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Abstract 

A new chart-based technique for parsing ill-formed 
input is proposed. This can process sentences 
with unknown/misspelled words, omitted words 
or extraneous words. This generalized parsing 
strategy is, similar to Mellish's, based on an 
active chart parser, and shares the many 
advantages of Mellish's technique. It is based on 
pure syntactic knowledge, it is independent of all 
grammars, and it does not slow down the original 
parsing operation if there is no ill-formedness. 
However, unlike Mellish's technique, it doesn't 
employ any complicated heuristic parameters. 
There are two key points. First, instead of using 
a unified or interleaved process for finding errors 
and correcting them, we separate the initial error 
detection stage from the other stages and adopt a 
version of bi-directional parsing. This effectively 
prunes the search space. Second, it employs 
normal top-down parsing, in which each parsing 
state reflects the global context, instead of top- 
down chart parsing. This enables the technique to 
determine the global plausibility of candidates 
easily, based on an admissible A* search. The 
proposed strategy could enumerate all possible 
minimal-penalty solutions in just 4 times the 
time taken to parse the correct sentences. 

1 Introduction 

It is important that natural language interface systems 
have the capability of composing the globally most 
plausible explanation if a given input can not be 
syntactically parsed. This would be useful for handling 
erroneous inputs from the user and for offsetting 
grammar and lexicon insufficiency. Also, such a 
capability could be applied to deal with the 
ungrammatical sentences and sentence fragments that 
frequently appear in spoken dialogs (Bear, Dowding and 
Shriberg, 1992). Several efforts have been conducted to 
achieve this objective ((Lang, 1988; Saito and Tomita, 
1988), for example.) One major decision to be made in 
designing this capability is whether knowledge other 
than purely syntactic knowledge is to be used. Other- 
than syntactic knowledge includes grammar specific 
recovery rules such as recta-rules (Weishedel and 
Sondheimer, 1983), semantic or pragmatic knowledge 

which may depend on a particular domain (Carbonell and 
Hayes, 1983) or the characteristics of the ill-formed 
utterances observed in human discourse (Hindle, 1983). 
Although it is obvious that the utilizing such knowledge 
allows us to devise more powerful strategies, we should 
first determine the effectiveness of using only syntactic 
knowledge. Moreover, the result can be applied widely, 
as using syntactic knowledge is a base of the most of 
strategies. 

One significant advance in the usage of syntactic 
knowledge was contained in the technique proposed by 
Mell ish (1989). It can handle not only 
unknown/misspelled words, but also omitted words and 
extraneous words in sentences. It can deal with such 
problems, and develop plausible explanations quickly 
since it utilizes the full syntactic context by using an 
active chart parser (Kay, 1980; Gazdar and Mellish, 
1989). One problem with his technique is that its 
performance heavily depends on how the search 
heuristics, which is implemented as a score calculated 
from six parameters, is set. The heuristics complicates 
the algorithm significantly. This must be one of reasons 
why the performance of the method, as Mellish himself 
noted, dropped dramatically when the input contains 
multiple errors. 

This paper proposes a new technique for parsing 
inputs that contain simple kinds of ill-formedness. This 
generalized parsing strategy is, similar to Mellish's, 
based on an active chart parser, and so shares the many 
advantages of Mellish's technique. It is based on pure 
syntactics, it is independent of all grammars, and it does 
not slow down the original parsing operation if there is 
no iU-formedness. However, unlike Mellish's technique, 
it doesn't employ any complicated heuristic parameters. 
There are two key points. First, instead of using a 
unified or interleaved process for finding errors and 
correcting them, we separate the initial error detection 
stage from the other stages and adopt a version of bi- 
directional parsing, which has been pointed out to be a 
useful strategy for fragment parsing by itself (Satta and 
Stock, 1989). This effectively prunes the search space 
and allows the new technique to take full account of the 
right-side context. Second, it employs normal top-down 
parsing, in which each parsing state reflects the global 
context, instead of top-down chart parsing. This enables 
the technique to determine the global plausibility of 
candidates easily. The results of preliminary experiments 
are encouraging. The proposed strategy could enumerate 
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all possible minimal-penalty solutions in just 4 times 
the time taken to parse the correct sentences. That is, it 
is almost twice as fast as Mellish's strategy. 

2 Mellish's Technique And Its Problems 

The basic strategy of Mellish's technique is to run a 
bottom-up parser over the input and then, if this fails to 
find a complete parse, to run a generalized top-down 
parser over the resulting chart to hypothesize complete 
parse candidates. When the input is well-formed, the 
bottom-up parser, precisely speaking, a left corner parser 
without top-down filtering, would generate the parse 
without any overhead. Even if it failed, it is guaranteed 
to find all complete constituents of all possible parses. 
Reference to these constituents, enables us to avoid 
repeating existing works and to exploit the full syntactic 
context  rather just the left-side context of  error 
candidates. The generalized top-down parser attempts to 
find out minimal errors by refining the set of "needs" 
that originates with bottom-up parsing. Each need 
indicates the absence of an expected constituent. The 
generalized parser hypothesizes, and so remedies an error, 
when it was sufficiently focused on. Next, the parser 
tries to construct a complete parse by taking account of 
the hypothesis. In the case of multiple errors, the 
location and recovery phases are repeated until a complete 
parse is obtained. 

The data structure introduced for representing 
information about local needs is called the generalized 
edge. It is an extension of active and inactive edges, and 
is described as 

< C from S to E needs CSl from Sl to e l ,  
cs2 from s 2 to e 2 . . . . .  cs n from s n to en > 

where C is category, csi are sequences of categories 
(which will be shown inside square brackets), S, E, si, 
and ei are positions in the input. The special symbol 
"*" denotes the position that remains to be determined. 
The presence of an edge of this kind in the chart indicates 
that the parser is attempting to find a phrase of category 
C that covers the input from position S to E but that in 
order to succeed it must still satisfy all the needs listed. 
Each need satisfies a sequence of categories cs i that must 
be found contiguously to occupy the portion from s i to 
e i. An edge with an empty need, which corresponds to 
an inactive edge is represented as 

< C from S to E needs nothing>. 

The generalized top-down parser that uses the 
generalized edge as the data structure is governed by six 
rules: three for finding out errors and the other three for 
recovering from the three kinds of error. The three error 
locating rules are the top-down rule, the fundamental rule 
and the simplification rule. The first one is also used in 
the ordinary top-down chart parser, and the third one is 
just for house keeping. The second rule, the fundamental 

rule, directs to combine an active edge with a inactive 
edge. It was extended from the ordinary rule so that 
found constituents could be incorporated from either 
direction. However, the constituents that can be 
absorbed are limited to those in the first category 
sequence; that is, one of the categories belonging to CSl. 
The application of the six rules is mainly controlled by 
the scores given to edges, that is, agenda control is 
employed. The score of a particular edge reflects its 
global plausibility and is calculated from six parameters, 
one of which, for example, says that edges that arise 
from the fundamental rule are preferable to those that 
arise from the top-down rule. 

Although Mellish's technique has a lot of advantages 
such as the ability to utilize the right-side context of 
errors and independence of a specific grammar, it can 
create a huge number of edges, as it mainly uses the top- 
down rule for finding errors. That is, refining a set of 
error candidates toward a pre-terminal category by 
applying only the top-down rule may create too many 
alternatives. In addition, since the generalized edges 
represent just local needs and don't reflect the global 
needs that created them, it is hard to decide if they should 
be expanded. In particular, these problems become 
critical when parsing ill-formed inputs, since the top- 
down rule may be applied without any anchoring; pre- 
terminals can not be considered as anchors, as pre- 
terminals may be freely created by error recovery rules. 
This argument also applies to the start symbol, as that 
symbol may be created depending the constituent 
hypothesized by error recovery rules and the fundamental 
rule. Mellish uses agenda control to prevent the 
generation of potentially useless edges. For this 
purpose, the agenda control needs complicated heuristic 
scoring, which complicates the whole algorithm. 
Moreover, so that the scoring reflects global plausibility, 
it must employs a sort of dependency analysis, a 
mechanism for the propagation of changes and an easily 
reordered agenda, which clearly contradicts his original 
idea in which edges must be reflected only local needs. 

3 Proposed Algorithm 

The technique proposed here resolves the above problems 
as follows. First, some portion of the error location 
process is separated from and precedes the processes that 
are governed by agenda control, and is archived by using 
a version of bi-directional parsing. Second, so that the 
search process can be anchored by the start symbol, a 
data structure is created that can represent global 
plausibility. Third, in order to reduce the dependency on 
the top-down rule, a rule is developed that uses two 
active edges to locate errors. This process is closer to 
ordinary top-down parsing than chart parsing and global 
plausibility scoring is accurate and easily calculated. For 
simplicity of explanation, simple CF-PSG grammar 
formalism is assumed throughout this paper, although 
there are obvious generalizations to other formalism such 
as DCG (Pereira and Warren, 1980) or unification based 
grammars (Shieber, 1986). 
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Bottom-up rule: 
<C from S to E needs nothing> 
C1 --> ...Csl C Cs2... where Csl is not empty (in the grammar) 

<C1 from * to E 2 needs Csl from * to S ,  Cs2 from E to E2> 
where if Cs 2 is empty then E2 ffi E else E2 =*. 

Fundamental rule: 
<C from S to E needs . . . .  [...Csl 1, C1, Csl2...] from Sl to el  . . . .  > 
<C1 from S1 to E1 needs nothing> 

<C from S to E needs . . . .  Csl 1 from Sl to S1 ,Csl2 from E1 to e 1 .... > 
where s 1 < S1 or Sl-* ,  E1 < el or el -* .  

Simplification rule: 
<C from S to E needs 

.... Csi-1 from si_ 1 to s, [] from s to s, Csi+ 1 from s to ei+l . . . .  > 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

<C from S to E needs .... Csi-1 from si-1 to s, Csi+l from s to ei+l . . . .  > 

Figure 

The first phase of the process is invoked after the 
failure of  left comer parsing. The bottom-up parsing 
leaves behind all complete constituents of every possible 
parse and unsatisfied active edges for all error points that 
are to the immediate fight of  sequences of  constituents 
corresponding to the RHS. Since parsing proceeds left 
to fight, an active edge is generated only when an error 
point exists to the fight of the found constituents. In the 
first phase, bi-directional bottom-up parsing generates all 
generalized edges that represent unsatisfied expectations 
to the right and left of  constituents. From some 
perspectives, the role this phase plays is similar to that 
of the covered bi-directional phase of  the Picky parser 
(Magerman and Weir, 1992), though the method 
proposed herein does not employ stochastic information 
at all. This process can be described in three rules as 
shown in Figure 1. As can be seen, this is bi-directional 
bottom-up parsing that uses generalized edges as the data 
structure. For simplicity, the details for avoiding 
duplicated edge generation have been omitted. It is worth 
noting that after this process, the needs listed in each 
generalized edge indicate that the expected constituents 
did not exist, while, before this process, a need may exist 
just because an expectation has not been checked. 

The second phase finds out errors and corrects them. 
The location operation proceeds by refining a need into 
more precise one, and it starts from the global need that 
refers to the start symbol, S, from 0 to n, where n is the 
length of the given input. In the notion of generalized 
edges, that need can be represented as, 

<GOAL from 0 to n needs [S] from 0 to n> .  

The data structure reflecting global needs directly is used 
in this phase, so the left part of each generalized edge is 
redundant and can be omitted. In addition, two values, g 
and h, are introduced, g denotes how much cost has been 

1. The Bi-Directional Parsing Rules 

expended for the recovery so far, and h is the estimation 
of how much cost will be needed to reach a solution. 
Cost involves solution plausibility; solutions with low 
plausibility have high costs. Thus, the data structure 
used in this phase is, 
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<needs CSl from Sl to e l ,  cs2 from s2 to e2 . . . . .  
CSn from Sn to e n, g, h > .  

Here, the number of  errors corrected so far is taken as g, 
and the total number of  categories in the needs is used as 
h. As mentioned above, since the needs listed indicate 
only the existence of errors as detected by the preceding 
process and to be refined, the value of h is always less 
than or equal to the number of  the errors that must be 
corrected to get a solution. That is, the best first search 
using g+h as the cost functions is an admissible A* 
search (Rich and Knight, 1991). Needless to say, more 
sophisticated cost functions can also be used, in which, 
for example, the cost depends on the kind of error. 

The rules governing the second phase, which 
correspond to the search state transition operators in the 
context of search problems, are shown in Figure 2. The 
top-down rule and the refining rule locate errors and the 
other three rules are for correcting them. Most important 
is the refining rule, which tries to find out errors by 
using generalized edges in a top-down manner toward pre- 
terminals. This reduces the frequency of using the top- 
down rule and prevents an explosion in the number of 
altematives. 

This process starts from 

<needs [S] from 0 to n, g: 0, h: 1>. 

To reach the following need means to get one solution. 

<needs nothing, g: _, h: 0>. 



Top-down rule: 
<needs [C1...Csl] from Sl to E1 ..... g: G, h: H> 
C1 --> ...RHS (in grammar) 

<needs [...RHS ...Csl] form Sl to E1 ... . .  g: G, h: H+(length of RHS)-I> 

Refining rule: 
<needs [...Csl 1, C1, Csl2...] from s 1 to e 1 . . . . .  g: G, h: H> 
<C1 from S to E needs Cs 1 from S 1 to E1 . . . . .  Csn from Sn to En > 

<needs Cs l l  from s I to S ,  Csl from S1 to E1 . . . . .  Csn from Sn to En , 
Csl2  from E to el ..... g: G, h: H+~(length of Csn)-l> 

The result must be well-formed, that is sl < S1 or sl--* or SI=* and so on. 

Garbage rule: 
<needs [Cl.. .Csl] from Sl to el  ..... g: G, h: H> where C1 is a pre-terminal 
<C1 from S1 to El needs nothing> where Sl < SI 

<needs Csl from E1 to el  ..... g: G+(SI-Sl), h: H- l> 

Unknown word rule: 
<needs [CI...Csl] from Sl to el  ..... g: G, h: H> where C1 is a pre-terminal 

<needs Csl from s l+ l  to el ..... g: G+I,  h: H- l>  
where the edge, <C1 from s 1 to s l+l  needs nothing> does not exist in the chart 

Empty category rule: 
<needs Csl from s to s ,  Cs2 from s2 to e2 ..... g: G, h: H> 

<needs Cs2 from s2 to e2 ..... g: G+(length of Csl), h: H-(length of Csl)> 

Figure 2. The Error Locating and Recovery Rules 

The need with the smallest value of g+h is processed 
first. If two needs have the same value of g+h, the one 
with the smaller h values dominates. This control 
strategy guarantees to find the solution with minimal 
cost first; that is, the solution with the minimum 
number of recoveries. 

Figure 3 shows an example of  this technique in 
operation. (a) shows the sample grammar adopted, (b) 
shows the input to be processed, and (c) shows some of 
the edges left behind after the failure of the original 
bottom-up parsing. As shown in (d), the first phase 
generates several edges that indicate unsatisfied 
expectations to the left of found constituents. The 
second phase begins with need (e-1). Among the others, 
(e-2) and (e-3) are realized by applying the refining rule 
and the top-down rule, respectively. Since (e-2) has the 
smallest value of g+h, it takes precedence to be 
expanded. The refining rule processes (e-2) and generates 
(e-4) and (e-7), among others. The solution indicated by 
(e-6), which says that the fifth word of the input must be 
a preposition, is generated from (e-4). Another solution 
indicated by (e-9), which says that the fifth word of the 
input must be a conjunctive is derived from (e-7). That 
the top-down rule played no role in this example was not 

incidental. In reality, application of the top-down rule 
may be meaningful only when all the constituents listed 
in the RHS of a grammar rule contain errors. In every 
other case, generalized edges derived from that rule must 
have been generated already by the first phase. The 
application of the top-down rule can be restricted to cases 
involving unary rules, if one assumes at most one error 
may exist. 

4 P r e l i m i n a r y  E x p e r i m e n t s  

In order to evaluate the technique described above, some 
preliminary experiments  were conducted.  The 
experiments employed the same framework as used by 
Mellish, and used a similar sized grammar, the small e- 
free CF-PSG for a fragment of English with 141 rules 
and 72 categories. Random sentences (10 for each length 
considered) were generated from the grammar, and then 
random occurrences of specific types of errors were 
introduced into these sentences. The errors considered 
were none, deletion of  one word, adding one known or 
unknown word, and substituting one unknown or known 
word for one word of the sentence. The amount of work 
done by the parser was calculated using the concept of 
"cycle". The parser consumes one cycle for processing 
each edge. The results are shown in Table 1. The 
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(a) The grammar: 
S --> NP VP ...(a-l) 
NP ---> NP C NP 
VP ---~ V P P P  

NP --~ N 
VP --¢ Vt NP 
PP ---> P NP ...(a-2) 

NP ---> Det N 
VP ---> Vi 

(b) The input: 
The lady bought cakes an the 

0 1 2 3 4 5 6 
shop 

7 

(c) Examples of the edges left behind: 
<NP from 0 to 2 needs nothing> 
<Vi from 2 to 3 needs nothing> 
<NP from 3 to 4 needs nothing> 
<NP from 5 to 7 needs nothing> ...(c-l) 
<S from 0 to * needs [VP] from 2 to *> ...(c-2) 
<VP from 2 to * needs [PP] from 4 to *> ...(c-3) 
<VP from 2 to * needs [NP] from 3 to *> ...(c-4) 
<NP from 3 to * needs [C NP] from 4 to *> ...(c-5) 

(d) Examples edges generated in the bi-directional parsing: 
<PP from * to 7 needs [P] from * to 5> ...(d-l) Bottom up rule, (c-l), (a-2) 
<NP from 3 to 7 needs [C] from 4 to 5> ...(d-2) Fundamental rule, (c-l), (c-5) 

(e) Focusing on and recovering from errors: 
<needs [S] from 0 to 7, g:0, h: 1> ...(e-l) Initial needs 
<needs [VP] from 2 to 7, g:0, h:l> ...(e-2) Refining rule, (e-l), (c-2) 
<needs [NP VP] from 0 to 7, g:0, h:2> ...(e-3) Top-down rule, (e-l), (a-l) 

<needs [PP] from 4 to 7, g:0, h: 1> ...(e-4) Refining rule, (e-2), (c-3) 
<needs [P] from 4 to 5, g:0, h:l> ...(e-5) Refining rule, (e-4), (d-l) 
<needs nothing, g: 1, h:0> ...(e-6) Unknown word rule, (e-5) 

The fifth word, "an", is hypothesized to be an unknown preposition (P) 

<needs [NP] from 3 to 7, g:0, h: 1> ...(e-7) Refining rule, (e-2), (c-4) 
<needs [C] from 4 to 5, g:0, h: 1> ...(e-8) Refining rule, (e-7), (d-2) 
<needs nothing, g: 1, h:0> ...(e-9) Unknown word rule, (e-8) 

The fifth word, "an", hypothesized to be an unknown conjunctive (C) 

Figure 3. An Example of 

statistics in the table are described as follows. BU cycles 
is the number of cycles taken to exhaust the chart in the 
initial bottom-up parsing. BD cycles is the number of 
cycles required for bi-directional bottom-up parsing in the 
first phase. #solns is the number of different solutions 
and represents descriptions of possible errors. First~Last 
is the number of cycles required for error location and 
recovery to find the first / last solution. LR cycles is the 
number of cycles in the error locating and recovery phase 
required to exhaust all possibilities of sets of errors with 
the same penalty as the first solution. 

The preliminary results show that, for short sentences 
with one error, enumerating all possible minimum- 
penalty errors takes about 4 times as long as parsing the 
correct sentences. This is almost twice the speed of 
Mellish's strategy. As 75% of the process are occupied 
by the first bi-directional parsing operation, more cycles 
are needed to get the first solution with the proposed 
technique than with Mellish's strategy. 

iii 

the Error Recovery Process 

5 D i s c u s s i o n  

The second phase of the proposed technique is based on 
ordinary top-down parsing or tree search rather than chart 
parsing. As a consequence, some error location 
operations may be redundant, as Mellish pointed out. 
For example, suppose a new grammar rule, N ~ N PP 
is added to the grammar given in Figure 3. In that case, 
the following edge, located in the first phase, may cause 
a redundant error locating process, as the same search is 
triggered by (e-4). 

<N from 3 to * needs [PP] from 4 to *>. 

One way for avoiding such redundancies is to use a data 
structure that reflects just local needs. However, it is 
true that an effective error location process must take 
into account global needs. There is a tradeoff between 
simplicity and the avoidance of duplicated efforts. The 
technique proposed here employs a data structure that 



Table  1. Pre l iminary  E x p e r i m e n t a l  Resu l t s  

EITOr 

None 

Delete 
one 

wt~xl 
Add 

unknown 
word 
Add 

known 
word 

Substitute 
unknown 

wc~l 
Substitute 

known 
wtxd 

Length of 
original 

6 

12 
6 

BU cycles 

70 
114 
170 
42 

BD cycles 

132 
9 79 255 

111 
60 

12 
6 

378 
191 

#solns 

1.3 
1.4 
2.0 
6.0 
4.5 
6.2 
3.0 

First Last LR cycles 

8 24 31 
19 32 43 

43 
20 

25 
14 

57 
28 

9 99 322 3.7 25 37 46 
12 147 534 2.6 46 61 72 
6 69 221 5.7 14 25 33 

i 

9 94 4.7 24 38 55 
51 

9 

6.9 
2.7 

159 
50 

70 
14 

292 
578 
153 

12 
6 

80 
20 

9 76 239 4.2 21 34 43 
12 109 363 3.2 34 46 58 
6 51 151 3.8 9 18 27 
9 82 256 3.2 15 25 33 
12 116 384 3.8 33 58 71 

directly reflects the global needs. Mellish, on the other 
hand, utilized a structure that reflected just local needs 
and tried to put global needs into the heuristic function. 
The result, at least so far as confirmed by tests, was that 
pruning allowed the simple method to overcome the 
drawback of duplicated effort. Moreover, Mellish's 
dependency control mechanism, .introduced to maintain 
the plausibility scores, means that edges are no longer 
local. In addition, it can be expected that a standard 
graph search strategy for avoiding duplicated search is 
applicable to the technique proposed. 

Theoretical investigation is needed to confirm how 
the number of grammar rules and the length of input will 
affect the amount of computation needed. Furthermore, 
the algorithm has to be extended in order to incorporate 
the high level knowledge that comes from semantics and 
pragmatics. Stochastic information such as statistics on 
category trigrams must be useful for effective control. 
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