
Yet Another Chart-Based Technique for Parsing Ill-Formed Input

Tsuneaki Kato
NTT Information and Communication Systems Laboratories

1-2356 Take, Yokosuka-shi, Kanagawa, 238-03 JAPAN

kato@nttnly.ntt.jp

Abstract

A new chart-based technique for parsing ill-formed
input is proposed. This can process sentences
with unknown/misspelled words, omitted words
or extraneous words. This generalized parsing
strategy is, similar to Mellish's, based on an
active chart parser, and shares the many
advantages of Mellish's technique. It is based on
pure syntactic knowledge, it is independent of all
grammars, and it does not slow down the original
parsing operation if there is no ill-formedness.
However, unlike Mellish's technique, it doesn't
employ any complicated heuristic parameters.
There are two key points. First, instead of using
a unified or interleaved process for finding errors
and correcting them, we separate the initial error
detection stage from the other stages and adopt a
version of bi-directional parsing. This effectively
prunes the search space. Second, it employs
normal top-down parsing, in which each parsing
state reflects the global context, instead of top-
down chart parsing. This enables the technique to
determine the global plausibility of candidates
easily, based on an admissible A* search. The
proposed strategy could enumerate all possible
minimal-penalty solutions in just 4 times the
time taken to parse the correct sentences.

1 Introduction

It is important that natural language interface systems
have the capability of composing the globally most
plausible explanation if a given input can not be
syntactically parsed. This would be useful for handling
erroneous inputs from the user and for offsetting
grammar and lexicon insufficiency. Also, such a
capability could be applied to deal with the
ungrammatical sentences and sentence fragments that
frequently appear in spoken dialogs (Bear, Dowding and
Shriberg, 1992). Several efforts have been conducted to
achieve this objective ((Lang, 1988; Saito and Tomita,
1988), for example.) One major decision to be made in
designing this capability is whether knowledge other
than purely syntactic knowledge is to be used. Other-
than syntactic knowledge includes grammar specific
recovery rules such as recta-rules (Weishedel and
Sondheimer, 1983), semantic or pragmatic knowledge

which may depend on a particular domain (Carbonell and
Hayes, 1983) or the characteristics of the ill-formed
utterances observed in human discourse (Hindle, 1983).
Although it is obvious that the utilizing such knowledge
allows us to devise more powerful strategies, we should
first determine the effectiveness of using only syntactic
knowledge. Moreover, the result can be applied widely,
as using syntactic knowledge is a base of the most of
strategies.

One significant advance in the usage of syntactic
knowledge was contained in the technique proposed by
Mell ish (1989). It can handle not only
unknown/misspelled words, but also omitted words and
extraneous words in sentences. It can deal with such
problems, and develop plausible explanations quickly
since it utilizes the full syntactic context by using an
active chart parser (Kay, 1980; Gazdar and Mellish,
1989). One problem with his technique is that its
performance heavily depends on how the search
heuristics, which is implemented as a score calculated
from six parameters, is set. The heuristics complicates
the algorithm significantly. This must be one of reasons
why the performance of the method, as Mellish himself
noted, dropped dramatically when the input contains
multiple errors.

This paper proposes a new technique for parsing
inputs that contain simple kinds of ill-formedness. This
generalized parsing strategy is, similar to Mellish's,
based on an active chart parser, and so shares the many
advantages of Mellish's technique. It is based on pure
syntactics, it is independent of all grammars, and it does
not slow down the original parsing operation if there is
no iU-formedness. However, unlike Mellish's technique,
it doesn't employ any complicated heuristic parameters.
There are two key points. First, instead of using a
unified or interleaved process for finding errors and
correcting them, we separate the initial error detection
stage from the other stages and adopt a version of bi-
directional parsing, which has been pointed out to be a
useful strategy for fragment parsing by itself (Satta and
Stock, 1989). This effectively prunes the search space
and allows the new technique to take full account of the
right-side context. Second, it employs normal top-down
parsing, in which each parsing state reflects the global
context, instead of top-down chart parsing. This enables
the technique to determine the global plausibility of
candidates easily. The results of preliminary experiments
are encouraging. The proposed strategy could enumerate

107

all possible minimal-penalty solutions in just 4 times
the time taken to parse the correct sentences. That is, it
is almost twice as fast as Mellish's strategy.

2 Mellish's Technique And Its Problems

The basic strategy of Mellish's technique is to run a
bottom-up parser over the input and then, if this fails to
find a complete parse, to run a generalized top-down
parser over the resulting chart to hypothesize complete
parse candidates. When the input is well-formed, the
bottom-up parser, precisely speaking, a left corner parser
without top-down filtering, would generate the parse
without any overhead. Even if it failed, it is guaranteed
to find all complete constituents of all possible parses.
Reference to these constituents, enables us to avoid
repeating existing works and to exploit the full syntactic
context rather just the left-side context of error
candidates. The generalized top-down parser attempts to
find out minimal errors by refining the set of "needs"
that originates with bottom-up parsing. Each need
indicates the absence of an expected constituent. The
generalized parser hypothesizes, and so remedies an error,
when it was sufficiently focused on. Next, the parser
tries to construct a complete parse by taking account of
the hypothesis. In the case of multiple errors, the
location and recovery phases are repeated until a complete
parse is obtained.

The data structure introduced for representing
information about local needs is called the generalized
edge. It is an extension of active and inactive edges, and
is described as

< C from S to E needs CSl from Sl to e l ,
cs2 from s 2 to e 2 cs n from s n to en >

where C is category, csi are sequences of categories
(which will be shown inside square brackets), S, E, si,
and ei are positions in the input. The special symbol
"*" denotes the position that remains to be determined.
The presence of an edge of this kind in the chart indicates
that the parser is attempting to find a phrase of category
C that covers the input from position S to E but that in
order to succeed it must still satisfy all the needs listed.
Each need satisfies a sequence of categories cs i that must
be found contiguously to occupy the portion from s i to
e i. An edge with an empty need, which corresponds to
an inactive edge is represented as

< C from S to E needs nothing>.

The generalized top-down parser that uses the
generalized edge as the data structure is governed by six
rules: three for finding out errors and the other three for
recovering from the three kinds of error. The three error
locating rules are the top-down rule, the fundamental rule
and the simplification rule. The first one is also used in
the ordinary top-down chart parser, and the third one is
just for house keeping. The second rule, the fundamental

rule, directs to combine an active edge with a inactive
edge. It was extended from the ordinary rule so that
found constituents could be incorporated from either
direction. However, the constituents that can be
absorbed are limited to those in the first category
sequence; that is, one of the categories belonging to CSl.
The application of the six rules is mainly controlled by
the scores given to edges, that is, agenda control is
employed. The score of a particular edge reflects its
global plausibility and is calculated from six parameters,
one of which, for example, says that edges that arise
from the fundamental rule are preferable to those that
arise from the top-down rule.

Although Mellish's technique has a lot of advantages
such as the ability to utilize the right-side context of
errors and independence of a specific grammar, it can
create a huge number of edges, as it mainly uses the top-
down rule for finding errors. That is, refining a set of
error candidates toward a pre-terminal category by
applying only the top-down rule may create too many
alternatives. In addition, since the generalized edges
represent just local needs and don't reflect the global
needs that created them, it is hard to decide if they should
be expanded. In particular, these problems become
critical when parsing ill-formed inputs, since the top-
down rule may be applied without any anchoring; pre-
terminals can not be considered as anchors, as pre-
terminals may be freely created by error recovery rules.
This argument also applies to the start symbol, as that
symbol may be created depending the constituent
hypothesized by error recovery rules and the fundamental
rule. Mellish uses agenda control to prevent the
generation of potentially useless edges. For this
purpose, the agenda control needs complicated heuristic
scoring, which complicates the whole algorithm.
Moreover, so that the scoring reflects global plausibility,
it must employs a sort of dependency analysis, a
mechanism for the propagation of changes and an easily
reordered agenda, which clearly contradicts his original
idea in which edges must be reflected only local needs.

3 Proposed Algorithm

The technique proposed here resolves the above problems
as follows. First, some portion of the error location
process is separated from and precedes the processes that
are governed by agenda control, and is archived by using
a version of bi-directional parsing. Second, so that the
search process can be anchored by the start symbol, a
data structure is created that can represent global
plausibility. Third, in order to reduce the dependency on
the top-down rule, a rule is developed that uses two
active edges to locate errors. This process is closer to
ordinary top-down parsing than chart parsing and global
plausibility scoring is accurate and easily calculated. For
simplicity of explanation, simple CF-PSG grammar
formalism is assumed throughout this paper, although
there are obvious generalizations to other formalism such
as DCG (Pereira and Warren, 1980) or unification based
grammars (Shieber, 1986).

108

Bottom-up rule:
<C from S to E needs nothing>
C1 --> ...Csl C Cs2... where Csl is not empty (in the grammar)

<C1 from * to E 2 needs Csl from * to S , Cs2 from E to E2>
where if Cs 2 is empty then E2 ffi E else E2 =*.

Fundamental rule:
<C from S to E needs [...Csl 1, C1, Csl2...] from Sl to el >
<C1 from S1 to E1 needs nothing>

<C from S to E needs Csl 1 from Sl to S1 ,Csl2 from E1 to e 1 >
where s 1 < S1 or Sl-* , E1 < el or el -* .

Simplification rule:
<C from S to E needs

.... Csi-1 from si_ 1 to s, [] from s to s, Csi+ 1 from s to ei+l >
.

<C from S to E needs Csi-1 from si-1 to s, Csi+l from s to ei+l >

Figure

The first phase of the process is invoked after the
failure of left comer parsing. The bottom-up parsing
leaves behind all complete constituents of every possible
parse and unsatisfied active edges for all error points that
are to the immediate fight of sequences of constituents
corresponding to the RHS. Since parsing proceeds left
to fight, an active edge is generated only when an error
point exists to the fight of the found constituents. In the
first phase, bi-directional bottom-up parsing generates all
generalized edges that represent unsatisfied expectations
to the right and left of constituents. From some
perspectives, the role this phase plays is similar to that
of the covered bi-directional phase of the Picky parser
(Magerman and Weir, 1992), though the method
proposed herein does not employ stochastic information
at all. This process can be described in three rules as
shown in Figure 1. As can be seen, this is bi-directional
bottom-up parsing that uses generalized edges as the data
structure. For simplicity, the details for avoiding
duplicated edge generation have been omitted. It is worth
noting that after this process, the needs listed in each
generalized edge indicate that the expected constituents
did not exist, while, before this process, a need may exist
just because an expectation has not been checked.

The second phase finds out errors and corrects them.
The location operation proceeds by refining a need into
more precise one, and it starts from the global need that
refers to the start symbol, S, from 0 to n, where n is the
length of the given input. In the notion of generalized
edges, that need can be represented as,

<GOAL from 0 to n needs [S] from 0 to n> .

The data structure reflecting global needs directly is used
in this phase, so the left part of each generalized edge is
redundant and can be omitted. In addition, two values, g
and h, are introduced, g denotes how much cost has been

1. The Bi-Directional Parsing Rules

expended for the recovery so far, and h is the estimation
of how much cost will be needed to reach a solution.
Cost involves solution plausibility; solutions with low
plausibility have high costs. Thus, the data structure
used in this phase is,

109

<needs CSl from Sl to e l , cs2 from s2 to e2
CSn from Sn to e n, g, h > .

Here, the number of errors corrected so far is taken as g,
and the total number of categories in the needs is used as
h. As mentioned above, since the needs listed indicate
only the existence of errors as detected by the preceding
process and to be refined, the value of h is always less
than or equal to the number of the errors that must be
corrected to get a solution. That is, the best first search
using g+h as the cost functions is an admissible A*
search (Rich and Knight, 1991). Needless to say, more
sophisticated cost functions can also be used, in which,
for example, the cost depends on the kind of error.

The rules governing the second phase, which
correspond to the search state transition operators in the
context of search problems, are shown in Figure 2. The
top-down rule and the refining rule locate errors and the
other three rules are for correcting them. Most important
is the refining rule, which tries to find out errors by
using generalized edges in a top-down manner toward pre-
terminals. This reduces the frequency of using the top-
down rule and prevents an explosion in the number of
altematives.

This process starts from

<needs [S] from 0 to n, g: 0, h: 1>.

To reach the following need means to get one solution.

<needs nothing, g: _, h: 0>.

Top-down rule:
<needs [C1...Csl] from Sl to E1 g: G, h: H>
C1 --> ...RHS (in grammar)

<needs [...RHS ...Csl] form Sl to E1 g: G, h: H+(length of RHS)-I>

Refining rule:
<needs [...Csl 1, C1, Csl2...] from s 1 to e 1 g: G, h: H>
<C1 from S to E needs Cs 1 from S 1 to E1 Csn from Sn to En >

<needs Cs l l from s I to S , Csl from S1 to E1 Csn from Sn to En ,
Csl2 from E to el g: G, h: H+~(length of Csn)-l>

The result must be well-formed, that is sl < S1 or sl--* or SI=* and so on.

Garbage rule:
<needs [Cl.. .Csl] from Sl to el g: G, h: H> where C1 is a pre-terminal
<C1 from S1 to El needs nothing> where Sl < SI

<needs Csl from E1 to el g: G+(SI-Sl), h: H- l>

Unknown word rule:
<needs [CI...Csl] from Sl to el g: G, h: H> where C1 is a pre-terminal

<needs Csl from s l+ l to el g: G+I, h: H- l>
where the edge, <C1 from s 1 to s l+l needs nothing> does not exist in the chart

Empty category rule:
<needs Csl from s to s , Cs2 from s2 to e2 g: G, h: H>

<needs Cs2 from s2 to e2 g: G+(length of Csl), h: H-(length of Csl)>

Figure 2. The Error Locating and Recovery Rules

The need with the smallest value of g+h is processed
first. If two needs have the same value of g+h, the one
with the smaller h values dominates. This control
strategy guarantees to find the solution with minimal
cost first; that is, the solution with the minimum
number of recoveries.

Figure 3 shows an example of this technique in
operation. (a) shows the sample grammar adopted, (b)
shows the input to be processed, and (c) shows some of
the edges left behind after the failure of the original
bottom-up parsing. As shown in (d), the first phase
generates several edges that indicate unsatisfied
expectations to the left of found constituents. The
second phase begins with need (e-1). Among the others,
(e-2) and (e-3) are realized by applying the refining rule
and the top-down rule, respectively. Since (e-2) has the
smallest value of g+h, it takes precedence to be
expanded. The refining rule processes (e-2) and generates
(e-4) and (e-7), among others. The solution indicated by
(e-6), which says that the fifth word of the input must be
a preposition, is generated from (e-4). Another solution
indicated by (e-9), which says that the fifth word of the
input must be a conjunctive is derived from (e-7). That
the top-down rule played no role in this example was not

incidental. In reality, application of the top-down rule
may be meaningful only when all the constituents listed
in the RHS of a grammar rule contain errors. In every
other case, generalized edges derived from that rule must
have been generated already by the first phase. The
application of the top-down rule can be restricted to cases
involving unary rules, if one assumes at most one error
may exist.

4 P r e l i m i n a r y E x p e r i m e n t s

In order to evaluate the technique described above, some
preliminary experiments were conducted. The
experiments employed the same framework as used by
Mellish, and used a similar sized grammar, the small e-
free CF-PSG for a fragment of English with 141 rules
and 72 categories. Random sentences (10 for each length
considered) were generated from the grammar, and then
random occurrences of specific types of errors were
introduced into these sentences. The errors considered
were none, deletion of one word, adding one known or
unknown word, and substituting one unknown or known
word for one word of the sentence. The amount of work
done by the parser was calculated using the concept of
"cycle". The parser consumes one cycle for processing
each edge. The results are shown in Table 1. The

ii0

(a) The grammar:
S --> NP VP ...(a-l)
NP ---> NP C NP
VP ---~ V P P P

NP --~ N
VP --¢ Vt NP
PP ---> P NP ...(a-2)

NP ---> Det N
VP ---> Vi

(b) The input:
The lady bought cakes an the

0 1 2 3 4 5 6
shop

7

(c) Examples of the edges left behind:
<NP from 0 to 2 needs nothing>
<Vi from 2 to 3 needs nothing>
<NP from 3 to 4 needs nothing>
<NP from 5 to 7 needs nothing> ...(c-l)
<S from 0 to * needs [VP] from 2 to *> ...(c-2)
<VP from 2 to * needs [PP] from 4 to *> ...(c-3)
<VP from 2 to * needs [NP] from 3 to *> ...(c-4)
<NP from 3 to * needs [C NP] from 4 to *> ...(c-5)

(d) Examples edges generated in the bi-directional parsing:
<PP from * to 7 needs [P] from * to 5> ...(d-l) Bottom up rule, (c-l), (a-2)
<NP from 3 to 7 needs [C] from 4 to 5> ...(d-2) Fundamental rule, (c-l), (c-5)

(e) Focusing on and recovering from errors:
<needs [S] from 0 to 7, g:0, h: 1> ...(e-l) Initial needs
<needs [VP] from 2 to 7, g:0, h:l> ...(e-2) Refining rule, (e-l), (c-2)
<needs [NP VP] from 0 to 7, g:0, h:2> ...(e-3) Top-down rule, (e-l), (a-l)

<needs [PP] from 4 to 7, g:0, h: 1> ...(e-4) Refining rule, (e-2), (c-3)
<needs [P] from 4 to 5, g:0, h:l> ...(e-5) Refining rule, (e-4), (d-l)
<needs nothing, g: 1, h:0> ...(e-6) Unknown word rule, (e-5)

The fifth word, "an", is hypothesized to be an unknown preposition (P)

<needs [NP] from 3 to 7, g:0, h: 1> ...(e-7) Refining rule, (e-2), (c-4)
<needs [C] from 4 to 5, g:0, h: 1> ...(e-8) Refining rule, (e-7), (d-2)
<needs nothing, g: 1, h:0> ...(e-9) Unknown word rule, (e-8)

The fifth word, "an", hypothesized to be an unknown conjunctive (C)

Figure 3. An Example of

statistics in the table are described as follows. BU cycles
is the number of cycles taken to exhaust the chart in the
initial bottom-up parsing. BD cycles is the number of
cycles required for bi-directional bottom-up parsing in the
first phase. #solns is the number of different solutions
and represents descriptions of possible errors. First~Last
is the number of cycles required for error location and
recovery to find the first / last solution. LR cycles is the
number of cycles in the error locating and recovery phase
required to exhaust all possibilities of sets of errors with
the same penalty as the first solution.

The preliminary results show that, for short sentences
with one error, enumerating all possible minimum-
penalty errors takes about 4 times as long as parsing the
correct sentences. This is almost twice the speed of
Mellish's strategy. As 75% of the process are occupied
by the first bi-directional parsing operation, more cycles
are needed to get the first solution with the proposed
technique than with Mellish's strategy.

iii

the Error Recovery Process

5 D i s c u s s i o n

The second phase of the proposed technique is based on
ordinary top-down parsing or tree search rather than chart
parsing. As a consequence, some error location
operations may be redundant, as Mellish pointed out.
For example, suppose a new grammar rule, N ~ N PP
is added to the grammar given in Figure 3. In that case,
the following edge, located in the first phase, may cause
a redundant error locating process, as the same search is
triggered by (e-4).

<N from 3 to * needs [PP] from 4 to *>.

One way for avoiding such redundancies is to use a data
structure that reflects just local needs. However, it is
true that an effective error location process must take
into account global needs. There is a tradeoff between
simplicity and the avoidance of duplicated efforts. The
technique proposed here employs a data structure that

Table 1. Pre l iminary E x p e r i m e n t a l Resu l t s

EITOr

None

Delete
one

wt~xl
Add

unknown
word
Add

known
word

Substitute
unknown

wc~l
Substitute

known
wtxd

Length of
original

6

12
6

BU cycles

70
114
170
42

BD cycles

132
9 79 255

111
60

12
6

378
191

#solns

1.3
1.4
2.0
6.0
4.5
6.2
3.0

First Last LR cycles

8 24 31
19 32 43

43
20

25
14

57
28

9 99 322 3.7 25 37 46
12 147 534 2.6 46 61 72
6 69 221 5.7 14 25 33

i

9 94 4.7 24 38 55
51

9

6.9
2.7

159
50

70
14

292
578
153

12
6

80
20

9 76 239 4.2 21 34 43
12 109 363 3.2 34 46 58
6 51 151 3.8 9 18 27
9 82 256 3.2 15 25 33
12 116 384 3.8 33 58 71

directly reflects the global needs. Mellish, on the other
hand, utilized a structure that reflected just local needs
and tried to put global needs into the heuristic function.
The result, at least so far as confirmed by tests, was that
pruning allowed the simple method to overcome the
drawback of duplicated effort. Moreover, Mellish's
dependency control mechanism, .introduced to maintain
the plausibility scores, means that edges are no longer
local. In addition, it can be expected that a standard
graph search strategy for avoiding duplicated search is
applicable to the technique proposed.

Theoretical investigation is needed to confirm how
the number of grammar rules and the length of input will
affect the amount of computation needed. Furthermore,
the algorithm has to be extended in order to incorporate
the high level knowledge that comes from semantics and
pragmatics. Stochastic information such as statistics on
category trigrams must be useful for effective control.

R e f e r e n c e s

Bear, John, Dowding, John and Shriberg, Elizabeth
(1992). Integrating Multiple Knowledge Sources
for Detection and Correction of Repairs in
Human-Computer Dialog. Proceedings of 30th
ACL, 56 - 63.

Carbonell, Jaime G. and Hayes, Philip J. (1983).
Recovery Strategies for Parsing Extra
grammatical Language. JACL, 9 (3-4), 123 - 146.

Gazdar, Gerald and Mellish, Chris (1989). Natural
Language Processing in LISP. Workingham:
Addison-Wesley.

Hindle, Donald (1983). Deterministic Parsing of
Syntactic Non-fluencies. Proceedings of 21st
ACL, 123 - 128.

Kay, Martin (1980). Algorithm Schemata and Data
Structures in Syntactic Processing. Research
Report CSL-80-12 Xerox PARC.

Lang, Bernard (1988). Parsing Incomplete Sentences.
Proceedings of COLING 88, 365 - 371.

Magerman, David M. and Weir, Carl (1992). Efficiency,
Robustness and Accuracy in Picky Chart Parsing.
Proceedings of 3Oth ACL, 40 - 47.

Mellish, Chris S. (1989). Some Chart-Based Techniques
for Parsing Ill-Formed Input. Proceedings of 27th
ACL, 102- 109.

Pereira, Fernando C.N. and Warren, David, H.D. (1980).
Definite Clause Grammars for Language Analysis
- A Survey of the Formalism and a Comparison
with Augmented Transition Networks. Artificial
Intelligence, 13 (3), 231 - 278.

Rich, Elaine and Knight, Kevin (1991). Artificial
Intelligence (2nd ed.). New York: McGraw-Hill.

Saito, Hiroaki and Tomita, Masaru (1988). Parsing
Noisy Sentences. Proceedings of COLING 88,
561 - 566.

Satta, Giorgio and Stock, Oliviero (1989). Formal
Properties and Implementation of Bidirectional
Charts. Proceedings oflJCAl 89, 1480 - 1485.

Shieber, Stuart M. (1986). An Introduction to
Unification-Based Approaches to Grammar.
Stanford: CSLI Lecture Notes 4.

Weishedel, Ralph M. and Sondheimer, Norman K.
(1983). Meta-Rules as a Basis for Processing Ill-
Formed Input. JACL, 9 (3-4), 161 - 177.

112

