
Tools for Grammar Engineering

Gregor Erbach
Unive r s i t y o f the Saar land
Computa t iona l Linguis t ics

W - 6 6 0 0 Saarbr i icken
Federa l Repub l i c o f G e r m a n y

e r b a c h @ c o l i . u n i - s b . d e

We describe a tool for the development and verification of
broad-coverage grammars that are to be used for both
analysis and generation. Such a tool is used to ensure that
the coverage of the grammar is sufficient (in logical terms
the completeness of the grammar) and to control over-
generation (the correctness of the grammar).

Introduction

For practically applied natural language processing systems,
grammars with extensive coverage are required. The writing
of broad-coverage grammars is so complex a task that it
cannot be done on paper alone, but must be supported by
powerful tools for testing the grammar with respect to
consistency, coverage, overgeneration and accuracy.

Grammar writing is similar to programming in that
grammars and programs must be tested and debugged until
their input/output behaviour meets the given specifications
and they run efficiently. Unlike programming, which can be
approached by techniques like top-down refinement, modul-
arization and so on, grammar writing is an incremental
process, which consists of a cycle of
• writing or modifying of the grammar,
• testing of the grammar,
• debugging the grammar.

Grammar engineering tools must support this work cycle.

All existing grammar engineering tools include an editor
for modification of the grammar, possibly enhanced by
syntax checking, a locate function'for quick access to rules
and lexical en~es. More advanced Systems provide structure-
oriented editing or a graphical editor for feature structures.

Most grammar engineering tools are built around a (chart)
parser, which is used to test the grammar by parsing
sentences. The parse results can be visualized and inspected
in detail. Generally, the chart, phrase structure trees and
feature structures can be displayed graphically.

This work was supported by IBM Germany's LILOG
project. I would like to thank Roman Georg Arens, Jochen
D0rre, Tibor Kiss, Ingo Raasch, Hans Uszkoreit and Jan
Wilms for useful discussion.

These modes of presentation are often linked such that it is
possible to select an edge of the chart or a node of the tree,
and view the corresponding (sub)tree or feature structure or
definition in the source file.

Few systems give diagnostic output that shows where a
unification failure has occurred.

While a tool built around a parser is useful for checking
the coverage and input/output behavior of the grammar, it
does not help to control overgeneration, and is not very
useful in locating errors in the grammar which are due to
unification failure.

We propose a grammar engineering tool consisting of a
parser for checking coverage, a generator for controlling
overgeneration, debugging and documentation tools.

T o o l s f o r checking coverage and e f f i c i e n c y

For checking the coverage of the grammar, we use a
bottom-up chart parser for the grammar formalism STUF
(DOrre 1991). The parser is designed to support and
encourage experimentation with different grammars and
processing strategies (Erbach 1991).

In addition to charts, trees, and feature structures, the
parser provides extensive statistics about the parsing
process:
• the time needed for finding the first analysis and for

finding all analyses,
• the number of possible parsing tasks,
• the number of parsing tasks on the agenda,
• the number of successful parsing tasks (chart items),
• the number of chart items that are used in a result tree.

The last three statistic data are available for each grammar
rule. In this way it is possible to define parsing strategies
that are sensitive to the rule which is involved in the parsing
task. A good parsing strategy will delay rules that are often
unsuccessful.

The tool includes a test suite, that it a set of sentences
covering various syntactic phenomena, and also a set of ill-
formed strings. Semantic representations are associated with
the well-formed sentences.

Testing of the grammar involves parsing the strings in the
test suite and checking whether the parse results contain the

243

correct semantic representation(s), and whether the ill-formed
strings are correctly rejected.

The converse form of testing, giving semantic represen-
tations to a semantic generator and checking whether it
produces the correct strings is necessary for evaluating the
semantic coverage of the grammar.

Tools for controlling overgeneration

Our tool includes a generator whose task it is to generate a
representative set of sentences in order to check whether the
grammar overgenerates.

Before turning to the question what constitutes a
representative sample of a language, we describe the
algorithm used for generation [Erbach and Arens 1991].

The algorithm builds up successively longer constituents
from shorter ones. The initial constituents of length 1 are
the words from the lexicon. More constituents of length 1
are added by applying unary rules to the constituents of
length 1. Constituents of length n are built by applying a
binary rule to constituents of length x and length y, such
that x+y=n, or by applying a unary rule to a constituent of
length n.

Since in general, languages are infinite, it i snot possible
to generate all sentences. The language generated can be
limited by
• setting a maximal sentence lenth,
• limiting the initial lexicon, so that only one member of a

class of lexical entries is present,
• excluding certain rules of the grammar, so that certain

constructions that one is presently not interested in are
avoided, e.g. relative clauses,

• limiting recursion,
• filtering the constituents generated according to the

grammar writer's interests, for example only sentences and
noun phrases.

b

All of these devices which limit the grammar must be
used with caution, in order to avoid losing interesting
examples in the language sample generated.

When looking through the generated language sample, the
user may select any sentence, and view its feature structure
and derivation tree, using the tools provided with the parser.

Debugging tools

Sometimes, it is desirable to know how certain linguistic
descriptions fit together. For example, when debugging a
grammar, one might want to see what happens if a particular
rule is applied to two particular lexical items, or whether Or
not two feature structures unify. With a parser-based tool,
one must make up a sentence in which such a configuration
occurs, and then inspect the parse result.

We provide this functionality more directly. The user may
select any linguistic object (lexical entry, type definition or
chart item) and unify it with any other linguistic object. If
grammar rules are seen as local trees, the user may also
unify any linguistic unit with any of the nodes in the local
tree defined by the grammar rule.

While unification failures are not kept track of during
parsing for efficiency reasons, this structure builder will
show exactly which features have caused a unification to
fail, and thus assist in the diagnosis of errors in t h e
grammar.

Documentation tools

Good documentation of a grammar is a prerequisite for
modifying or extending it or re-using it f o r another
application, and should be supported and by appropriate
tools. We believe that documentation tools are best
integrated with a grammar engineering tool. There are
various reasons for doing so.

First of all, the tool can be constructed such that it
reminds the user of including documentation in the source
files and keeps track of when definitions in the grammar
were changed, and by whom.

Second, integration of grammar engineering and
documentation tools makes it easy to include output of the
parser (charts, trees and feature strctures) into the documenta-
tion that is being written.

Third, we assume that the technical documentation is a
hypertext. In addition to the standard hypertext links from
one piece of text to another, we can include links from the
text to the functionality of the grammar engineering tool.
By selecting a word, or the name of a grammar rule or a type
definition in the text of the documentation, a link will be
built that allows the user to either view its definition in the
source file or display its feature structure. By selecting an
example sentence in the documentation text, it is possible to
activate the parser to view its chart, tree or feature structure.

Implementation

The tool described here has been partially implemented in
Quintus Prolog and X-Windows under AIX on an IBM
PS/2. It is integrated into the text understanding system
LEU/2 developed in IBM Germany's LILOG project.

The parser was implemented by the author, the grammar
formalism and the user interface by Jochen D(irre and Ingo
Raasch and the generator by the author and Roman G. Arens.

References

Gregor Erbach and Roman Georg Arens. Evaluation von
Grammatiken ftir die Analyse nattirlicher Sprache durch
Generierung einer repr~entativen Satzmenge. In Procee-
dings of GWAI -91,. pages 126-129, Bonn, September
1991, Springer.

Jochen DOrre. The Language of STUF. In: O. Herzog and
C.-R. Rollinger (eds.): Text Understanding in LILOG,
pages 33-38, Springer, Berlin, 1991.

Gregor Erbach. A Flexible Parser for a Linguistic
Development Environment. In: O. Herzog and C.-R.
Rollinger (eds.): Text Understanding in LILOG, pages 74-
87, Springer, Berlin, 1991.

244

