1991. To-
ward an interdisciplinary theory of coordination.
Technical Report CCS TR 120, Center for Co-
ordination Science, Sloan School of Management,
MIT, Cambridge, MA.

John Nerbonne et al. 1993. A Diagnostic Tool for
German Syntax. Machine Translation, 8(1-2).

Giinter Neumann et al. 1997. An information ex-
traction core system for real world German text
processing. In this volume.

Stephan Oepen et al. 1995. The TSNLP database:
From tsct(1) to tsdb(1). Report to LRE 62-089,
DFKI.

Sven Schmeier and Achim Schupeta. 1996. Pasha II
- a personal assistant fo scheduling appointments.
In First Conference on Practical Application of
Multi Agent Systems, London.

Candace L. Sidner. 1994. An artificial discourse
language for collaborative negotiation. In Proc.
12th National Conference on Artificial Intelli-
gence. Volume 1, pages 814-819, Seattle, WA.

Gert Smolka. 1995. The Oz Programming Model.
Research Report RR-95-10, DFKI, Saarbrficken.

Donald Steiner et al. 1 9 9 5 . The conceptual
framework of MAIL. In Cristiano Castelfranchi
and Jean-Pierre Mfiller, editors, From Reaction
to Cognition. 5th European Workshop on Mod-
elling Autonomous Agents in a Multi-Agent World
(MAAMAW 93), pages 217-230. Springer, LNAI,
Vol. 957.

Hans Uszkoreit et al. 1994. DISCO-An HPSG-
based NLP System and its Application for
Appointment Scheduling. In Proceedings of
COLING-94, Kyoto.

32

