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A b s t r a c t  

Many of the kinds of language model used 
in speech understanding suffer from imper- 
fect modeling of intra-sentential contextual 
influences. I argue that  this problem can be 
addressed by clustering the sentences in a 
training corpus automatically into subcor- 
pora on the criterion of entropy reduction, 
and calculating separate language model 
parameters for each cluster. This kind of 
clustering offers a way to represent impor- 
tant  contextual effects and can therefore 
significantly improve the performance of a 
model. It also offers a reasonably auto- 
matic means to gather evidence on whether 
a more complex, context-sensitive model 
using the same general kind of linguistic in- 
formation is likely to reward the effort that  
would be required to develop it: if cluster- 
ing improves the performance of a model, 
this proves the existence of further context 
dependencies, not exploited by the unclus- 
tered model. As evidence for these claims, I 
present results showing that  clustering im- 
proves some models but not others for the 
ATIS domain. These results are consistent 
with other findings for such models, sug- 
gesting that  the existence or otherwise of 
an improvement brought about by cluster- 
ing is indeed a good pointer to whether it 
is worth developing further the unclustered 
model. 

1 I n t r o d u c t i o n  

In speech recognition and understanding systems, 
many kinds of language model may be used to choose 
between the word and sentence hypotheses for which 
there is evidence in the acoustic data. Some words, 
word sequences, syntactic constructions and seman- 
tic structures are more likely to occur than others, 
and the presence of more likely objects in a sen- 
tence hypothesis is evidence for the correctness of 
that  hypothesis. Evidence from different knowledge 

s o u r c e s  c a n  be combined in an a t tempt  to optimize 
the selection of correct hypotheses; see e.g. Alshawi 
a n d  Carter (1994); Rayner et al (1994); Rosenfeld 
(1994). 

Many of the knowledge sources used for this pur- 
pose score a sentence hypothesis by calculating a 
simple, typically linear, combination of scores asso- 
ciated with objects, such as N-grams and grammar  
rules, that  characterize the hypothesis or its pre- 
ferred linguistic analysis. When these scores are 
viewed as log probabilities, taking a linear sum corre- 
sponds to making an independence assumption that  
is known to be at best only approximately true, and 
that  may give rise to inaccuracies that  reduce the 
effectiveness of the knowledge source. 

The most obvious way to make a knowledge source 
more accurate is to increase the amount  of structure 
or context that  it takes account of. For example, 
a bigram model may be replaced by a t r igram one, 
and the fact that  dependencies exist among the like- 
lihoods of occurrence of grammar  rules at different 
locations in a parse tree can be modeled by associat- 
ing probabilities with states in a parsing table rather 
than simply with the rules themselves (Briscoe and 
Carroll, 1993). 

However, such remedies have their drawbacks. 
Firstly, even when the context is extended, some im- 
portant  influences may still not be modeled. For ex- 
ample, dependencies between words exist at separa- 
tions greater than those allowed for by trigrams (for 
which long-distance N-grams [Jelinek et al, 1991] are 
a partial remedy), and associating scores with pars- 
ing table states may not model all the important  
correlations between grammar  rules. Secondly, ex- 
tending the model may greatly increase the amount  
of training data  required if sparseness problems are 
to be kept under control, and additional data  may 
be unavailable or expensive to collect. Thirdly, one 
cannot always know in advance of doing the work 
whether extending a model in a particular direction 
will, in practice, improve results. If it turns out not 
to, considerable ingenuity and effort may have been 
wasted. 

In this paper, I argue for a general method for 
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extending the context-sensitivity of any knowledge 
source that  calculates sentence hypothesis scores 
as linear combinations of scores for objects. The 
method,  which is related to that  of Iyer, Osten- 
dorf and Rohlicek (1994), involves clustering the 
sentences in the training corpus into a number of 
subcorpora, each predicting a different probability 
distribution for linguistic objects. An utterance hy- 
pothesis encountered at run time is then treated as 
if it had been selected from the subpopulation of 
sentences represented by one of these subcorpora. 
This technique addresses as follows the three draw- 
backs just  alluded to. Firstly, it is able to capture 
the most impor tant  sentence-internal contextual ef- 
fects regardless of the complexity of the probabilis- 
tic dependencies between the objects involved. Sec- 
ondly, it makes only modest additional demands on 
training data. Thirdly, it can be applied in a stan- 
dard way across knowledge sources for very different 
kinds of object, and if it does improve on the unclus- 
tered model this constitutes proof that  additional, as 
yet unexploited relationships exist between linguis- 
tic objects of the type the model is based on, and 
that  therefore it is worth looking for a more specific, 
more powerful way to model them. 

The use of corpus clustering often does not boost 
the power of the knowledge source as much as a spe- 
cific hand-coded extension. For example, a clustered 
bigram model will probably not be as powerful as a 
tr igram model. However, clustering can have two 
impor tant  uses. One is that  it can provide some 
improvement to a model even in the absence of the 
additional (human or computational)  resources re- 
quired by a hand-coded extension. The other use is 
that  the existence or otherwise of an improvement 
brought about by clustering can be a good indica- 
tor of whether additional performance can in fact be 
gained by extending the model by hand without fur- 
ther data  collection, with the possibly considerable 
additional effort that  extension would entail. And, 
of course, there is no reason why clustering should 
not, where it gives an advantage, also be used in 
conjunction with extension by hand to produce yet 
further improvements.  

As evidence for these claims, I present experimen- 
tal results showing how, for a particular task and 
training corpus, clustering produces a sizeable im- 
provement in unigram- and bigram-based models, 
but  not in trigram-based ones; this is consistent with 
experience in the speech understanding community 
that  while moving from bigrams to trigrams usually 
produces a definite payoff, a move from trigrams to 
4-grams yields less clear benefits for the domain in 
question. I also show that ,  for the same task and 
corpus, clustering produces improvements when sen- 
tences are assessed not according to the words they 
contain but according to the syntax rules used in 
their best parse. This work thus goes beyond that  
of Iyer et al by focusing on the methodological im- 

portance of corpus clustering, rather than just  its 
usefulness in improving overall sys temperformance,  
and by exploring in detail the way its effectiveness 
varies along the dimensions of language model type, 
language model complexity, and number of clusters 
used. It also differs from Iyer et al's work by clus- 
tering at the utterance rather than the paragraph 
level, and by using a training corpus of thousands, 
rather than millions, of sentences; in many speech 
applications, available training data  is likely to be 
quite limited, and may not always be chunked into 
paragraphs. 

2 Cluster-based Language Modeling 
Most other work on clustering for language model- 
ing (e.g. Pereira, Tishby and Lee, 1993; Ney, Es- 
sen and Kneser, 1994) has addressed the problem 
of data sparseness by clustering words into classes 
which are then used to predict smoothed probabil- 
ities of occurrence for events which may seldom or 
never have been observed during training. Thus con- 
ceptually at least, their processes are agglomerative: 
a large initial set of words is clumped into a smaller 
number of clusters. The approach described here is 
quite different. Firstly, it involves clustering whole 
sentences, not words. Secondly, its aim is not to 
tackle data  sparseness by grouping a large number 
of objects into a smaller number of classes, but  to in- 
crease the precision of the model by dividing a single 
object (the training corpus) into some larger num- 
ber of sub-objects (the clusters of sentences). There 
is no reason why clustering sentences for prediction 
should not be combined with clustering words to re- 
duce sparseness; the two operations are orthogonal. 

Our type of clustering, then, is based on the as- 
sumption that  the utterances to be modeled, as sam- 
pled in a training corpus, fall more or less natural ly 
into some number of clusters so that  words or other 
objects associated with utterances have probabil- 
ity distributions that  differ between clusters. Thus 
rather than estimating the relative likelihood of an 
utterance interpretation simply by combining fixed 
probabilities associated with its various characteris- 
tics, we view these probabilities as conditioned by 
the initial choice of a cluster or subpopulation from 
which the utterance is to be drawn. In both cases, 
many independence assumptions that  are known to 
be at best reasonable approximations will have to 
be made. However, if the clustering reflects signif- 
icant dependencies, some of the worst inaccuracies 
of these assumptions may be reduced, and system 
performance may improve as a result. 

Some domains and tasks lend themselves more ob- 
viously to a clustering approach than others. An 
obvious and trivial case where clustering is likely to 
be useful is a speech understander for use by trav- 
elers in an international airport; here, an ut terance 
will typically consist of words from one, and only 
one, natural language, and clusters for different lan- 
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guages will be totally dissimilar. However, clustering 
may also give us significant leverage in monolingual 
cases. If the dialogue handling capabilities of a sys- 
tem are relatively rigid, the system may only ask the 
user a small number of different questions (modulo 
the filling of slots with different values). For ex- 
ample, the CLARE interface to the Autoroute PC 
package (Lewin et al, 1993) has a fairly simple dia- 
logue model which allows it to ask only a dozen or 
so different types of question of the user. A Wizard 
of Oz exercise, carried out to collect data  for this 
task, was conducted in a similarly rigid way; thus it 
is straightforward to divide the training corpus into 
clusters, one cluster for utterances immediately fol- 
lowing each kind of system query. Other corpora, 
such as Wall Street Journal articles, might also be 
expected to fall naturally into clusters for different 
subject areas, and indeed Iyer el al (1994) report 
positive results from corpus clustering here. 

For some applications, though, there is no obvious 
extrinsic basis for dividing the training corpus into 
clusters. The ARPA air travel information (ATIS) 
domain is an example. Questions can mention con- 
cepts such as places, times, dates, fares, meals, air- 
lines, plane types and ground transportation, but 
most utterances mention several of these, and there 
are few obvious restrictions on which of them can oc- 
cur in the same utterance. Dialogues between a hu- 
man and an ATIS database access system are there- 
fore likely to be less clearly structured than in the 
Autoroute case. 

However, there is no reason why automatic clus- 
tering should not be a t tempted even when there 
are no grounds to expect clearly distinct underly- 
ing subpopulations to exist. Even a clustering that  
only partly reflects the underlying variability of the 
data  may give us more accurate predictions of ut- 
terance likelihoods. Obviously, the more clusters 
are assumed, the more likely it is that the increase 
in the number of parameters to be estimated will 
lead to worsened rather than improved performance. 
But this trade-off, and the effectiveness of different 
clustering algorithms, can be monitored and opti- 
mized by applying the resulting cluster-based lan- 
guage models to unseen test data. In Section 4 be- 
low, 1 report results of such experiments with ATIS 
data, which, for the reasons given above, would at 
first sight seem relatively unlikely to yield useful re- 
suits from a clustering approach. Since, as we will 
see, clustering does yield benefits in this domain, it 
seems very plausible that  it will also do so for other, 
more naturally clustered domains. 

3 C l u s t e r i n g  A l g o r i t h m s  

There are many different criteria for quantifying the 
(dis)similarity between (analyses of) two sentences 
or between two clusters of sentences; Everitt  (1993) 
provides a good overview. Unfortunately, whatever 
the criterion selected, it is in general impractical to 

find the optimal clustering of the data; instead, one 
of a variety of algorithms must be used to find a 
locally optimal solution. 

Let us for the moment  consider the case where 
the language model consists only of a unigram prob- 
ability distribution for the words in the vocabulary, 
with no N-gram (for N > 1) or fuller linguistic 
constraints considered. Perhaps the most obvious 
measure of the similarity between two sentences or 
clusters is then Jaccard's coefficient (Everitt,  1993, 
p41), the ratio of the number of words occurring in 
both sentences to the number occurring in either or 
both. Another possibility would be Euclidean dis- 
tance, with each word in the vocabulary defining 
a dimension in a vector space. However, it makes 
sense to choose as a similarity measure the quan- 
ti ty we would like the final clustering arrangement 
to minimize: the expected entropy (or, equivalently, 
perplexity) of sentences from the domain. This goal 
is analogous to that  used in the work described ear- 
lier on finding word classes by clustering. 

For our simple unigram language model without 
clustering, the training corpus perplexity is mini- 
mized (and its likelihood is maximized) by assigning 
each word wi a probability Pi = f i / N ,  where f/ is 
the frequency of wi and N is the total size of the cor- 
pus. The corpus likelihood is then P1 = l-[i P{ ' ,  and 
the per-word entropy, -Y'],L,, p i log (p i ) ,  is thus min- 
imized. (See e.g. Cover and Thomas,  1991, chapter 
2 for the reasoning behind this). 

If now we model the language as consisting of sen- 
tences drawn at random from K different subpopu- 
lations, each with its own unigram probabili ty dis- 
tribution for words, then the estimated corpus prob- 
ability is 

P~ = I-I~j ~ck qk l-I~,~j pk,~ 
where the iterations are over each utterance uj in 
the corpus, each cluster c l . . . c g  from which uj  
might arise, and each word wi in utterance uj .  
qk = Ick l /~  Ic~l is the likelihood of an utterance 
arising from cluster (or subpopulation) ck, and pk,i  
is the likelihood assigned to word wi by cluster k, 
i.e. its relative frequency in that  cluster. 

Our ideal, then, is the set of clusters that  maxi- 
mizes the cluster-dependent corpus likelihood PK. 
As with nearly all clustering problems, finding a 
global maximum is impractical. To derive a good 
approximation to it, therefore, we adopt the follow- 
ing algorithm. 

• Select a random ordering of the training corpus, 
and initialize each cluster c k , k  = 1 . . . K ,  to 
contain just  the kth sentence in the ordering. 

• Present each remaining training corpus sentence 
in turn, initially creating an additional singleton 
cluster cK+l for it. Merge that  pair of clusters 
c l .  •. CK+I that  entails the least additional cost, 
i.e. the smallest reduction in the value of PK for 
the subcorpus seen so far. 
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• When all training utterances have been incor- 
porated, find all the triples (u, ci,cj),  i ~ j ,  
such that  u E ci but the probability of u is 
maximized by cj. Move all such u's (in paral- 
lel) between clusters. Repeat until no further 
movements are required. 

In practice, we keep track not of PK but of the 
overall corpus entropy HK = - log(  Pl,: ). We record 
the contribution each cluster c~ makes to HK as 

HK(ek) = -- ~wieck f iklog(f ik/Fk) 
where fik is the frequency of wi in ck and Fk = 
~wjeck fjk,  and find the value of this quantity for 
all possible merged clusters. The merge in the sec- 
ond step of the algorithm is chosen to be the one 
minimizing the increase in entropy between the un- 
merged and the merged clusters. 

The adjustment process in the third step of the 
algorithm does not a t tempt  directly to decrease en- 
tropy but  to achieve a clustering with the obviously 
desirable property that  each training sentence is best 
predicted by the cluster it belongs to rather than 
by another cluster. This heightens the similarities 
within clusters and the differences between them. 
It also reduces the arbitrariness introduced into the 
clustering process by the order in which the training 
sentences are presented. The approach is applica- 
ble with only a minor modification to N-grams for 
N > 1: the probabili ty of a word within a cluster is 
conditioned on the occurrence of the N - 1  words pre- 
ceding it, and the entropy calculations take this into 
account. Other cases of context dependence mod- 
eled by a knowledge source can be handled similarly. 
And there is no reason why the items characterizing 
the sentence have to be (sequences of) words; occur- 
rences of grammar  rules, either without any context 
or in the context of, say, the rules occurring just 
above them in the parse tree, can be treated in just 
the same way. 

4 Exper imenta l  Results  
Experiments were carried out to assess the effective- 
ness of clustering, and therefore the existence of un- 
exploited contextual dependencies, for instances of 
two general types of language model. In the first 
experiment,  sentence hypotheses were evaluated on 
the N-grams of words and word classes they con- 
tained. In the second experiment, evaluation was on 
the basis of grammar rules used rather than word 
occurrences. 

4.1 N-gram Experiment 
In the first experiment,  reference versions of a set 
of 5,873 domain-relevant (classes A and D) ATIS- 
2 sentences were allocated to K clusters for K = 
2, 3, 5, 6, 10 and 20 for the unigram, bigram and tri- 
gram conditions and, for unigrams and bigrams only, 
K = 40 and 100 as well. Each run was repeated 
for ten different random orders for presentation of 

the training data. The unclustered (K = 1) version 
of each language model was also evaluated. Some 
words, and some sequences of words such as "San 
Francisco", were replaced by class names to improve 
performance. 

The improvement (if any) due to clustering was 
measured by using the various language models to 
make selections from N-best sentence hypothesis 
lists; this choice of test was made for convenience 
rather than out of any commitment  to the N-best 
paradigm, and the techniques described here could 
equally well be used with other forms of speech- 
language interface. 

Specifically, each clustering was tested against 
1,354 hypothesis lists output  by a version of the 
DECIPHER (TM) speech recognizer (Murveit et 
al, 1993) that  itself used a (rather simpler) bigram 
model. Where more then ten hypothesis were out- 
put  for a sentence, only the top ten were considered. 
These 1,354 lists were the subset of two 1,000 sen- 
tence sets (the February and November 1992 ATIS 
evaluation sets) for which the reference sentence it- 
self occurred in the top ten hypotheses. The clus- 
tered language model was used to select the most 
likely hypothesis from the list without paying any 
attention either to the score that  D E C I P H E R  as- 
signed to each hypothesis on the basis of acoustic 
information or its own bigram model, or to the or- 
dering of the list. In a real system, the D E C I P H E R  
scores would of course be taken into account, but 
they were ignored here in order to maximize the dis- 
criminatory power of the test in the presence of only 
a few thousand test utterances. 

To avoid penalizing longer hypotheses, the prob- 
abilities assigned to hypotheses were normalized by 
sentence length. The probability assigned by a clus- 
ter to an N-gram was taken to be the simple maxi- 
mum likelihood (relative frequency) value where this 
was non-zero. When an N-gram in the test da ta  had 
not been observed at all in the training sentences 
assigned to a given cluster, a "failure", represent- 
ing a vanishingly small probability, was assigned. 
A number of backoff schemes of various degrees of 
sophistication, including that  of Katz (1987), were 
tried, but none produced any improvement in per- 
formance, and several actuMly worsened it. 

The average percentages of sentences correctly 
identified by clusterings for each condition were as 
given in Table 1. The maximum possible score was 
100%; the baseline score, that  expected from a ran- 
dom choice of a sentence from each list, was 11.4%. 

The unigram and bigram scores show a steady 
and, in fact, statistically significant 1 increase with 
the number of clusters. Using twenty clusters for 
bigrams (score 43.9%) in fact gi~ces more than half 
the advantage over unclustered bigrams that  is given 

1 Details of significance tests are omitted for space rea- 
sons. They are included in a longer version of this paper 
available on request from the author. 
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Clusters Unigram Bigram Trigram 
1 12.4 34.3 51.6 
2 13.8 37.9 51.0 
3 15.3 39.5 50.8 
4 16.1 41.2 50.4 
5 16.8 41.2 51.0 
6 17.2 41.8 50.7 

10 17.8 43.1 51.2 
20 19.9 43.9 50.3 
40 22.3 45.0 
100 24.4 46.4 

Table 1: Average percentage scores for cluster-based 
N-gram models 

Clusters 1-rule 2-rule 
1 29.4 34.3 
2 31.4 35.5 
3 31.8 36.2 
4 31.7 37.0 
5 32.3 37.2 
6 31.9 37.3 
10 32.8 37.5 
20 35.1 38.3 
40 35.8 38.9 

Table 2: Average percentage scores for cluster-based 
N-rule models 

by moving from unclustered bigrams to unclustered 
trigrams. However, clustering trigrams produces 
no improvement in score; in fact, it gives a small 
but statistically significant deterioration, presum- 
ably due to the increase in the number of parameters 
that  need to be calculated. 

The random choice of a presentation order for the 
data  meant  that  different clusterings were arrived 
at on each run for a given condition ((N, K)  for N- 
grams and K clusters). There was some limited ev- 
idence that  some clusterings for the same condition 
were significantly better  than others, rather than 
just  happening to perform better on the particular 
test data  used. More trials would be needed to es- 
tablish whether presentation order does in general 
make a genuine difference to the quality of a cluster- 
ing. If there is one, however, it would appear to be 
fairly small compared to the improvements available 
(in the unigram and bigram cases) from increasing 
the numbers of clusters. 

4.2 Grammar Rule  Exper iment  

In the second experiment, each training sentence and 
each test sentence hypothesis was analysed by the 
Core Language Engine (Alshawi, 1992) trained on 
the ATIS domain ( A g n ~  et al, 1994). Unanalysable 
sentences were discarded, as were sentences of over 
15 words in length (the ATIS adaptation had concen- 
trated on sentences of 15 words or under, and anal- 
ysis of longer sentences was less reliable and slower). 
When a sentence was analysed successfully, several 
semantic analyses were, in general, created, and a 
selection was made from among these on the basis 
of trained preference functions (Alshawi and Carter, 
1994). For the purpose of the experiment, clustering 
and hypothesis selection were performed on the ba- 
sis not of the words in a sentence but of the grammar 
rules used to construct its most preferred analysis. 

The simplest condition, hereafter referred to as "l-  
rule", was analogous to the unigram case for word- 
based evaluation. A sentence was modeled simply as 
a bag of rules, and no a t tempt  (other than the clus- 

tering itself) was made to account for dependencies 
between rules. 

Another condition, henceforth "2-rule" because of 
its analogy to bigrams, was also tried. Here, each 
rule occurrence was represented not in isolation but  
in the context of the rule immediately above it in 
the parse tree. Other choices of context might have 
worked as well or better; our purpose here is simply 
to illustrate and assess ways in which explicit context 
modeling can be combined with clustering. 

The training corpus consisted of the 4,279 sen- 
tences in the 5,873-sentence set that  were analysable 
and consisted of fifteen words or less. The test cor- 
pus consisted of 1,106 hypothesis lists, selected in 
the same way (on the basis of length and analysabil- 
ity of their reference sentences) from the 1,354 used 
in the first experiment. The "baseline" score for 
this test corpus, expected from a random choice 
of (analysable) hypothesis, was 23.2%. This was 
rather higher than the 11.4% for word-based selec- 
tion because the hypothesis lists used were in gen- 
eral shorter, unanalysable hypotheses having been 
excluded. 

The average percentages of correct hypotheses 
(actual word strings, not just the rules used to rep- 
resent them) selected by the 1-rule and 2-rule con- 
ditions were as given in Table 2. 

These results show that  clustering gives a signif- 
icant advantage for both the 1-rule and the 2-rule 
types of model, and that  the more clusters are cre- 
ated, the larger the advantage is, at least up to 
K = 20 clusters. As with the N-gram experiment, 
there is weak evidence that  some clusterings are gen- 
uinely better than others for the same condition. 

5 C o n c l u s i o n s  

I have suggested that  training corpus clustering can 
be used both to extend the effectiveness of a very 
general class of language models, and to provide ev- 
idence of whether a particular language model could 
benefit from extending it by hand to allow it to take 
better account of context. Clustering can be useful 
even when there is no reason to believe the training 
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corpus naturally divides into any particular number 
of clusters on any extrinsic grounds. 

The experimental results presented show that 
clustering increases the (absolute) success rate of un- 
igram and bigram language modeling for a particu- 
lar ATIS task by up to about 12%, and that perfor- 
mance improves steadily as the number of clusters 
climbs towards 100 (probably a reasonable upper 
limit, given that there are only a few thousand train- 
ing sentences). However, clusters do not improve tri- 
gram modeling at all. This is consistent with experi- 
ence (Rayner et al, 1994) that, for the ATIS domain, 
trigrams model inter-word effects much better than 
bigrams do, but that extending the N-gram model 
beyond N = 3 is much less beneficial. 

For N-rule modeling, clustering increases the suc- 
cess rate for both N = 1 and N = 2, although only 
by about half as much as for N-grams. This sug- 
gests that conditioning the occurrence of a grammar 
rule on the identity of its mother (as in the 2-rule 
case) accounts for some, but not all, of the contex- 
tual influences that operate. From this it is sensible 
to conclude, consistently with the results of Briscoe 
and Carroll (1993), that a more complex model of 
grammar rule interaction might yield better results. 
Either conditioning on other parts of the parse tree 
than the mother node could be included, or a rather 
different scheme such as Briscoe and Carroll's could 
be used. 

Neither the observation that trigrams may repre- 
sent the limit of usefulness for N-gram modeling in 
ATIS, nor that non-trivial contextual influences ex- 
ist between occurrences of grammar rules, is very 
novel or remarkable in its own right. Rather, what 
is of interest is that the improvement (or otherwise) 
in particular language models from the application 
of clustering is consistent with those observations. 
This is important evidence for the main hypothe- 
sis of this paper: that enhancing a language model 
with clustering, which once the software is in place 
can be done largely automatically, can give us im- 
portant clues about whether it is worth expending 
research, programming, data-collection and machine 
resources on hand-coded improvements to the way in 
which the language model in question models con- 
text, or whether those resources are best devoted to 
different, additional kinds of language model. 
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