
R e a l - T i m e Spoken Language Trans la t ion
Us ing A s s o c i a t i v e P r o c e s s o r s

Kozo Oi, Eiichiro Sumita, Osamu Furuse, Hitoshi Iida and Tetsuya Higuchi~

ATR Interpreting Telecommunications Research Laboratories
2-2 Hikaridai, Seika, Souraku, Kyoto 619-02, JAPAN

{ o i, sumit a, furus e, i ida} @it i. atr. co. j p

~Electrotechnical Laboratory
1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan

higuchi©et i. go. jp

Abstract

This paper proposes a model using associative
processors (APs) for real-time spoken language
translation. Spoken language translation re-
quires (1) an accurate translation and (2) a real-
time response. We have already proposed a
model, TDMT (Transfer-Driven Machine Trans-
lation), that translates a sentence utilizing ex-
amples effectively and performs accurate struc-
tural disambiguation and target word selection.
This paper will concentrate on the second re-
quirement. In TDMT, example-retrieval (ER),
i.e., retrieving examples most similar to an in-
put expression, is the most dominant part of the
total processing time. Our study has concluded
that we only need to implement the ER for ex-
pressions including a frequent word on APs. Ex-
perimental results show that the ER can be dras-
tically speeded up. Moreover, a study on com-
munications between APs demonstrates the scal-
ability against vocabulary size by extrapolation.
Thus, our model, TDMT on APs, meets the vital
requirements of spoken language translation.

1 Introduction
Research on speech translation that began in the
mid-1980s has been challenging. Such research has
resulted in several prototype systems (Morimoto et
al., 1993; Kitano, 1991; Waibel et al., 1991). Speech
translation consists of a sequence of processes, i.e.,
speech recognition, spoken language translation and
speech synthesis. Each process must be accelerated
in order to achieve real-time response. This pa-
per focuses on the second process, spoken language
translation, which requires (1) an accurate trans-
lation and (2) a real-time response. We have al-
ready proposed a model that utilizes examples and
translates a sentence by combining pieces of trans-
fer knowledge, i.e., target language expressions that
correspond to source language expressions that cover
the sentence jointly. The model is called Transfer-
Driven Machine Translation (TDMT) (Furuse and

Iida, 1992; Furuse et al., 1994) (see subsection 2.1 for
details). A prototype system of TDMT which trans-
lates a Japanese spoken sentence into English, has
performed accurate structural disambiguation and
target word selection 1.

This paper will focus on the second requirement.
First, we will outline TDMT and analyze its com-

putational cost. Second, we will describe the con-
figuration, experimental results and scalability of
TDMT on associative processors (APs). Finally, we
will touch on related works and conclude.

2 TDMT and its Cost Analysis
2.1 O u t l i n e o f T D M T

In TDMT, transfer knowledge is the primary knowl-
edge, which is described by an example-based frame-
work (Nagao, 1984). A piece of transfer knowledge
describes the correspondence between source lan-
guage expressions (SEs) and target language expres-
sions (TEs) as follows, to preserve the translational
equivalence:

S E => TEl (Era, E12,...),
:

TE, (E,1, E,2,...)
Eij indicates the j - th example of TEi. For exam-

ple, the transfer knowledge for source expression "X
no Y" is described as follows~:
X n o Y =>

Y' o f X ' ((ronbun[paper],daimoku[title]),...),
Y' for X ' ((hoteru[hotel],yoyaku[reservation]),...),
Y' in X ' ((Kyouto[Kyoto],kaigi[conference]),...),

1 T h e t r a n s l a t i o n s u c c e s s r a t e for 825 s e n t e n c e s u s e d as
learning data in a conference registration task, is about
98%. The translation success rate for 1,056 sentences,
amassed through arbitary inputs in the same domain, is
about 71~. The translation success rate increases as the
number of examples increases.

2X and Y are variables for Japanese words and X I
and Y~ are the English translations of X and Y, respec-
tively; "no" is an adnomina] particle that corresponds to
such English prepositions as "of," "for," "in," and so on.

101

T D M T utilizes the semantic distance calculation
proposed by Sumita and Iida (Sumita and Iida,
1992). Let us suppose that an input, I, and each
example, Eij, consist o f t words as follows:

I = (I 1 , ' " , I ~)

E~ = (E ~ I , . . . , E ~ ,)

Then, the distance between I and Eij is calculated
as follows:

d(I, Eij) = d ((X l , . . . , I ,) , (E i j l , . . . ,E i j ,))
t

= Z ×
k = l

The semantic distance d(Ik, Eijk) between words
is reduced to the distance between concepts in a the-
saurus (see subsection 3.2 for details). The weight
Wk is the degree to which the word influences the
selection of the translation 3.

The flow of selecting the most plausible T E is as
follows:

(1) The distance from the input is calculated for all
examples.

(2) The example with the minimum distance from
the input is chosen.

(3) The corresponding T E of the chosen example is
extracted.

Processes (1) and (2) are called ER (Example-
Retrieval) hereafter.

Now, we can explain the top-level T D M T algo-
rithm:
(a) Apply the transfer knowledge to an input sen-

tence and produce possible source structures in
which SEs of the transfer knowledge are com-
bined.

(b) Transfer all SEs of the source structures to the
most appropriate TEs by the processes (1)-(3)
above, to produce the target structures.

(c) Select the most appropriate target structure
from among all target structures on the basis
of the total semantic distance.

For example, the source structure of the following
Japanese sentence is represented by a combination
of SEs with forms such as (X no Y), (X ni Y), (X
de Y), (X ga Y) and so on:

dainihan no annaisyo n|
{ second version, particle, announcement, particle,

kaigi de happyou-sareru ronbun
conference, particle, be presented, paper,

no daimoku ga notte-orimasu
particle, title, particle, be written }

2.2 T h e Ana ly s i s o f C o m p u t a t i o n a l Cos t

Here, we briefly investigate the T D M T processing
time on sequential machines.

For 746 test sentences (average sentence length:
about 10 words) comprising representative Japanese

3In the TDMT prototype, Wk is 1/t.

1--

Rate
(%)

Other
[] processing

time

Example-
, r e t r i e v a l

time

0 -2 2~4 4~6 6~88~1010 ~
Translation time Iseconds~

in sequential TDMT "
Figure 1: Rates for ER time in sequential T D M T

sentences 4 in a conference registration task, the av-
erage translation time per sentence is about 3.53
seconds in the T D M T prototype on a sequential
machine (SPARCstation2). ER is embedded as a
subroutine call and is called many times during the
translation of one sentence. The average number of
ER calls per sentence is about 9.5. Figure 1 shows
rates for the ER time and other processing time.
The longer the total processing time, the higher the
rate for the ER time; the rate rises from about 43%
to about 85%. The average rate is 71%. Thus, ER is
the most dominant part of the total processing time.

In the ATR dialogue database (Ehara et al., 1990),
which contains about 13,000 sentences for a confer-
ence registration task, the average sentence length is
about 14 words. We therefore assume in the remain-
der of this subsection and subsection 3.5 that the av-
erage sentence length of a Japanese spoken sentence
is 14 words, and use statistics for 14-word sentences
when calculating the times of a large-vocabulary
T D M T system. The expected translation time of
each 14-word sentence is about 5.95 seconds, which
is much larger than the utterance time. The ex-
pected number of ER calls for each 14-word sen-
tence is about 15. The expected time and rate for
ER of the 14-word sentence are about 4.32 seconds
and about 73%, respectively.

Here, we will consider whether a large-vocabulary
T D M T system can attain a real-time response.
In the T D M T prototype, the vocabulary size and
the number of examples, N, are about 1,500 and
12,500, respectively. N depends on the vocab-
ulary size. The vocabulary size of the average
commercially-available machine translation system
is about 100,000. Thus, in the large-vocabulary sys-

4We have 825 test sentences as described in footnote 1
in section 1. These sentences cover basic expressions that
are used in Japanese ability tests conducted by the gov-
ernment and Japanese education courses used by many
schools for foreigners (Uratani et al., 1992). The sen-
tences were reviewed by Japanese linguists. In the ex-
periments in this paper, we used 746 sentences excluding
sentences translated by exact-match.

102

tern, N is about 830,000 (-~ 12,500 × 100,000/1,500)
in direct proportion to the vocabulary size. For the
sake of convenience, we assume N = 1,000,000.
The ER time is nearly proportional to N due to
process (1) described in subsection 2.1. Therefore,
the expected translation time of a 14-word sentence
in the large-vocabulary system using a SPARCsta-
tion2 (28.5 MIPS) is about 347.2 (=[ER time]+[other
processing timeS]=[4.32 x 1,000,000/12,500]+[5.95 -
4.32]=345.6+1.63) seconds. ER consumes 99.5% of
the translation time.

A 4,000 MIPS sequential machine will be avail-
able in 10 years, since MIPS is increasing at a rate
of about 35 % per year; we already have a 200
MIPS machine (i.e. DEC alpha/7000). The trans-
lation time of the large-vocabulary system with the
4,000 MIPS machine is expected to be about 2.474
(~_ 347.2 x 28.5/4,000) seconds. Of the time, 2.462
(_~ 345.6 x 28.5/4,000) seconds will be for ER. There-
fore, although the 1500-word TDMT prototype will
run quickly on the 4,000 MIPS machine, sequential
implementation will not be scalable, in other words,
the translation time will still be insufficient for real-
time application. Therefore, we have decided to uti-
lize the parallelism of associative processors.

Careful analysis of the computational cost in the
sequential TDMT prototype has revealed that the
ER for the top 10 SEs (source language expressions)
accounts for nearly 96% of the entire ER time. The
expected number of ER calls for the top 10 SEs of
each 14-word sentence is about 6. Table 1 shows
rates of the ER time against each SE in the trans-
fer knowledge. Function words, such as "wa", "no",
"o", "ni" and "ga", in the SEs are often used in
Japanese sentences. They are polysemous, thus,
their translations are complicated. For that rea-
son, the number of examples associated with these
SEs is very large. In sum, the computational cost
of retrieving examples including function words is
proportional to the square of the frequency of the
function words. In an English-to-Japanese version
of TDMT, the number of examples associated with
the SEs, which include function words such as "by",
"to" and "of", is very large as well.

With this rationale, we decided to parallelize ER
for the top 10 SEs of the Japanese-to-English trans-
fer knowledge.

Table 1: Rates of ER time against each SE

SE
X wa Y
X no Y
X o Y
X ni Y
x g.a Y

Rate(%)
25.20
20.60
19.61
11.13
8.90

Accumulative(%)
25.20
45.80
65.41
76.54
85.44

5This time does not depend on N.

3 T D M T Using Assoc iat ive
Processors

3.1 E R on Associat ive Processors (APs)

As described in the previous subsection, parallelizing
ER is inevitable but promising. Preliminary experi-
ments of ER on a massively parallel associative pro-
cessor IXM2 (Higuchi et al., 1991a; Higuchi et al.,
1991b) have been successful (Sumita et al., 1993).
The IXM2 is the first massively parallel associative
processor that clearly demonstrates the computing
power of a large Associative Memory (AM). The AM
not only features storage operations but also logical
operations such as retrieving by content. Parallel
search and parallel write are particularly important
operations. The IXM2 consists of associative pro-
cessors (APs) and communication processors. Each
AP has an AM of 4K words of 40 bits, plus an IMS
T801 Transputer (25 Mttz).

3.2 S e m a n t i c D i s t a n c e C a l c u l a t i o n o n A P s

As described in subsection 2.1, the semantic distance
between words is reduced to the distance between
concepts in a thesaurus. The distance between con-
cepts is determined according to their positions in
the thesaurus hierarchy. The distance varies from 0
to 1. When the thesaurus is (n + 1) layered, (k/n)
is connected to the classes in the k-th layer from the
bottom (0 _< k _~ n). In Figure 2, n is 3, k is from
0 to 3, and the distance d is 0/3 (--0), 1/3, 2/3 and
3/3 (=1) from the bottom.

The semantic distance is calculated based on the
thesaurus code, which clearly represents the the-
saurus hierarchy, as in Table 2, instead of travers-
ing the hierarchy. Our n is 3 and the width of each
layer is 10. Thus, each word is assigned a three-
digit decimal code of the concept to which the word
corresponds.

Here, we briefly introduce the semantic distance
calculation on an AM (Associative Memory) refer-
ring to Figure 3. The input data is 344 which is the

S

"Wl " "W2" "W3" "W4"
"

thesaurus root

Figure 2: Thesaurus (portion) and distance

103

Table 2: Semantic distance by thesaurus code.
The input code and example code are CI =
CI1CI2CI3, CE = CE1CE2CE3.

Condition Example
CIICI2CI3 = CEICE2CE3 347 , 347
CI1CI2 = CEaCE2,CI3 # CE3 347 , 346
CI1 = CEI, CA # CE2 34 7 ,3 3 7
CI1 # CE~ 347, 247

Dist.
0

1/3
2/3

1

Thesaurus code

I I (~ ' t ~ : ,] Input data

ddress

uchiawasc
[meeting]

i Mark
teisha / v

[stopping] / J 3 1 6
kaigi / . 3 4 4 0 2

[conferen~

....... i i i

J i i
Associative Memory

Figure 3: Semantic distance calculation on an Asso-
ciative Memory

thesaurus code of the word "uchiawase[meeting]".
Each code (316, 344) of the examples such as
"teisha[stopping]", "kaigi[conference]", and so on is
stored in each word of the AM. The algorithm for
searching for examples whose distance from the in-
put is 0, is as follows6:
(I) Give a command that searches for the words

whose three-digit code matches the input. (The
search is performed on all words simultaneously
and matched words are marked.)

(II) Get the addresses of the matched words one by
one and add the distance, 0, to the variable that
corresponds to each address.

The search in process (I) is done only by the AM
and causes the acceleration of ER. Process (II) is
done by a transputer and is a sequential process.

3.3 C o n f i g u r a t i o n of T D M T Using A P s

According to the performance analysis in subsection
2.2, we have implemented the ER of the top 10 SEs.

Figure 4 shows a TDMT configuration using APs
in which the ER of the top 10 SEs are imple-
mented. The 10 APs (AP1 ,AP2 , " . ,AP10) and
the transputer (TP) directly connected to the host
machine (SPARCstation2) are connected in a tree
configuration 7.

SAn algorithm that searches for examples whose dis-
tance from the input is 1/3, 2/3 or 3/3, is similar.

7The tree is 3-array because the transputer has four
connectors. The TDMT main program is described with
Lisp language and is executed on the host machine. The
ER routine is programmed with Occam2 language, which
is called by the main program and runs on the TP and

Transputer~
(TP) J

Figure 4: Configuration of TDMT using 10 APs

The algorithm for ER in the TDMT using APs is
as follows:

(i) Get input data and send the input data from
the host to TP.

(ii) Distribute the input data to all APs.
(iii) Each AP carries out ER, and gets the minimum

distance and the example number whose dis-
tance is minimum.

(iv) Each AP and the TP receive the data from the
lower APs (if they exist), merge them and their
own result, and send the merged result upward.

With the configuration shown in Figure 4, we
studied two different methods of storing examples.
The two methods of storing examples are as follows:
H o m o - l o a d i n g (H M) Examples associated with

one SE are stored in one AP. That is, each AP
is loaded with examples of the same SE.

H e t e r o - l o a d i n g (H T) Examples associated with
one SE are divided equally and stored in 10
APs. That is, each AP is loaded with exam-
ples of 10 different SEs.

3.4 E x p e r i m e n t a l R e s u l t s

Figure 5 plots the speedup of ER for TDMT using
APs over sequential TDMT, with the two methods.
It can be seen that the speedup for the HT method
is greater than that for the HM method, partly be-
cause the sequential part of ER is proportional to the
example number in question. With the HT method,

30 I I I | I I

2 5 - HT []

20 ~

m lO

5
0 I I I I I I

0-2 2-4 4-6 6-8 8-10 10-
Translation time in sequential TDMT (seconds)

Figure 5: Speedup of ER in TDMT using APs over
sequential TDMT

on transputers in the APs.

104

the average speedup is about 16.4 (=[the average time
per sentence in the sequential TDMT]/[the average time
per sentence in the HT method]~ 2489.7/152.2(msec.)).
For the 14-word sentences, the average speedup is
about 20.8 (2 4324.7/208.0(msec.)) and the ER time
for the top 10 SEs is about 85.4 milliseconds out of
the total 208.0 milliseconds.

Figure 6 shows a screen giving a comparison be-
tween T D M T using APs and sequential TDMT.

FIle(F) Translate(T) Display(D)

Sentence Number]....8

Input Sentence : : ~ J ~ " ~ ' ~ $ ~ U ' ~ T ~ ~,

Trat~lation Result P ~ ~ . ~ th the ~.!.strat!gn. for~

~ r a l J

Sentence ~mber i 20

Input Sentence [~ : : ! ~ ' C ' ~ ' ~ ... ii'iiiii"iiiiiiii"

Translation R e s u l t ~

Figure 6: A comparison of T D M T using APs and se-
quential T D M T - - This is a snapshot of a race between
two machines. The sentence numbers and run times cor-
respond to sentences that have been translated. The
average times cover all sentences that have been trans-
lated.

3.5 Sea lab i l i t y

In this subsection, we consider the scalability of
TDMT using APs in the HT method. Here, we
will estimate the ER time using 1,000,000 examples
which are necessary for a large-vocabulary T D M T
system (see subsection 2.2).

Assuming that the number of examples in each
AP is the same as that in the experiment, 800 (=
1,000,000/12,500) APs are needed to store 1,000,000
examples. Figure 7 shows 800 APs in a tree struc-
ture (~L=I 3 ~ _> 800; L(minimum)=6 layers). In the
remainder of this subsection, we will use the statis-
tics (time, etc.) for the 14-word s sentences.

The translation time is divided into the ER time
on APs and the processing time on the host machine.
The former is divided into the computing time on
each AP and the communication time between APs.

The ER time on APs in the experiment is about
85.4 milliseconds as described in subsection 3.4. The
computing time per sentence on each AP is the same
as that in the experiment and is approximately 84.1
milliseconds out of the 85.4 milliseconds. The com-
munication time between APs is vital and increases

SThis is the average sentence length in the ATR dia-
logue database. See subsection 2.2.

•Transputer] ~machinel ~ 0 : AP
J I ~_ (Associative

~ ~ ~"~rocessor)

/iViV P'../iVi Vi"../i Vi",.

Figure 7: Configuration of large-vocabulary T D M T
using 800 APs

as the number of APs increases. There are two kinds
of communication processes: distribution of input
data 9 and collection of the resulting data of ER 1°.

The input data distribution time is the sum of
distribution times TP--* AP1, AP1 --* AP2, . . ' ,
AP4--~AP5 and APs--*AP6, that is, 6 multiplied by
the distribution time between two APs that are di-
rectly connected (see Figure 7), because a transputer
can send the data to the other transputers directly
connected in parallel (e.g., APs--*APs, A P ~ A P 7 ,
APs--+APs). The average number of ER calls is
about 6 and the average distribution time between
directly-connected APs is about 0.05 milliseconds.
Therefore, the total input data distribution time per
sentence in the configuration of Figure 7 is nearly 1.8
(= 0.05 x 6 × 6) milliseconds.

The time required to collect the resulting data
is the sum of the processing times in process (iv),
which is explained in subsection 3.3, at the TP,
APt , " - . ,AP4 and APs, illustrated in Figure 7. It
takes about 0.04 milliseconds, on average, for each
AP to receive the resulting data from the lower
APs and it takes about 0.02 milliseconds, on av-
erage, for the AP to merge the minimum distance
and the example numbers. Therefore, it is ex-
pected that the total collection time is about 2.2
(= (0.04 + 0.02) × 6 × 6) milliseconds.

Thus, the total communication time is about 4.0
(= 1.8 + 2.2) milliseconds. Consequently, the pro-
cessing time on APs is about 88.1 (= 84.1 +4.0) mil-
liseconds. This is 3,920 (2 345.6/0.0881) times faster
than the SPARCstation2 n . It is clear then that the
communication has little impact on the scalability
because it is controlled by the tree depth and small
coefficient.

Therefore, the T D M T using APs becomes more
scalable as the number of examples increases and
can attain a real-time response.

9Process (ii) described in subsection 3.3.
1°Process (iv) described in subsection 3.3.
//See the data described in subsection 2.2.

105

4 R e l a t e d w o r k s

Up to now, some systems using a massively par-
allel machine in the field of natural language pro-
cessing, such as a parsing system (Kitano and
Higuchi, 1991b) and translation systems, e.g., Dm-
SNAP (Kitano et al., 1991), ASTRAL (Kitano and
Higuchi, 1991a), MBT3n (Sato, 1993), have been
proposed. They have demonstrated good perfor-
mance; nonetheless, they differ from our proposal.
For the first three systems, their domain is much
smaller than our domain and they do not perform
structural disambiguation or target word selection
based on the semantic distance between an input
expression and each example. For the last system,
it translates technical terms i.e. noun phrases, but
not sentences.

5 C o n c l u s i o n

This paper has proposed TDMT (Transfer-Driven
Machine Translation) on APs (Associative Proces-
sors) for real-time spoken language translation. In
TDMT, a sentence is translated by combining pieces
of transfer knowledge that are associated with ex-
amples, i.e., source word sequences. We showed that
the ER (example-retrieval) for source expressions in-
cluding a frequent word, such as a function word,
are predominant and are drastically speeded up us-
ing APs. That the TDMT using APs is scalable
against vocabulary size has also been confirmed by
extrapolation, i.e., a 10-AP sustained performance
to an 800-AP expected performance, through analy-
sis on communications between APs. Consequently,
the TDMT can achieve real-time performance even
with a large-vocabulary system. In addition, as our
previous papers have shown, the TDMT achieves
accurate structural disambiguation and target word
selection. Thus, our model, TDMT on APs, meets
the vital requirements for real-time spoken language
translation.

R e f e r e n c e s

Terumasa Ehara, Kentaro Ogura, and Tsuyoshi Mo-
rimoto. 1990. ATR Dialogue Database. In Proc.
of ICSLP'90, pages 1093-1096, November.

Osamu Furuse and Hitoshi Iida. 1992. Cooperation
Between Transfer and Analysis in Example-Based
Framework. In Proc. of COLING'92, pages 645-
651, July.

Osamu Furuse, Eiichiro Sumita, and tIitoshi Iida.
1994. Transfer Driven Machine Translation Uti-
lizing Empirical Knowledge. Transactions of In-
formation Processing Society of Japan, 35(3):414-
425, March.

Tetsuya Higuchi, Tatsumi Furuya, Kenichi Handa,
Naoto Takahashi, I-Iiroyasu Nishiyama, and Akio
Kokubu. 1991a. IXM2 : A Parallel Associative

Processor. In Proc. of the 18th International Sym-
posium on Computer Architecture, May.

Tetsuya Higuchi, Hiroaki Kitano, Tatsumi Furuya,
Ken-ichi I-Ianda, Naoto Takahashi, and Akio
Kokubu. 1991b. IXM2 : A Parallel Associative
Processor for Knowledge Processing. In Proc. of
AAAI'91, pages 296-303, July.

ttiroaki Kitano and Tetsuya Higuchi. 1991a. High
Performance Memory-Based Translation on IXM2
Massively Parallel Associative Memory Processor.
In Proc. of AAAI'91, pages 149-154, July.

Hiroaki Kitano and Tetsuya Higuchi. 1991b. Mas-
sively Parallel Memory-Based Parsing. In Proc.
of IJCAI'91, pages 918-924.

Hiroaki Kitano, Dan Moldovan, and Seungho Cha.
1991. High Performance Natural Language Pro-
cessing on Semantic Network Array Processor. In
Proc. of IJCAl'91, pages 911-917.

Hiroaki Kitano. 1991. ¢DM-Dialog: An Experi-
mental Speech-to-Speech Dialog Translation Sys-
tem. IEEE Computer, 24(6):36-50, June.

Tsuyoshi Morimoto, Toshiyuki Takezawa, Fumi-
hiro Yato, Shigeki Sagayama, Toshihisa Tashiro,
Masaaki Nagata, and Akira Kurematsu. 1993.
ATR's Speech Translation System: ASURA. In
Proc. of EUROSPEECH'93, pages 1291-1294,
September.

Makoto Nagao. 1984. A Framework of a Mechani-
cal Translation between Japanese and English by
Analogy Principle. In A. Elithorn and R. Banerji,
editors, Artificial and Human Intelligence, pages
173-180. North-Holland.

Satoshi Sato. 1993. MIMD Implementation of
MBT3. In Proc. of the Second International
Workshop on Parallel Processing for Artificial In-
telligence, pages 28-35. IJCAI'93, August.

Eiichiro Sumita and Hitoshi Iida. 1992. Example-
Based Transfer of Japanese Adnominal Particles
into English. IEICE TRANS. INF. 8J SYST.,
E75-D(4):585-594, April.

Eiichiro Sumita, Kozo Oi, Osamu Furuse, Hitoshi
Iida, Tetsuya Higuchi, Naoto Takahashi, and I-Ii-
roaki Kitano. 1993. Example-Based Machine
Translation on Massively Parallel Processors. In
Proc. of IJCAI'93, pages 1283-1288, August.

Noriyoshi Uratani, Masami Suzuki, Masaaki Na-
gata, Tsuyoshi Morimoto, Yukinori Takubo,
Toshiyuki Sadanobu, and Hajime Narita. 1992. A
Function Evaluation Method for Analysis System
of Goal-Directed Dialogue. In IEICE Technical
Report, NLC92-10, July.

Alex Waibel, Ajay N. Jain, Arthur E. McNair, Hi-
roaki Saito, Alexander G. Hauptmann, and Joe
Tebelskis. 1991. JANUS: A Speech-to-speech
Translation Using Connectionist and Symbolic
Processing Strategies. In Proc. of ICASSP'91,
pages 793-796, May.

106

