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A b s t r a c t  

We describe and experimentally evaluate 
an efficient method for automatically de- 
termining small clause boundaries in spon- 
taneous speech. Our method applies an ar- 
tificial neural network to information about 
part of speech and trigger words. 
We find that with a limited amount of data 
(less than 2500 words for the training set), 
a small sliding context window ( + / - 3  to- 
kens) and only two hidden units, the neural 
net performs extremely well on this task: 
less than 5% error rate and F-score (com- 
bined precision and recall) of over .85 on 
unseen data. 
These results prove to be better than those 
reported earlier using different approaches. 

1 I n t r o d u c t i o n  

In the area of machine translation, one important in- 
terface is that between the speech recognizer and the 
parser. In the case of human-to-human dialogues, 
the speech recognizer's output is a sequence of turns 
(a contiguous segment of a single speaker's utter- 
ance) which in turn can consist of multiple clauses. 

Lavie et al. (1996) discuss that using smaller units 
rather than whole turns can greatly facilitate the 
task of the parser since it reduces the complexity of 
its input. 

The problem is thus how to correctly segment an 
utterance into clauses. 

The segmentation procedure described in Lavie 
et al. (1996) uses a combination of acoustic infor- 
mation, statistical calculation of boundary-trigrams, 
some highly indicative keywords and also some 
heuristics from the parser itself. 

Stolcke and Shriberg (1996) studied the relevance 
of several word-level features for segmentation per- 
formance on the Switchboard corpus (see Godfrey 
et al. (1992)). Their best results were achieved by 
using part of speech n-grams, enhanced by a couple 
of trigger words and biases. 
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Another, more acoustics-based approach for turn 
segmentation is reported in Takagi and Itahashi 
(1996). 

Palmer and Hearst (1994) used a neural network 
to find sentence boundaries in running text, i.e. to 
determine whether a period indicates end of sentence 
or end of abbreviation. The input to their network is 
a window of words centered around a period, where 
each word is encoded as a vector of 20 reals: 18 val- 
ues corresponding to the word's probabilistic mem- 
bership to each of 18 classes and 2 values represent- 
ing whether the word is capitalized and whether it 
follows a punctuation mark. Their best result of 
98.5% accuracy was achieved with a context of 6 
words and 2 hidden units. 

In this paper we bring their idea to the realm of 
speech and investigate the performance of a neural 
network on the task of turn segmentation using parts 
of speech, indicative keywords, or both of these fea- 
tures to hypothesize segment boundaries. 

2 D a t a  p r e p a r a t i o n  

For our experiments we took as data the first 1000 
turns (roughly 12000 words or 12 full dialogues) of 
transcripts from the Switchboard corpus in a version 
that is already annotated for parts of speech (e.g. 
noun, adjective, personal pronoun, etc.). 

The definition of a small clause which we wanted 
the neural network to learn the boundaries of is 
as follows: Any finite clause that contains an in- 
flected verbal form and a subject (or at least either 
of them, if not possible otherwise). However, com- 
mon phrases such as good bye, and stuff like that, 
etc. are also considered small clauses. 

Preprocessing the data involved (i) expansion of 
some contracted forms (e.g. l 'm -+ I am), (ii) correc- 
tion of frequent tagging errors, and (iii) generation 
of segment boundary candidates using some simple 
heuristics to speed up manual editing. 

Thus we obtained a total of 1669 segment bound- 
aries, which means that on average approximately 
after every seventh token (i.e. 14% of the text) there 
is a segment boundary. 



3 Features and input encoding 

3.1 F e a t u r e s  

The transcripts are tagged with part  of speech 
(POS) da ta  from a set of 39 tags 1 and were pro- 
cessed to extract  trigger words, i.e. words that  are 
frequently near small clause boundaries (<b>). Two 
scores were assigned to each word w in the transcript  
according to the following formulae: 

scorepre(W) = C(w<b>) /5(w<b>]w) 
scorepost(W) ---- C(<b>w) /5(<b>w[w) 

where C is the number  of times w occurred as 
the word (before/after)  a boundary, and /5 is the 
Bayesian est imate for the probabili ty that  a bound- 
ary occurs (after/before) w. 

This score is thus high for words that  are likely 
(based on/5)  and reliable (based on C) predictors of 
small clause boundaries. 

The pre- and post -boundary trigger words were 
then merged and the top 30 selected to be used as 
features for the neural network. 

3.2 Input encoding 
The information generated for each word consisted 
of a da ta  label (a unique tracking number,  the actual 
word, and its par t  of speech), a vector of real values 
xl ,  ..., xc and a label ( ' + '  or ' - ' )  indicating whether 
a segment boundary  had preceded the word in the 
original segmented corpus. 

The real numbers  xl ,  ..., xc are the values given as 
input to the first layer of the network. We tested 
three different encodings: 

1. Boolean encoding of POS: xi (1 < i < c = 39) 
is set to 0.9 if the word's part  of speech is the 
i th par t  of speech, and to 0.1 otherwise. 

2. Boolean encoding of triggers: xi (1 < i < c = 
30) is set to 0.9 if the word is the i th trigger, 
and to 0.1 otherwise. 

3. Concatenat ion of boolean POS and trigger en- 
codings (c = 39 + 30 = 69). 

4 T h e  n e u r a l  n e t w o r k  

We use a fully connected feed-forward three-layer 
(input, hidden, and output)  artificial neural net- 
work and the s tandard backpropagat ion algori thm 
to train it (with learning rate ~/= 0.3 and momen-  
tum ~ = 0.3). 

Given a window size of W and c features per en- 
coded word, the input layer is dimensioned to c × W 
units, that  is W blocks of c units. 

The number  of hidden units (h) ranged in our ex- 
periments  from 1 to 25. 

1The tagset is based on the standard tagsets of the 
Penn Treebank and the Brown Corpus. 
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Figure 1: Training the neural network. (Net with 
POS and trigger encoding, W = 6, h = 2, 0 = 0.7) 

As for the output  layer, in all the experiments  
it was fixed to a single output  unit which indicates 
the presence or absence of a segment boundary  just  
before the word currently at the middle of the win- 
dow. The actual threshold to decide between seg- 
ment  boundary and no segment boundary  is the pa- 
rameter  0 which we varied from 0.1 to 0.9. 

The da ta  was presented to the network by sim- 
ulating a sliding window over the sequence of en- 
coded words, that  is by feeding the input layer with 
the c × W encodings of, say, words wi . . .wi+w-1  and 
then, as the next input to the network, shifting the 
values one block (c units) to the left, thereby admit-  
ting from the right the c values corresponding to the 
encoding of wi+w.  Note that  at the beginning of 
each speaker turn or utterance the first c x ( w  _ 1) 
input units need be padded with a "dummy"  value, 
so that  the first word can be placed just  before the 
middle of the window. Symmetrically,  at the end of 
each turn, the last c × ( w  _ 1) input  units are also 
padded. 

5 R e s u l t s  a n d  d i s c u s s i o n  

We created two da ta  sets for our experiments,  all 
f rom randomly chosen turns from the original data:  
(i) the "small" da ta  set (a 20:20:60(%) split be- 
tween training, validation, and test sets), and (ii) 
the "large" da ta  set (a 60:20:20(%) split). 

First, we ran 180 experiments  on the "small" 
da ta  set, exhaustively exploring the space defined 
by varying the following parameters:  

* encoding scheme: POS only, triggers only, POS 
and triggers. 

* window size: W E {2, 4, 6, 8} 

• number  of hidden units: h E {2, 10, 25} 

• output  threshold: 0 E { 0.1, 0.3, 0.5, 0.7, 0.9 } 
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Figure 2: Precision vs. recall tradeoff. (On unseen 
data,  net with W = 6, h = 2, 0.1 < 0 < 0.9) 
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Figure 3: F-scores as a function of the output  unit 
threshold 0. (On unseen data,  net with W = 6, 
h = 2 )  

Precision (number of correct boundaries found 
by the neural network divided by total number of 
boundaries found by the neural network), recall 
(number of correct boundaries found by the neu- 
ral network divided by true number of boundaries 

2. p r e c i s i o n ,  r e c a l l  
in the data) and F-score (defined as precision+recall / 
were computed for each training, validation and test 
sets. 

To be fair, we chose to take the epoch with the 
maximum F-score on the validation set as the best 
configuration of the net, and we report results from 
the test set only. Figure 1 shows a typical train- 
ing/learning curve of a neural network. 

The best performance was obtained using a net 
with 2 hidden units, a window size of 6 and the out- 
put unit threshold set to 0.7. The following results 
were achieved. 
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Some general trends are observed: 

• As the window size gets larger, the performance 
increases, but  it seems to peak at around size 6. 

• Fewer hidden units yield bet ter  results; gener- 
ally we get the best results for just  two hidden 
units. 

• The global performance as measured by the pro- 
portion of correct classifications (i.e. both ' + '  
and ' - ' )  increases as the F-score increases. 

• High performance (correct classifications >95%, 
F-score >0.85) is easily achieved. 

• The optimal threshold for a high F-score lies in 
the 0.5 </9 < 0.7 interval. 

• Varying the threshold leads to a tradeoff of pre- 
cision vs. recall. 

To illustrate the last point, we present a graph 
that  shows a comparison between the three encod- 
ing methods used, for a window size of 6 (Figure 2). 
The combined method is only slightly bet ter  than 
the POS method,  but  they both are clearly superior 
to the trigger-word method. Still it is interesting 
to note tha t  quite a reasonable performance can be 
obtained just  by looking at the 30 most indicative 
pre- and post-boundary trigger-words. Noteworthy 
is also the behavior of the precision-recall curves: 
with our method a high level of recall can be main- 
tained even as the output  threshold is increased to 
augment precision. 

In Figure 3, we plot the F-score against the thresh- 
old. Whereas for the encodings POS only and POS 
and triggers, the peaks are in the region between 
0.5 and 0.7, for the triggers only encoding, the best 
F-scores are achieved between 0.3 and 0.5. 

We also ran another 30 experiments with the 
"large" data  set focusing on the region defined by the 
parameters that  achieved the best results in the pre- 
ceding experiments (i.e. window size 6 or 8, thresh- 
old between 0.5 and 0.7, number of hidden units be- 
tween 1 and 10). Under these constraints, F-scores 
vary slightly, always remaining between .85 and .88 
for both validation and test sets. 

Within this region, therefore, several neural nets 
yield extremely good performance. 

While Lavie et al. (1996) just  report  an im- 
provement in the end-to-end performance of the 
JANUS speech-to-speech translation system when us- 
ing their segmentation method but  do not give de- 
tails the performance of the segmentation method 
itself, Stolcke and Shriberg (1996) are more explicit 
and provide precision and recall results. Moreover 
Lavie et al. (1996) deal with Spanish input whereas 
Stolcke and Shriberg (1996), like us, drew their da ta  
from the Switchboard corpus. 



T y p e  H a r m f u l ?  R e a s o n  C o n t e x t  
false positive no trigger word 
false positive yes non-clausal and 
false negative yes speech repair 
false positive ? trigger word 
false positive yes non-clausal and 
false negative yes speech repair 
false positive no CORRECT 
false negative no CORRECT 
false negative yes embedded relative clause 
false positive no trigger word 

to work <b> and* when I had 
work off * and on 
<b> but * and they are 
he you know * gets to a certain 
if you like trip * and fall or something 
<b> we * that's been 
<b> but i think * its relevance 
<b> and she * she was 
into nursing homes * die very quickly 
wait lists * and all 

Table  1: S a m p l e  of  misc lass i f ica t ions  (on unseen d a t a ,  net  wi th  encod ing  of  P O S  and  t r iggers ,  W --- 6, h = 2, 
0 = 0.7). Fa lse  posi t ive  ind ica tes  an ins tance  where  the  net  hypo thes izes  a b o u n d a r y  where there  is none.  
Fa l se  nega t ive  ind ica tes  an ins tance  where  the  net  fails  to  hypo thes ize  a b o u n d a r y  where  there  is one.  A 
'<b> '  ind ica tes  a smal l  c lause b o u n d a r y .  A '* '  ind ica tes  the  loca t ion  of  the  error .  

Thus  here we c o m p a r e  our  a p p r o a c h  wi th  t h a t  of  
Stolcke and  Shr iberg  (1996). T h e y  t r a i ne d  on 1.4 
mi l l ion  words  and  in the i r  bes t  sys t em,  achieved pre- 
cision .69 and  recal l  .85 (which co r re sponds  to  an 
F-score  of  .76). We t r a ined  on 2400 words  (i.e. over 
500 t imes  less t r a in ing  d a t a ) ,  and  we achieved an 
F-score  of  .85 (i.e. a 12% i m p r o v e m e n t ) .  

6 Error analysis 
Tab le  1 shows 10 rep resen ta t ive  errors  t h a t  one of  
the  bes t  pe r fo rming  neura l  ne twork  m a d e  on the  test  
set. 25 r a n d o m l y  selected errors  were used to  do the  
error  ana lys is ,  which cons is ted  of  14 false pos i t ives  
and  11 false negat ives .  8 of  the  errors  were errors  we 
cons idered  to  be ha rmfu l  to the  parser ,  3 were errors  
of  unknown  harmfulness ,  and  the  r e m a i n i n g  14 were 
cons idered  harmless .  

Of  the  ha rmfu l  errors,  three  were due  to  the  word 
and be ing  used as a con junc t ion  in a non-c lausa l  
con tex t ,  two were due to  a fa i lure  to  de tec t  a speech 
repai r ,  and  one was due  to  an e m b e d d e d  re la t ive  
clause (mos t  people that move into nursing homes 
* die very quickly). 

T h e  ne twork  was also ' ab l e  to  cor rec t ly  ident i fy  
some m i s t a g g e d  d a t a  (marked  as CORRECT in Ta-  
ble 1). 

These  resul ts  suggest  t h a t  a d d i n g  fea tu res  rele- 
vant  to  speech repa i r s  (such as whe the r  words  were 
r epea t ed )  or fea tures  re levant  to  de t ec t ing  the  use 
of  and as a non-c lausa l  con junc t  m i g h t  be  useful in 
ach iev ing  b e t t e r  accuracy.  

7 C o n c l u s i o n  

We have shown t h a t  using neura l  ne tworks  for au to-  
m a t i c a l l y  s egmen t ing  tu rns  in conver sa t iona l  speech 
in to  sma l l  c lauses  reaches a level of  less t h a n  5% error  
r a t e  and  achieves good  p rec i s ion / r eca l l  pe r fo rmance  
as m e a s u r e d  by an F-score  of  more  t h a n  .85. 

These  resul ts  o u t p e r f o r m  those  o b t a i n e d  by o the r  
m e t h o d s  as r epo r t ed  in the  l i t e ra tu re .  
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Fu tu re  work on this  p r o b l e m  includes  issues such 
as op t im iz ing  the  set of  P O S  tags,  add ing  acous-  
t i c / p r o s o d i c  fea tures  to  the  neura l  ne twork ,  and  us- 
ing i t  for p ro -d rop  l anguages  like Span i sh  to  as- 
sess the  re la t ive  i m p o r t a n c e  of  P O S  vs. t r igger  word  
weights  and  to  e x a m i n e  the  pe r fo rmance  of  the  sys- 
t e m  for l anguages  where  P O S  t ags  m a y  not  be  as 
in fo rma t ive  as t hey  are for Engl ish .  
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