
X T A G - A G r a p h i c a l W o r k b e n c h
for D e v e l o p i n g T r e e - A d j o i n i n g G r a m m a r s *

P a t r i c k P a r o u b e k * * , Y v e s S c h a b e s a n d A r a v i n d K . J o s h i

D e p a r t m e n t o f C o m p u t e r a n d I n f o r m a t i o n S c i e n c e

U n i v e r s i t y o f P e n n s y l v a n i a

P h i l a d e l p h i a P A 19104-6389 U S A

p a p / s c h a b e s / j o s h i @ l i n c . c i s . u p e n n . e d u

A b s t r a c t

We describe a workbench (X T A G) for the development
of tree-adjoining grammars and their parsers, and dis-
cuss some issues that arise in the design of the graphical
interface.

Contrary to string rewriting grammars generating
trees, the elementary objects manipulated by a tree-
adjoining grammar are extended trees (i.e. trees of depth
one or more) which capture syntactic information of lex-
ical items. The unique characteristics of tree-adjoining
grammars, its elementary objects found in the ~ lexicon
(extended trees) and the derivational history of derived
trees (also a tree), require a specially crafted interface in
which the perspective has Shifted from a string-based to
a tree-based system. X T A G provides such a graphical
interface in which the elementary objects are trees (or
tree sets) and not symbols (or strings).

The kernel of X T A G is a predictive left to right parser
for unification-based tree-adjoining grammar [Schabes,
1991]. X T A G includes a graphical editor for trees, a
graphical tree printer, utilities for manipulating and
displaying feature structures for unification-based tree-
adjoining grammar, facilities for keeping track of the
derivational history of TAG trees combined with adjoin-
ing and substitution, a parser for unification based tree-
adjoining grammars, utilities for defining grammars and
lexicons for tree-adjoining grammars, a morphological
recognizer for English (75 000 stems deriving 280 000 in-
flected forms) and a tree-adjoining grammar for English
that covers a large range of linguistic phenomena.

Considerations of portability, efficiency, homogeneity
and ease of maintenance, lead us to the use of Common
Lisp without its object language addition and to the use
of the X Window interface to Common Lisp (CLX) for
the implementation of X T A G .

X T A G without the large morphological and syntactic
lexicons is public domain software. The large morpho-
logical and syntactic lexicons can be obtained through
an agreement with ACL's Data Collection Initiative.

*This work was partially supported by NSF grants DCR-
84-10413, ARO Grant DAAL03-87-0031, and DARPA Grant
N0014-85-K0018.

**Visiting from the L aboratoire Informatique Th~orique et
Programmation, Institut Blaise Pascal, 4 place Jussieu, 75252
PARIS Cedex 05, France.

X T A G runs under Common Lisp and X Window
(CLX).

1 I n t r o d u c t i o n

Tree-adjoining grammar (TAG) [Joshi et al., 1975; Joshi,
1985; Joshi, 1987] and its lexicalized variant [Schabes et
al., 1988; Schabes, 1990; Joshi and Schabes, 1991] are
tree-rewriting systems in which the syntactic properties
of words are encoded as tree structured-objects of ex-
tended size. TAG trees can be combined with adjoining
and substitution to form new derived trees. 1

Tree-adjoining grammar differs from more traditional
tree-generating systems such as context-free grammar in
two ways:

1. The objects combined in a tree-adjoining grammar
(by adjoining and substitution) are trees and not
strings. In this approach, the lexicon associates with
a word the entire structure it selects (as shown in
Figure 1) and not just a (non-terminal) symbol as
in context-free grammars.

2. Unlike string-based systems such as context-free
grammars, two objects are built when trees are com-
bined: the resulting tree (the derived tree) and its
derivational history (the derivation tree). 2

These two unique characteristics of tree-adjoining
grammars, the elementary objects found in the lexicon
(extended trees) and the distinction between derived tree
and its derivational history (also a tree), require a spe-
cially crafted interface in which the perspective must
be shifted from a string-based to a tree-based system.

1We assume familiarity throughout the paper with the
definition of TAGs. See the introduction by Joshi [1987]
for an introduction to tree-adjoining grammar. We refer the
reader to Joshi [1985], Joshi [1987], Kroch and Joshi [1985],
Abeill~ et al. [1990a], Abeill~ [1988] and to Joshi and Schabes
[1991] for more information on the linguistic characteristics
of TAG such as its lexicalization and factoring recursion out
of dependencies.

2The TAG derivation tree is the basis for semantic inter-
pretation [Shieber and Schabes, 1990b], generation [Shieber
and Schabes, 1991] and machine translation [Abeill~ et al.,
1990b] since the information given in this data-structure is
richer than the one found in the derived tree. Furthermore,
it is at the level of the derivation tree that ambiguity must
be defined.

223

s

NP N P o $ V P

(0~1) D ~ N (/~1) V SI*NA

J I
boy thi n k

s

NPo$ VP

V NPI$ PP2
S

take P NP2 NP0$ VP

into N 2 V NPI$

I I
account saw

Figure 1: Elementary trees found in a tree-adjoining
grammar lexicon

XTA G provides such a graphical interface in which the
elementary objects are trees (or tree sets) and not sym-
bols (or strings of symbols).

Skeletons of such workbenches have been previously
realized on Symbolics machines [Schabes, 1989; Schif-
ferer, 1988]. Although they provided some insights on
the architectural design of a TAG workbench, they were
never expanded to a full fledged natural language envi-
ronment because of inherent limitations (such as their
lack of portability).

XTAG runs under Common Lisp [Steele, 1990] and it
uses the Common LISP X Interface (CLX) to access the
graphical primitives defined by the X l l protocol. XTAG
is portable across machines and Common Lisp compilers.

The kernel of XTA G is a predictive left to right parser
for unification-based tree-adjoining grammar [Schabes,
1991]. The system includes the following components
and features:

• Graphical edition of trees. The graphical display of
a tree is the only representation of a tree accessible
to the user. Some of the operations that can be
performed graphically on trees are:

- Add and edit nodes.
- Copy, paste, move or delete subtrees.
- Combine two trees with adjunction or substitu-

tion. These operations keep track of the deriva-
tional history and update attributes stated in
form of feature structures as defined in the
framework of unification-based tree-adjoining
grammar [Vijay-Shanker and Joshi, 1988].

- View the derivational history of a derived tree
and its components (elementary trees).

• A tree display module for efficient and aesthetic for-
matt ing of a tree based on a new tree display algo-

r i thm [Chalnick, 1989]. The algorithm is an im-
provement of the ones developed by R.eingold and
Tolford [1981] and, Lee [1987]. It guarantees in lin-
ear time that tress which are structural mirror im-
ages of on another are drawn such that their dis-
plays are reflections of one another while achieving
minimum width of the tree.

• Capabilities for grouping trees into sets which can
be linked to a file. This is particularly useful since
lexicalized TAGs organize trees into tree-families
which capture all variations of a predicative lexical
i tem for a given subcategorization frame.

• Utilities for editing and processing equations for
unification based tree-adjoining grammar [Vijay-
Shanker and]oshi, 1988; Schabes, 1990].

• A predictive left to right parser for unification-based
tree-adjoining grammar [Schabes, 1991].

• Utilities for defining a grammar (set of trees, set of
tree families, set of lexicons) which the parser uses.

• Morphological lexicons for English [Karp et al.,
1992]

• A tree-adjoining grammar for English that covers a
large range of linguistic phenomena.

2 X T A G C o m p o n e n t s

The communication with the user is centralized around
the interface manager window (See Figure 2) which gives
the user control over the different modules of XTAG.

t e s t I

Q P p ~
F ~ ~ h a ~ u t r M O V p n X L ~

O eV,~x~Vpm~
0 ,~V'I MOVpnxl
O QWlm~Vpn~.

F /mm,M~ ~ I m ~ s ~ a ~ n ~ w ~ ham,w~r m,OvsLm,m
0 ~Vl,tdVsl
O pR0s~Vsl
0 com0~l
O !~v~umDVd
G MimJVsl

F ~ w ~ e] ' , s J N a ~ n m l ~ s ~ l J s h , S n w ~ n ~ 0 V s l p ~ . t r e m

@ eW0~0Vslp~
o epnmOWlp=~
O =Whu~Vsll~2

0 [~ V s l l ~ 2
o l~L~,~ov~a p~
0 II~1~V~I~2
0 l~t~m~tt~p~

F ~ ~ } I s ~ J p n ~ m l ~ n . ~ 0 Val./re~
O ao,~/al
O aW0nx~Va].

Figure 2: Manager Window.

This window displays the contents of the tree buffers
currently loaded into the system. The different functions
of XTAG are available by means of a series of pop-up
menus associated to buttons, and by means of mouse
actions performed on the mouse-sensitive items (such as
the tree buffer names and the tree names).

224

A tree editor for a tree contained in one of the tree
buffer contained in the window can be called up by click-
ing over its tree name. Each tree editor manages one tree
and as many tree editors as needed can run concurrently.

For example, Figure 2 holds a set of files (such
as Tnx0Vsl . t rees) 3 which each contain trees (such as
anx0Vsl) . When this tree is selected for editing, the
window shown in Figure 3 is displayed. Files can be
handled independently or in group, in which case they
form a tree family (flag F next to a buffer name).

: < '> I
["p" -" <~' (]] i " " : ~ [] I

~,o,~ : <:,> [] j

V~

<~, []
[]

Figure 3: A tree-editing window for the tree anx0Vsl .

All the editing and visualizing operations are per-
formed through this window (see Figure 3). Some of
them are:

• Add and edit nodes.

• Copy, paste, move or delete subtrees.

• Combine two trees with adjunction or substitu-
tion. These operations keep track of the deriva-
tional history and update at t r ibutes stated in form
of feature structures as defined in the framework
of unification-based tree-adjoining g rammar [Vijay-
Shanker and Joshi, 1988].

• View the derivational history of a derived tree and
its components (elementary trees).

• Display and edit feature structures.

• Postscript printing of the tree.

3The particular conventions for the tree and family names
reflect the structure of the trees and they can be ignored by
the reader.

XTAG uses a centralized clipboard for all binary op-
erations on trees (all operations are either unary or bi-
nary). These operations (such as paste, adjoin or substi-
tute) are always performed between the tree contained
in XTAG's clipboard and the current tree. The contents
of the clipboard can be displayed in a special view-only
window.

The request to view the derivational history of a tree
result of a combining operation triggers the opening of a
view-only window which displays the associated deriva-
tion tree. Each node in a derivation tree is mouse-
sensitively linked to an elementary tree.

Since the derivational history of a derived tree depends
on the elementary trees which were used to build it,
inconsistency in the information displayed to the user
could arise if the user a t tempts to modify an elementary
tree which is being used in a derivation. This problem is
solved by ensuring that , whenever a modifying operation
is requested, full consistency is maintained between all
the views. For instance, editing a tree used in a deriva-
tion tree will break the link between those two. Thus
consistency is maintained between the derived tree and
the derivation tree.

Figure 4 shows an example of a derived tree (leftmost
window) with its derivation tree window (middle win-
dow) and an elementary tree part icipating in its deriva-
tion (rightmost window).

As is shown in Figure 3, the tree display module
handles the bracketed display of feature structures (in
unification-based TAG, each node is associated two fea-
ture structures: top and bo t tom, see Vijay-Shanker and
Joshi [1988] for more details). The tree formatt ing al-
gori thm guarantees that trees that are structural mirror
images of on another are drawn such that their displays
are reflections of one another [Chalnick, 1989]. A unifi-
cation module handles the updat ing of feature structures
for TAG trees.

XTAG includes a predictive left to right parser
for unification-based tree-adjoining g rammar [Schabes,
1991]. The parser is integrated into XTAG and deriva-
tions are displayed by the interface as illustrated in Fig-
ure 4. The parser achieves an O(G~n6)-time worst case
behavior, O(G2n4)-time for unambiguous grammars and
linear t ime for a large class of grammars . The parser
uses the following two-pass parsing s t ra tegy (originally
defined for lexicalized g rammars [Schabes et al., 1988])
which improves its performance in practice [Schabes and
Joshi, 1990]:

• In the first step the parser will select, the set of
s tructures corresponding to each word in the sen-
tence. Each structure can be considered as encoding
a set of 'rules' .

• In the second step, the parser tries to see whether
these structures can be combined to obtain a well-
formed structure. In particular, it puts the struc-
tures corresponding to arguments into the struc-
tures corresponding to predicates, and adjoins, it
needed, the auxiliary structures corresponding to
adjuncts to what they select (or are selected) for.
This step is performed with the help of a chart in
the fashion of Earley-style parsing.

225

PP/

~ N

NA
I

Sr

V $

d ~ NP VP

D N V PP

I I I

~ [~--~ [~--~ 1~---~--~ ~]

,a~[vn~m] {1.21 I~'[d~] (21 ~¢~Ia~l {zl)

a~[t~ l {l}

Sir

PPz

Pt NPI~ '

I

Sr

r~0~ w,

V PP

I I

~ ~ Ir~shap e+ftt] []

Figure 4: left, a derived tree, middle, its derivation, right, an elementary tree participating in the derivation.

The first step enables the parser to select a relevant
subset of the entire grammar, since only the structures
associated with the words in the input string are selected
for the parser. The number of structures filtered during
this pass depends on the nature of the input string and
on characteristics of the grammar such as the number
of structures, the number of lexical entries, the degree
of lexical ambiguity, and the languages it defines. In the
second step, since the structures selected during the first
step encode the morphological value of their words (and
therefore their position in the input string), the parser
is able to use non-local bottom-up information to guide
its search. The encoding of the value of the anchor of
each structure constrains the way the structures can be
combined. This information is particularly useful for a
top-down component of the parser [Schabes and Joshi,
1990].

X T A G provides all the utilities required for designing
a lexicalized TAG structured as in Schabes et al. [1988].
All the syntactic concepts of lexicalized TAG (such as the
grouping of the trees in tree families which represents the
possible variants on a basic subcategorization frame) are
accessible through mouse-sensitive items. Also, all the
operations required to build a grammar (such as load
trees, define tree families, load syntactic and morpho-
logical lexicon) can be predefined with a macro-like lan-
guage whose instructions can be loaded from a file (See
Figure 5).

The grammar writer has also the option to manually
test a derivation by simulating adjoining or substitution
of trees that are associated with words defined in the
lexicon.

The grammar consists of a morphological English an-

alyzer and a syntactic lexicon, which is the domain of
structural choice, subcategorization and selectional in-
formation. Lexical items are defined by the tree struc-
ture or the set of tree structures they select.

(defgrammar demol
(: start-symbol "S"
:start-feature "<mode> = ind")

(:tree-files "lex" "modifiers"
(:type "trees"))

(: f amily-f iles
"TnxOV" "TnxOVa" "TnxOVnxl" "TnxOVdnl"
"TnxOVnxlpnx2" "TnxOVpnxl" "TnxOVsl"
(:type "trees"))

(:lexicon-files "lexicon" (:type "lex"))
(:example-files "examples" (:type "ex")))

Figure 5: An example of instructions for loading and
defining a grammar.

The morphological lexicons for English [Karp el al.,
1992] were built with PC-KIMMO's implementation of
two-level morphology [Antworth, 1990] and with the
1979 edition of Collins English Dictionary. They com-
prise 75 000 stems deriving 280 000 inflected forms.

X T A G also comes with a tree-adjoining grammar for
English [Abeill@ et al., 1990a] which covers a large range
of linguistic phenomena.

The entries for lexical items of all types belong to the
syntactic lexicon and are marked with features to con-
strain the form of their arguments. For example, a verb
which takes a sentential argument uses features to con-
strain the form of the verb acceptable in the complement
clause. An interesting consequence of TAG's extended

226

domain of locality is that features imposed by a clausal
lexical item can be stated directly on the subject node
as well as on the object node. These features need not
be percolated through the VP node as in context-free
formalisms.

When a word can have several structures, correspond-
ing to different meanings, it is treated as several lexical
items with different entries in the syntactic lexicon. Mor-
phologically, such items can have the same category and
the same entry in the morphological lexicon 4. Examples
of syntactic entries follow: 5

INDEX : c u t
ENTRY: NP0 c u t into NP1
P0S: NP0 V P1 NPI

FS : # i n v - , #pass -
DEF: make an i n c i s i o n i n .

INDEX: cut
ENTRY: NP0 cut down (NPI)
POS: NP0 V PL (NPI)
FS: #pass+
DEF: consume less; reduce.
EX: "The city must cut its expenses down.'

INDEX:
ENTRY:
POS:
FS:
DEF:

accuse

NPO accuse NPI (of NP2)

NPO V NPI (P2 NP2)
#invl-, #dat-, #inv2-, #pass1+, #pass2-
say that somebody is guilty (of).

INDEX:
ENTRY:
POS:
FS:
DEF:
EX:

f a c e
NPO face away (from NP1)
NPO V PL (P1 NP1)
i n v - , #pass -
look in the o p p o s i t e d i r e c t i o n (from).
My house faces away from the ocean.

3 T h e c h o i c e o f a g r a p h i c a l p a c k a g e : X

W i n d o w a n d C L X

The choice of a graphical package was motivated by con-
siderations of portability, efficiency, homogeneity and
ease of maintenance. X T A G was built using Common
Lisp and its X Window interface CLX.

We chose this rather low level approach to realize the
interface as opposed to the use of a higher-level toolkit
for graphic interface design because the rare tools avail-
able which were fulfilling our requirements for portabil-
ity, homogeneity and ease of maintenance were still un-
der development at the beginning of the design of X T A G.

The first package we considered was Express Window.
It a t t racted our attention because it has precisely been
created to run programs developed on the Symbolics ma-
chine in other Common Lisp environments. It is an im-
plementation of most of the Flavors and graphic prim-
itives of the Symbolics system respectively in terms of
the Common Lisp Object System (CLOS) [Keene, 1988]
primitives and CLX [Scheifler and Lamott , 1989]. We

4The lexical entries below have been simplified for the
purpose of exposition.

5Syntactic lexicons can be stated in various forms. In
the following examples, a tree family is associated with each
string of part of speeches (POS).

did not use it mainly because it was known to work only
with the PCL version from Xerox Parc (we want to re-
main as compatible as possible between the different di-
alects of Common Lisp), and was not robust enough.

Although W IN TERP has many interesting points for
our purpose, we did not choose it because we wanted
to have a complete and efficient (i.e. a compiler) Com-
mon Lisp implementation. W I N T E R P is an interpre-
tive, interactive environment for rapid prototyping and
application writing using the OSF Motif toolkit [Young,
1990]. It uses a mini-lisp interpreter (called XLISP; it is
not available as a compiler) to glue together various C-
implemented primitive operations (Xlib [Nye, 1988] and
Xtk [Asente and Swick, 1990]) in a Smalltalk-like [Gold-
berg, 1983] object system (widgets are a first class type).
W I N T E R P has no copyright restrictions.

Initially we were at t racted by G A R N E T [Meyers et al.,
1990], mainly because it is advertised as look-and-feel
independent and because it is implemented using only
Common Lisp and CLX (but not CLOS, nor any existing
X toolkit such as Xtk or Motif). The system is composed
of two parts: (1) a toolkit offering objects (prototype
instance model [Lieberman, 1986], constraints, (2) and
an automatic run-time maintenance of properties of the
graphic objects based on a semantic network. The dif-
ferent behavior of the interface components is specified
by binding high level interactors objects to the graphic
objects. An interface builder tool (Lapidary) allows the
drawing of the graphic aspects of an interface. How-
ever we did not use G A R N E T because the version at
the time of the design of X T A G was very large and slow,
and still subject to changes of design. Furthermore, an-
other reason for not choosing G A R N E T was the fact
tha t Carnegie Mellon University retained the copyrights,
slowing the distribution.

PICASSO [Schank et al., 1990], a more recent pack-
age from Berkeley University, offers similar functionali-
ties shared by other non Common Lisp based applica-
tion frameworks like InterViews [Linton et al., 1989],
MacApp [Schmuker, 1986] and Smalltalk [Goldberg,
1983], but is freely distributed. It is an object-oriented
system implemented in Common Lisp, CLX and CLOS.
With each type of PICASSO object is associated a CLOS
class, the instances of which have different graphic and
interactive properties. The widgets implementing those
properties are automatically created during the creation
of a PICASSO object. Unlike the two previous sys-
tems, the PICASSO objects may be shared in an ex-
ternal database common to different applications (per-
sistent classes) when this is enabled, PICASSO requires
the use of the database management system INGRES
[Charness and Rowe, 1989]. PICASSO was not available
as a released package at the time the implementation of
X T A G started.

4 P r o g r a m m i n g c o n s i d e r a t i o n s

All the graphic objects of XTAG are defined as con-
tacts and are implemented using only the structures of
Common Lisp and their simple inheritance mechanism.
Because of the relatively low computing cost associated
with the contacts, we have been able to define every

227

graphic object of XTAG (whatever its complexity as a
contact is) without having to resort to a different proce-
dure oriented implementation for simpler objects as was
done in InterViews with the painter objects [Linton et
al., 1989].

The programming difficulties we have encountered
deal with re-synchronizing XTAG with the server during
a transfer of control between contacts (the active con-
tact is the one containing the cursor). These difficulties
stem from the asynchronous nature of the communica-
tion protocol of X and from the large number of events
mouse motion may generate when the cursor is moved
over closely located windows. The fact that windows
may be positioned anywhere and stacked in any order
(overlapping windows) makes the handling of those tran-
sitions a non trivial task. A careful choice of the event-
masks attached to the windows is by itself insufficient to
solve the problem. To limit the number of queries made
to the server, we use extensive caching of graphic prop-
erties. The structures implementing the contacts con-
tain fields that duplicate server information. They are
updated when the graphic properties of the object they
describe are changed. We found this strategy to improve
the performance noticeably. This feature can easily be
turned off, in case a particular X-terminai or workstation
would provide hardware support for caching.

While we put a lot of attention on issue of portabil-
ity, we did not worry about look independence, limiting
the user possibilities in this domain to geometric dimen-
sion parameterization and font selection by means of a
configuration file and a few menus.

Our current implementation uses the twin window
manager, but another window manager could also be
used. We have found the need for multi-font string sup-
port for X T A G because the tree names and node labels
require a mix of at least two or three fonts (ascii sym-
bols and greek symbols such as c~, fl and e, and a font for
subscripts). We could have used a font which contains
all the characters may use the same font as the normal
differ from those only by their location to the writing
line), but we preferred to define a multi-font composed
of several existing fonts (which can be customized by the
user) for portability purposes and to leave open the way
for future extensions.

In order to be able to scroll over the trees when they
are too big to be displayed in a window, every tree editor
window is associated with an eight direction touch-pad
(inspired from the mover of InterViews [Linton et al.,
1989]).

The nodes displayed in the window of a tree editor
are not sensitive to the presence of the cursor, they re-
act only to mouse but ton clicks. During earlier versions
of X T A G we highlighted the visited node with a border,
but this required too much overhead because of the nu-
merous cursor motions over the tree window which occur
during editing.

The text editing task we had to implement fall into
two classes:

• short line editing requiring multi-fonts (e.g. edition
of node names);

• text editing not requiring multi-fonts (e.g. multi-
line comments, unification equations).

For the former, we implemented all the editing func-
tions ourselves because they do not require much pro-
cessing and multi-font support was unavailable. For the
latter, we used system calls to an external editor (emacs
in our case).

Concerning the programming task, we would have
liked to have available tools to help us write an X ap-
plication in Common Lisp at a level slightly higher than
the one of the CLX interface without going up to the
level of elaborate toolkits like G A RN ET or PICASSO
which implies the use of a complex infra-structure, per-
haps something like an incremental or graded toolkit.

Our next developments effort will be concerned with
introducing parallelism in the interface (actors), adding
new features like an undo mechanism (using the Item
list data structure proposed by Dannenberg [1990]), and
extending XTAG for handling meta-rules [Becker, 1990]
and Synchronous TAGs [Shieber and Schabes, 1990b]
which are used for the purpose of automatic trans-
lation [Abeill~ et ai., 1990b] and semantic interpreta-
tion [Shieber and Schabes, 1990a; Shieber and Schabes,
1991].

5 R e q u i r e m e n t s f o r R u n n i n g X T A G

Version 0.93 of X T A G is available as pub/xtagO. 93.tar.Z
by anonymous ftp to linc.cis.upenn.edu (130.91.6.8). 6
XTA G requires:

• A machine running UNIX and Xl lR4 . 7

• A Common Lisp compiler which supports the latest
definition of Common Lisp [Steele, 1990]. Although
X T A G should run under a variety of lisp compil-
ers, it has only been tested with LUCID Common
Lisp 4.0 and Allegro Common Lisp 4.0.1. A version
running under KCL is currently under development.

• Common Lisp X Interface (CLX) version 4 or
higher .s

X T A G has been tested on UNIX based machines
(R4.4) (SPARC station 1, SPARC station SLC, HP
BOBCATs series 9000 and SUN 4 also with NCD X-
terminals) running X l l R 4 and CLX with Lucid Com-
mon Lisp (4.0) and Allegro Common Lisp (4.0.1).

6 C o n c l u s i o n

We described a workbench for the development of tree-
adjoining grammars and their parsers and discussed
some issues that arise in the design of the graphic in-
terface.

The unique characteristics of tree-adjoining gram-
mars, its elementary objects found in the lexicon (ex-
tended trees) and the derivational history of derived

6Newer versions of the system are copied into the same
directory as they become available.

rPrevious releases of X will not work with XTAG. X11R4
is free software available from MIT.

8CLX is the Common Lisp equivMent to the Xlib package
for C. It allows the lisp programmer to use the graphical
primitives of Xlib within Common Lisp.

228

trees (also a tree), require a specially crafted interface
in which the perspective is shifted from a string-based
to a tree-based system. XTAG provides such a work-
bench.

The kernel of XTA G is a predictive left to right parser
for unification-based tree-adjoining grammar [Schabes,
1991]. XTAG includes a graphical editor for trees, a
graphical tree printer based on a new algorithm, utili-
ties for manipulating and displaying feature structures
for unification-based tree-adjoining grammar, facilities
for keeping track of the derivational history of TAG trees
combined with adjoining and substitution, a parser for
unification based tree-adjoining grammars, utilities for
defining grammars and lexicons for tree-adjoining gram-
mars, a morphological recognizer for English (75 000
stems deriving 280 000 inflected forms) and a tree-
adjoining grammar for English that covers a large range
of linguistic phenomena.

XTAG without the large morphological and syntactic
lexicons is public domain software. The large morpho-
logical and syntactic lexicons can be obtained through
an agreement with ACL's Data Collection Initiative.

XTAG runs under Common Lisp and X Window
(CLX).

A c k n o w l e d g m e n t s

Many people contributed to the development of XTAG.
We are especially grateful to Mark Liberman for his

help with the extraction of morphological and syntactic
information available in the data collected by the ACL's
Data Collection Initiative.

We have benefitted from discussions with Evan
Antworth, Lauri Karttunen, Anthony Kroch, Fernando
Pereira, Stuart Shieber and Annie Zaenen.

Anne Abeille, Kathleen Bishop, Sharon Cote, Beat-
rice Daille, Jason Frank, Caroline Heycock, Beth A n n
Hockey, Megan Moser, Sabine Petillon and Raffaella
Zanuttini contributed to the design of the English and
French TAG grammars.

The morphological lexicons for English were built by
Daniel Karp.

Patrick Martin automated the acquisition of some of
syntactic lexicons with the use of on-line dictionaries.

We would like to thank Jeff Aaronson, Tilman Becker,
Mark Foster, Bob Frank, David Magerman, Philip
Resnik, Steven Shapiro, Martin Zaidel and Ira Winston
for their help and suggestions.

R e f e r e n c e s

[Abeill~ et al., 1990a] Anne AbeiU~, Kath-
leen M. Bishop, Sharon Cote, and Yves Schabes. A
lexicalized tree adjoining grammar for English. Tech-
nical Report MS-CIS-90-24, Department of Computer
and Information Science, University of Pennsylvania,
1990.

[Abeill~ et al., 1990b] Anne Abeill~, Yves Schabes, and
Aravind K. Joshi. Using lexicalized tree adjoining
grammars for machine translation. In Proceedings of
the 13 ~h International Conference on Computational
Linguistics (COLING'90), Helsinki, 1990.

[Abeilld, 1988] Anne Abeill& A lexicalized tree adjoin-
ing grammar for French: the general framework. Tech-
nical Report MS-CIS-88-64, University of Pennsylva-
nia, 1988.

[Antworth, 1990] Evan L. Antworth. PC-KIMMO: a
two-level processor for morphological analysis. Sum-
mer Institute of Linguistics, 1990.

[Asente and Swick, 1990] P. J. Asente and R. R. Swick.
X Window System Toolkit. Digital Press, 1990.

[Becket, 1990] T. Becket. Meta-rules on tree adjoining
grammars. In Proceedings of the 1st International
Workshop on Tree Adjoining Grammars, Dagstuhl
Castle, FRG, August 1990.

[Chalnick, 1989] Andrew Chalnick. Mirror image dis-
play of n-ary trees. Unpublished manuscript, Univer-
sity of Pennsylvania, 1989.

[Charness and Rowe, 1989] D. Charness and L. Rowe.
CLING/SQL - Common Lisp to INGRES/SQL in-
terface. Technical report, U.C. Berkeley, Computer
Science Division, 1989.

[Dannenberg, 1990] R. B. Dannenberg. A structure for
efficient update, incremental redislay and undo in
graphical editors. Graphical Editors, Software Prac-
tice and Experience, 20(2), February 1990.

[Goldberg, 1983] A. Goldberg. Smalltalk-80: The Inter-
active Programming Environment. Addison Wesley,
1983.

[Joshi and Schabes, 1991] Aravind K. Joshi and Yves
Schabes. Tree-adjoining grammars and lexicalized
grammars. In Maurice Nivat and Andreas Podel-
ski, editors, Definability and Recognizability of Sets of
Trees. Elsevier, 1991. Forthcoming.

[Joshi et al., 1975] Aravind K. Joshi, L. S. Levy, and
M. Takahashi. Tree adjunct grammars. Journal of
Computer and System Sciences, 10(1), 1975.

[Joshi, 1985] Aravind K. Joshi. How much context-
sensitivity is necessary for characterizing struc-
tural descriptions--Tree Adjoining Grammars. In
D. Dowty, L. Karttunen, and A. Zwicky, editors, Natu-
ral Language Processing--Theoretical, Computational
and Psychological Perspectives. Cambridge University
Press, New York, 1985.

[Joshi, 1987] Aravind K. Joshi. An Introduction to Tree
Adjoining Grammars. In A. Manaster-Ramer, editor,
Mathematics of Language. John Benjamins, Amster-
dam, 1987.

[Karp et al., 1992] Daniel Karp, Yves Schabes, and
Martin Zaidel. Wide coverage morphological lexicons
for English. Submitted to the 14 th International Con-
ference on Computational Linguistics (COLING'92),
1992.

[Keene, 1988] S. Keene. Object-Oriented Programming
in Common Lisp. Addison-Wesley, 1988.

[Kroch and Joshi, 1985] Anthony Kroch and Aravind K.
Joshi. Linguistic relevance of tree adjoining gram-
mars. Technical Report MS-CIS-85-18, Department

229

of Computer and Information Science, University of
Pennsylvania, April 1985.

[Lee, 1987] Albert Lee. Performance oriented tree-
display package. University of Pennsylvania Senior
Thesis, 1987.

[Lieberman, 1986] H. Lieberman. Using prototypical ob-
jects to implement shared behavior in object oriented
systems. In A CM Conference on Object-Oriented Pro-
gramming Systems Languages and Applications, 1986.

[Linton et al., 1989] M. A. Linton, J. M. Vlissides, and
P. R. Calder. Composing user interfaces with inter-
views. IEEE Computer, February 1989.

[Meyers et al., 1990] B. A. Meyers, D. Giuse, B. Dan-
nenberg, and V. B. Zanden. The garnet toolkit refer-
ence manuals: Support for highly-interactive, graphi-
cal user interfaces in lisp. Technical Report CMU-CS-
90-117, Carnegie Mellon University, 1990.

[Nye, 1988] A. Nye. Xlib Progamming Manual (Vol. 1),
Xlib Reference Manual (Vol. P). O'Reilly and Asso-
ciates, 1988.

[Reingold and Tolford, 1981] E.M. Reingold
and John S. Tolford. Tidier drawing of trees. IEEE
Transactions on Software Engineering, SE-7:223-228,
1981.

[Schabes and Joshi, 1990] Yves Schabes and Aravind K.
Joshi. Parsing with lexicalized tree adjoining gram-
mar. In Masaru Tomita, editor, Current Issues in
Parsing Technologies. Kluwer Accadernic Publishers,
1990.

[Schabes et al., 1988] Yves Schabes, Anne Abeill~, and
Aravind K. Joshi. Parsing strategies with 'lexicalized'
grammars: Application to tree adjoining grammars.
In Proceedings of the 12 ~h International Conference on
Computational Linguistics (COLING'88), Budapest,
Hungary, August 1988.

[Schabes, 1989] Yves Schabes. TAG system user manual
for Symbolics machines, 1989.

[Schabes, 1990] Yves Schabes. Mathematical and Com-
putational Aspects of Lexicalized Grammars. PhD the-
sis, University of Pennsylvania, Philadelphia, PA, Au-
gust 1990. Available as technical report (MS-CIS-90-
48, LINC LAB179) from the Department of Computer
Science.

[Schabes, 1991] Yves Schabes. The valid prefix property
and left to right parsing of tree-adjoining grammar.
In Proceedings of the second International Workshop
on Parsing Technologies, Cancun, Mexico, February
1991.

[Schank et al., 1990] P. Sehank, J. Konstan, C. Liu,
A . R . , S. Seitz, and B. Smith. Picasso reference
manual. Technical report, University of California,
Berkeley, 1990.

[Scheifler and Lamott, 1989] W. Seheifler,
R. and O. Lamott. Clx - common lisp x interface.
Technical report, Texas Instruments, 1989.

ISchifferer, 19881 Klaus Schifferer. TAGDevENV eine
Werkbank fiir TAGs. Technical report, KI - Labor

am Lehrstuhl fiir Informatik, Universit~ des Saarlan-
des, June 1988.

[Schmuker, 1986] K. J. Schmuker. Mac-app: An appli-
cation framework. Byte, August 1986.

[Shieber and Schabes, 1990a] Stuart Shieber and Yves
Schabes. Generation and synchronous tree adjoining
grammars. In Proceedings of the fifth International
Workshop on Natural Language Generation, Pitts-
burgh, 1990.

[Shieber and Schabes, 1990b] Stuart Shieber and Yves
Schabes. Synchronous tree adjoining grammars. In
Proceedings of the 13 th International Conference on
Computational Linguistics (COLING'90), Helsinki,
1990.

[Shieber and Schabes, 1991] Stuart Shieber and Yves
Schabes. Generation and synchronous tree adjoin-
ing grammars. Computational Intelligence, 4(7), 1991.
forthcoming.

[Steele, 1990] Guy L. Jr. Steele, editor. Common LISP-
the Language. Digital Press, second edition, 1990.

[Vijay-Shanker and Joshi, 1988] K. Vijay-Shanker and
Aravind K. Joshi. Feature structure based tree ad-
joining grammars. In Proceedings of the 12 th In-
ternational Conference on Computational Linguistics
(COLING'88), Budapest, August 1988.

[Young, 1990] D. A. Young. OSF/MOTIF Reference
Guide. Prentice, 1990.

230

