
An Efficient Chart-based Algori thm

for Partial-Parsing of Unrestricted Texts

David D. McDonald
14 Brantwood Road, Arlington MA 02174-8004 USA

MCDONALD @ BRANDEIS.EDU (617) 646-4124

Abstract In the rest of this section we will look at some of the

We present an efficient algorithm for chart-based
phrase structure parsing of natural language that is tai-
lored to the problem of extracting specific information
from unrestricted texts where many of the words are un-
known and much of the text is irrelevant to the task.
The parser gains algorithmic efficiency through a reduc-
tion of its search space. As each new edge is added to
the chart, the algorithm checks only the topmost of the
edges adjacent to it, rather than all such edges as in con-
ventional treatments. The resulting spanning edges are
insured to be the correct ones by carefully controlling
the order in which edges are introduced so that every
final constituent covers the longest possible span. This
is facilitated through the use of phrase boundary heuris-
tics based on the placement of function words, and by
heuristic rules that permit certain kinds of phrases to be
deduced despite the presence of unknown words. A fur-
ther reduction in the search space is achieved by using
semantic rather than syntactic categories on the terminal
and nonterminal edges, thereby reducing the amount of
ambiguity and thus the number of edges, since only
edges with a valid semantic interpretation are ever intro-
daced.

1. Introduction

Much of the research being done in parsing today is
directed towards the problem of information extraction,
sometimes referred to as "message processing" or
"populating data-bases". The goal of this work is to develop
systems that can robustly extract information from massive
corpora of unrestricted ("open") texts. We have developed
such a system and applied it to the task of extracting infor-
mation about changes in employment found in articles from
the "Who's News" column of the Wall Street Journal. We
call the system "Sparser". There are many possible design
goals for a parser. For Sparser we have three:

• It must handle unrestricted texts, to be taken directly
from online news services without human interven-
tion or preprocessing.

• It must operate efficiently and robustly, and be able to
handle articles of arbitrary size using a fixed, rela-
tively small set of resources.

• Its purpose is the identification and extraction specifi-
cally targeted, literal information in order to populate
a database. Linguistically motivated structural
descriptions of the text are a means to that end, not an
end in themselves.

consequences of these goals for the parser's design. The
most important of these is how to cope with the fact that
many of the words in the text will be unknown, which we
will take up first. We then look at the consequences of
designing the parser for the specific purpose of information
extraction. In section two we will look at how well Sparser
has been able to meet these goals after roughly fifteen
months of development following more than two years of
experimentation with other designs, and then go on in the
later sections to situate and describe its phrase structure algo-
rithm.

1.1 "Partial Parsing"

Attempting to understand an entire text, or even to give
all of it a structural description, is well beyond the state of
the art for today's parser's on unrestricted texts. Instead, text
extraction systems are typically designed to recover only a
single kind of information. They focus their analyses on
only those portions of the text where this information oc-
curs, skipping over the other portions or giving them only a
minimal analysis. Following an emerging convention, we
will call such a system a partialparser.

The competence of a partial parser may be compared with
that of people who are learning a second language. They can
be expected to know most of the language's syntax, function
words, and morphology, to know certain idioms, the con-
ventions for forming common constructions such as names,
dates, times, or amounts of money, and the high frequency
open-class vocabulary such as "said", "make", "new", etc.
However, their knowledge of the vocabulary and phrasings
for specific subjects will be severely limited and particular.
A few topics will be understood quite well, others not at all.

Their limited comprehension notwithstanding, such peo-
ple can nevertheless scan entire articles, accurately picking
out and analyzing those parts that are about topics within
their competence, while ignoring the rest except perhaps for
isolated names and phrasal fragments. They will know
when they have correctly understood a portion of the text
that fell within their competence, and can gauge how thor-
ough or reliable their understanding of these segments is.

1.2 The impact of unknown words
Mirroring this kind of partial but precise competence in a

parser is not ~imply a matter of finding the portions of the
text on the m,derstood topics and then proceeding to analyze
them as a ncrmal system would. Such a strategy will not
work because instances of unknown words and subject mat-
ter can occur at any granularity--not just paragraphs and
sentences, but appositives, clausal adjuncts, adverbials, all
the way down to adjectives and compound nouns within

193

otherwise understandable NPs. For example, an understand-
able subject-verb combination may be separated by an
appositive outside the system's competence, understandable
pp-adjuncts separated by incomprehensible ones, and so on.
The example below (from the Wall Street Journal for
February 14, 1991) shows a case of a relative clause, off the
topic of employment change, situated between an understood
subject NP and an understood VP. (Understood segments
shown in bold.)

... Rober t A . Beck , a 65-year-old f o r m e r
Prudential chairman who originally bought the
brokerage firm, was named chief executive o f
Prudent ial Bache
As a result of this and other factors, the design of a par-

tial parser must be adapted to a new set of expectations quite
different from the customary experience working with care-
fully chosen example sentences or even with most question-
answering systems. In particular:

(1) Don't expect to complete full sentences
Because the unknown vocabulary can occur at any point,

one cannot assume that the parser will be able to reliably
recover sentence boundaries, and its grammar should not de-
pend on that ability.

To this end, Sparser parses opportunistically and bottom
up rather than predicting that an S will be completed. Its
structural descriptions are typically a "forest" of minimal
phrasal trees interspersed with unknown words. The only re-
liable boundaries are those signalled orthographically, such
as paragraphs.

(2) Develop new kinds of algorithms for connecting
constituents separated by unparsed segments of the
text.
The standard phrase structure algorithms are based on the

completion of rewrite rules that are driven by the adjacency
of labeled constituents. When an off-topic and therefore un-
completed text segment intervenes, as in the example just
above, an adjacency-based mechanism will not work, and
some other mechanism will have to be employed.

Sparser includes a semantically-driven search mechanism
that scans the forest for compatible phrases whenever a syn-
tactically incomplete or unattached phrase is left after con-
ventional rules have been applied. It is sensitive to the kind
of grammatical relation that would have to hold between the
two constituents, e.g. subject - predicate, and constrains the
search to be sensitive to the features of the partially parsed
text between them, e.g. that if in its search it finds evidence
of a tensed verb that is not contained inside a relative clause,
then it should abort the search.

(3) Supplement the phrase structure rule backbone of
the parser with an independent means of identifying
phrase boundaries.
Very often, the off-topic, unknown vocabulary is encap-

sulated within quite understandable phrasal contexts.
Consider the real example "... this gold mining company
was ...". Here the initial determiner establishes the begin-
ning of a noun phrase, and the tensed auxiliary verb estab-
lishes that whatever phrase preceded it has finished (barring
adverbs). Forming an NP over the entire phrase is appropri-

ate, even when the words "gold" and "mining" are unknown
because they are part of an open-ended vocabulary.

Sparser includes a set of function word-driven phrase
boundary rules. And it has a very successful heuristic for
forming and categorizing text segments such as this example
("successful" in that it generated no false positives in the
test described in §2). Simply stated, if there is a rule in the
grammar that combines the f'n'st and last edges in a bounded
segment (e.g. a rule that would succeed on the phrase "this
company"), then allow that rule to complete, covering the
unknown words as well as the known.

1.3 Objects rather than expressions

Sparser was written to support tasks based on populating
data bases with commercially significant literal information
extracted in real time from online news services, and this
requirement has permeated nearly every aspect of its design.
In particular, it has meant that it is not adequate to have the
output of an analysis be just a syntactic structural descrip-
tion (a parse tree), or even a logical form or its rendering
into a database access language like SQL, as is done in
many question-answering systems. Instead, the output must
be tuples relating individual companies, people, titles, etc.,
most of which will have never been seen by the system
before and which are not available in pre-stored tables.
These requirements led to the following features of Sparser's
design:

• The system includes a domain model, wherein classes
and individuals are represented as unique, first-class
objects and indexed by keys and tables like they
would be in a database, rather than stored as descrip-
tive expressions.

• While many individuals will have never been seen
before, a very significant number will continually
reoccur: specific titles, months, dates, numbers, etc.,
and they should be referenced directly. The system
includes facilities for defining rules for the parser as a
side-effect of defining object classes or individuals in
the domain.

• Interpretation is done as part of the parsing of linguis-
tic form, rather than as a follow-on process as is
customary. This is greatly facilitated by the next
point:

• semantic categories are used as the terms in the phrase
structure rules. 1
Space limitations do not permit properly describing th~

tie-in from the parsing of structural form (the realm of thq
parser proper) to the domain model/database. Briefly, a rule
by-rule correspondence is supported between the syntax am

1 This is sometimes referred to as using a "semantic grammar"
This nomenclature can be misleading, as the form and use of thq
phrase structure grammar is just the same as in a conventional
syntactically labeled grammar, i.e. phrases are formed on th~
basis of the adjacency of labeled constituents or terminals. AI
that changes is that most of the terms in rules are now label
like "company" or "year", rather than "NP" or "verb".

194

the semantics, 2 whereby each rewrite rule is given a corre-
sponding interpretation in the model. Individuals and types
in the model are structured so that their compositionality
mimics the compositional structure of the corresponding
English phrase(s).

The correspondence is grounded in the means by which
individual content words are defined for the parser. Briefly,
the point is that whenever one defines a class of objects or
particular individuals so that they can be represented in one's
domain model, that same act of definition can be made to
result in a rule(s) being written for the parser so that when-
ever that rule completes, the resulting edge can immediately
include a pointer to the domain object. Compound objects
such as events are formed through the composition of these
basic individuals, under the control of the interpretation rules
that accompany the rules that dictate the composition of the
phrases in the English text.

(define-title-head "president")

(define-title-modifier "assistant")

(define-month :name "December"

:abbreviation "Dec"

:position-in-the-year 12

:number-of-days 31)

2. Test Resu l t s

We put SPARSER and its First large grammar through a
substantial test at the end May 1991. The task was to
extract information on people changing jobs. The articles
were from the Wall Street Journal, as downloaded off the
Dow Jones News service; the example below is a faithful
reproduction of what one of those articles looks like as the
news service provides them.

The test consisted of 203 articles; literally the second half
of all articles that the Journal published in February 1991
whose electronic version had the tag "WNEWS". They
included long columns on advertising and law that men-
tioned a job change incidentally, and some feature articles.
About two thirds were from the Journal 's "Who's News"
column, where the article below is a typical example. It is
the first article from the test set.

AN 910214-0090
IlL Who's News: Goodyear Tire & Rubber Co.
DD 02/14/91
SO WALL STREET JOURNAL (J), PAGE B8
CO * GTWNEWS
IN PIPELINE OPERATORS (PIP) PETROLEUM

(PET) AUTO PARTS AND EQUIPMENT INCLUDING

Note that this is now "semantics" in the sense of finding the
denotation of a formula (English phrase) in some model, not in
the sense of the choice of labels in a "semantic grammar". For
example, when the parser identifies an NP that is labeled as a
"company", that labeling is syntactic and restricts how the NP
can be composed into larger phrases. The denotation of that NP,
which SPARSER constructs on the basis of its rules of
interpretation, is the particular individual company that the NP
refers to, or more precisely, the representation of that company
in SPARSER's internal data base.

TIRES (AUP)
TX GOODYEAR TIRE & RUBBER Co. (Akron,
Ohio) - George R. Hargreaves, vice president and
treasurer of Goodyear, will become president and chief
executive officer of the Celeron Corp. unit, a holding
company for Goodyear's All American Pipeline. Mr.
Hargreaves, 61, will assume the post effective March 1
and will retain his current posts. Robert W. Milk,
Celeron's current president and chief executive, as well as
an executive vice president for Goodyear, will be on
special assignment until he retires April 30.

The task was to extract relations (database tuples), such
as the one below, that give the action, person or persons
affected, the position (title), and the company or subsidiary.
In the text, this corresponds to each clause with a relevant
verb, and their variants in reduced clauses, conjunctions, rel-
atives, lists, etc. (though by convention it does not include
the appositives, since they give current information rather
than changes). It also included redundant instances, such as
nominalizations or anaphoric references (the post). There are
four instances in this article, of which SPARSER found
three, missing the meaning of his current posts because of
rule interference with a recently changed definition for cur-
rent. The example below is the fLrst of those relations.

#<edge75 80 Job-event 105

event : #<event-type become-title>

title: (#<title ~president"

#<title "chief executive officer">)

person: #<person Hargreaves, George R.>

company: #<subsidiary

of: #<company Goodyear Tire &

Rubber Company>

name: #<co-name

"Celeron Corporation">>>

Overall, SPARSER found 81% of all the possible job-
change relations (597/735). Within the relations that it
found, 81.5% of them had all of their fields fdled with the
correct values (486/597). The false positive rate was 3%
(19/616). Given the limited size of the test set (203 articles,
735 possible relations), a better way to state these results is
that the system found 4/5ths of the relations, and that 4/5ths
of those were correct in all respects. Most of the deficits in
precision were due to failing to find a value for a field, rather
than filling it with an incorrect value; the number of rela-
tions with an actual mistake in one field was 6% (36/597).

Roughly three man months went into preparing the
grammar. 3 The development corpus was the articles from

It is not very informative to report that there were 2,092 rewrite
rules in the grammar on the day of the test, since this number
includes the definition of 40 individual years, the 12 months and
their abbreviations, upper and lowercase forms of most of the
words, etc. The number also omits the grammar for proper
names and for numbers, since these are organized on a quite
different basis. To give some idea of its relevant size, we can
point out that it supported 12 topic-specific verb
subcategorization frames and 31 topic-specific verbs, 25 title
heads and 30 title modifiers, and that about 25% of the 244
mistakes counted in the test could be attributed missing some

195

December 1990 and from the first half of February.
Probably an additional two months would have been required
to bring the grammar up to full competence on that corpus;
entire classes of constructions that were known to be rele-
vant were not implemented at the time of the test, including
definite descriptions of rifles acting as people (five vice pres-
idents were ...), and conjuncts that did not have objects of
identical type directly on each side of the conjunction. The
grammar overall does, however, have reasonable competence
in definite references and pronouns, participles, relative
clauses, and appositives.

Its accuracy, especially in such areas as pp-attachment,
stems from its use of semantic rather than strictly syntactic
terms iri its rules. This means that a non-triviai amount of
extension is required for each new topic area that a grammar
is written for, though much of what is needed will be analo-
gous to what is already in place, and the syntactic base, with
its treatments auxiliaries, determiners, relative pronouns,
etc. can be carried forward unchanged.

As a program, Sparser is quite robust. In other applica-
tions the system has been run continuously without error for
more than 30 hours, and it has handled magazine articles
more than forty thousand words long.

We will now look at Sparser's algorithm for phrase struc-
ture parsing. We begin by introducing the rationale for the
algorithm by comparing it with other common phrase struc-
ture parsing methods. Then in §4 we look at the tokenizer,
the chart, and the phrase structure rules, finally moving to
the details of the algorithm and examples of its use.
Unfortunately space does not permit more than a passing
mention of the other parsing algorithms SPARSER uses in
conjunction with phrase structure parsing; a brief precis of
these companion parsing techniques can be found in
McDonald (1990).

3. Placing the phrase structure algorithm
in context

Sparser forms its analysis in one pass through the text
from left to right (beginning to end). The backbone of the
analysis is a set of context free and context sensitive phrase
structure rewrite rules of the usual sort. These rules are ap-
plied to the text to form edges (parse nodes) over the termi-
nal words and other edges-their daughter constituents. The
final set of maximal, connected edges constitutes the parser's
analysis of the text's form and linguistic relations. A paral-
lel set of projected denotations for these edges in the desig-
nated domain model constitutes Sparser's analysis of the
text's meaning, as briefly sketched in § 1.3.

3.1 Standard phrase structure algorithms
Phrase structure parsing can be seen as a kind of search.

One looks for the best analysis of the text by searching the
space of possible analyses permitted by the grammar to see
which one best describes the derivation of the text. To be
sure of arriving at the correct analysis, the search must be
thorough enough to ensure that no valid analysis is missed.

At the same time, the search space should be as small as
possible to ensure efficiency.

In considering efficiency, we must trade off the simplic-
ity of the control structure against the amount or complexity
of the state information that the algorithm calls for. The
simplest control algorithm is probably the nested loops of
the CKY algorithm (see, e.g., Aho & Ullman 1972). This
algorithm searches for parse nodes of all PoSsible word
lengths and starting positions. It looks through all legal
values of three indices, 0 _< i < j < k _< n (where n is the
length of the input text), to determine whether two adjacent
candidate daughters, one spanning the text from index i to
index j and the other from j to k, can be combined to form a
new node from i to k. This algorithm takes only a few lines
to write, but since it is driven by the space of index values,
it necessarily requires On3 time to complete its search,
along with potentially n 2 / 2 storage cells to record its
intermediate results.

Other familiar algorithms reduce the search space by, in
effect, only looking at those points in the space where there
is guaranteed to be something to see. They pay for this in a
more elaborate control structure. Using Earley's algorithm
(1970) as the model, we can summarize their procedures as
typically f'wst predicting, top-down, what constituents could
legally occur given the rules of the grammar. Then, as they
sequentially scan the terminals of the text, either from the
left end or the right, they incrementally confirm some of
these predictions by completing hypothesized rules bottom
up as all of a rule's daughter constituents are found. With
common grammars (bounded state), Earley's algorithm runs
in order of n time, but at a cost in storage potentially as
great as 62, where G is the number of rules in the grammar.

The bulk of this storage cost in Earley's algorithm is due
to its representation of the predictions, i.e. a listing of all of
the potentially completable rules that is modified as each
terminal is scanned and edges are completed. An active-edge
chart algorithm (Kay 1980, Kaplan 1973; a good textbook
treatment can be found in Winograd 1983) has a comparable
storage cost because it also maintains an online representa-
tion of the production rules that are relevant to the analysis,
though the particulars of how it represents these partially
instantiated rules are quite different from Earley's given the
differences in their control structures.

In a parser designed for unrestricted, multi-paragraph text,
like Sparser, there are problems with using any explicit run-
time representation of potentially completable rules. The
near-inevitability that the sentences will be broken up by
unknown words means that one cannot assume that all ot
the root edges in the final forest will be labeled with "S".
As a result, one must include in the set of starting labels fol
the predictions essentially all of the lefthand-side labels in
the grammar's rule set. (The treatment in Martin, Church &
Patil 1981 handles this "all predictions at all vertexes" prob-
lem very elegantly.) Given that Sparser presently contains
approximately 300 non-terminal labels in its semantic
grammar, any algorithm with an order of G storage cos1
would be prohibitively expensive.

rewrite rule and 20% to missing vocabulary (8% to the single
case hold <position>).

196

3.2 Introduction to SPARSER's algorithm

To predict everything, however, is to constrain nothing,
and so the natural alternative is of course to form phrases
bottom up, using only the "scan" and "complete" aspects of
the basic algorithm. SPARSER uses a bottom-up parsing
algorithm for its phrase structure rules. All of the edges in
its chart are what would be called "inactive" edges in the
above approaches--they all represent actual constituents in
the text rather hypothesized ones.

Without the constraint provided by prediction that every
edge will be used in the final analysis, a conventional bot-
tom-up algorithm suffers from two kinds of problems.

• Locally correct but globally misaligned edges can
result in additional, unconnected edges that will not
be part of the final, maximal analysis.

• The very same combination of constituents may be
parsed in several different orders, resulting in multi-
ple, "spurious" edges covering the same span and
with the same meaning, where only one is needed.
Sparser addresses the problem of misalignment by forc-

ing its its initial, "segment by segment" parsing to conform
to a linguistically-motivated "grid" that is formed from
phrase boundary information taken from the location of
closed-class words; see §4.4.

Sparser addresses the spurious edge problem by drasti-
cally restricting its search space of adjacent edges. When a
new edge is entered and checked against its adjacent neighbor
edges for possible completion of a new edge, only the single
"topmost" neighbor edge at a position is checked, rather than
all of the edges that have accumulated at that position as is
customary in a bottom-up algorithm. This topmost edge
will be the one most recently entered into the chart, and it
will be the longest thus far to start/end at that position.

This reduction in the search space by checking against
only topmost edges can dramatically lower the number of
checks made and edges entered. The exact amounts vary
with the grammar and the text. The greatest savings comes
in conjunctions or in cases where a head labeled with a
recursive category can take several complements from either
its left or right (e.g. a verb phrase taking auxiliaries to its
left and optional adjuncts to its right)--constructions that
are ubiquitous in news articles. The savings is multiplica-
tive: If there are m complements to the left of the head and
n complements to the right, and if each composition of a
complement and its accumulated head+complements neigh-
bor phrase yields a new edge with the same label as the head,
then the number of edges formed if all neighbors are checked
is ra*n. If only the top neighbor is checked the number is
m+n.

A further reduction in the search space is achieved
through Sparser's use of a semantic grammar. Each preter-
minal edge for a open class word will have a semantic classi-
fication (label) corresponding to the kind of thing it denotes
(see § 1.3). If a word is ambiguous it will introduce multi-
ple edges, one for each interpretation. By writing the rules
for phrasal composition in terms of these classifications, we
insure that no phrase will be formed by the parser unless it
has a semantic interpretation. This cuts down dramatically

on the amount of structural ambiguity that the parser must
cope with; indeed, in nearly all cases examined so far, poly-
semous words have been disambiguated by the first rule that
applies to them to form a larger phrase. Prepositional at-
tachment, in particular, has not proved a problem since one
is not adding a PP, waiting for a later semantic interpreta-
tion process to rule on whether the combination makes
sense, but instead adding a phrase labeled, e.g., "for-com-
pany", whose rules of combination are markedly more spe-
cific.

4. The Detai ls o f the Algor i thm

We will now look at particulars of the scan routine, the
chart, and the phrase structure rules, and then move on to
describe the phrase structure parsing algorithm in the context
of a short example. Overall, Sparser is a transducer taking
as input a stream of ascii characters and producing as output
(a) a recycled chart of completed edges with their denotations
in the domain model, and (b) a sequence of user-specified
actions triggered at hooks embedded within the core algo-
rithms such as the completion of an edge with a given label.
One use of these hooks/actions has been to collect, e.g., the
maximal job-event edges in an article so that they can be
readout into the data base. We will not discuss them further
in this paper.

4.1 Operations over terminals

At the base of the purser's operation is a scan operation
that identifies (delimits) minimal tokens within the input
character stream, consuming it in the process, and adding
edges to the chart. Phrase boundary brackets are also entered
into the chart when function words are scanned, as described
in §4.4.

As each token is delimited within the stream, it is looked
up in the word list. If it is known, the prefer'meal object that
represents it (a "word") is entered into the chart, along with
any edges dictated by the grammar. If it is unknown--new
to the parser--a word object is constructed for it, and its
string examined to characterize its morphological and capi-
talization properties. Tokens are minimal sequences of the
same character type, e.g. the sequence "$43.3 million" is
seen as six tokens: "$", "43", " . ' , "2", <one space>,
"million". All larger combinations are formed through
phrase structure or other sorts of rules.

In addition to the introduction of preterminal edges, non-
phrase structure rules of various sorts may be associated
with tokens and are executed as the tokens are scanned.
These include

• simple "polyword" rules that interpret a sequence of
terminals as a single, inseparable entity (e.g. "holding
company", "Wall S~eet Journal");

• rules for forming constituents on the basis of paired
punctuation such as parentheses or brackets, or for
special conventions such as SGML tags;

• complex rules for the formation of constituents with
"flat", Kleene star -style internal structures, in partic-
ular proper names; and

197

• arbitrary actions outside the parser's scope, e.g. to do
word counts, or to feed a topic detection algorithm
that does not use Sparser's later stages.
A proper discussion of the algorithms for these opera-

tions and their integration into the parsing algorithm as a
whole is beyond the scope of this paper. Suffice it to say
that once triggered they execute as self-contained processes,
and that their results are always recorded as one or more
edges that they add to the chart, spanning the appropriate
amount of text.

4.2 The Char t

Sparser's chart is comprised of three kinds of data struc-
tures: positions, edges, and edge-vectors. Positions provide
indices to record the sequence of the terminals and indicate
the spans of the edges. They correspond to the "vertices"
between edges as used in other chart algorithms, but here
they are first class objects with their own primary definition
in terms of the sequence of terminals, rather than being
dependent on the notion of edges. Following the usual con-
vention, positions are located between the terminals.

From the point of view of the parsing algorithm, there is
unlimited stream of positions, starting with the position
with index zero that precedes the dummy terminal represent-
ing the start of the text, and continuing terminal by terminal
until the tokenizer has exhausted the input character stream.
The implementation is actually in terms of a fixed length
array filled with position objects. This array grounds the
notion of successive positions. The Scan operation will
make the array wrap around and write over earlier position
objects as needed when the length of the text exceeds the
length of the array. The utility of this fixed, recycled
resource is that it allows SPARSER to handle texts of arbi-
trary length, so long as the array is longer than the longest
span of terminals over which some adjacency-driven phrase
structure rule is expected to apply. A length of 250 has
proved more than adequate in the Who's News domain.

Edges represent the completion of rules, or mark the
presence of terminals that are mentioned as literals in some
rule. An edge has a label, which will be the lefthand-side
term of the corresponding rule, and records the constituent
edges (or single terminal/edge) that it spans. An edge's
daughter edges can be readout recursively as a parse tree
marking the sequence (derivation) of rules that constitutes
the grammar's analysis of the sequence of terminals the edge
spans. Like positions, edges are implemented as a recycled
resource; the customary number of edge objects is 500.

Edge-vectors link positions to edges. Each position has
two edge vectors, one recording the edges that end at that
position, the other the edges that begin at that position.
The edges in each vector are sorted historically: the first edge
in a vector will be the first edge to have been introduced in
to the chart that ended/started at that position; the last edge
will be the most recent. The most recently introduced edge
is referred to at the "top" edge to end/start at the position;
this edge is pointed to directly by the edge vector object
because of its importance to the parsing algorithm. Given
the nature of the parsing algorithm it will also be the
longest edge to end/start at the position.

4.3 The phrase structure grammar
The phrase structure grammar consists of a set of rewrite

rules. The rules define patterns of labeled adjacent immedi-
ate constituen~ in the usual manner. The labels are either
literal words (or any other sort of token such as punctuation
or in some cases even whitespace), or they are atomic cate-
gory symbols.

Shown below are some of the rules used in the analysis
of the sample article, given in the usual notation as terms
on the left and righthand-sides of an arrow. The righthand
side terms are the labels on immediate constituents; the left-
hand term will be their parent, labeling any edge formed by
the completion of that rule.

(i head-of-subsidiary-phrase -> "unit"

(2 head-of-subsidiary-phrase ->

company head-of-subsidiary-phrase

(3 subsidiary-company ->

"the" head-of-subsidiary-phrase

(4 company-possessive ->

company apost rophe-s

(5 name -> company

/ company-possessive

(6) for-company -> "for" company

As part of not needing to support an "active edge" repre-
sentation of partially complete rules during runtime,
Sparser's basic operation, which we can call "check", is
defined over a pair of adjacent edges. A table is consulted to
see if there is some rule (or dotted expansion of a rule, see
below) that lists the labels of those two edges, in order, as
its righthand side. If there is such a rule, a new edge is con-
structed and entered into the chart. If a context free rule is
involved, then the edge will span both daughter edges and is
labeled with the lefthand side term of the rule. If it is a con-
text sensitive rule, then the designated daughter edge will be
respanned and given that label.

Sparser supports rules with more than two righthand side
terms by converting them to a kind of Chomsky Normal
Form using a dotted rule rule convention as described by
Martin, Church & Patil (1981).

4.4 The parsing algorithm
The phrase structure algorithm divides logically into

three processes: (1) delimiting the next segment, (2) parsing
the new edges within that segment, and (3) parsing edges
across segment boundaries. The control structure treats
these as independent processes that signal events, and
switches between them as the events dictate. We describe
each of these processes in turn, using as our example the
portion of the example article excerpted below.

... president and chief executive officer of the Celeron
Corp. unit, a holding company for Goodyear's All
American Pipeline.

The notion of a "segment" in SPARSER is a sequence o!
terminals between a matching set of phrase boundary brack-
ets that are introduced into the chart by closed class words ot
by known open-class words from the domain vocabulary,

198

e7

94President and6chiefcxecutiv~i°ffice~9°~ ~ i ~ 9 5 0tC elero~!Co~0 1 ~ , 3 5 106

I " o II II
elO

04 e3

Just below is the excerpt with its brackets. The initial
bracket was introduced by the just-preceding known verb,
"become", the other brackets were introduced by the function
words/punctuation/affixes: "and", "of', "the", ",", "a'', "for',
"'s", and ".".

[president] and [chief executive officer] o f [the Celeron
Corp. unit] , [a holding company] for [Goodyear] 's [
All American Pipeline] .]

The idea of segmenting a text on the basis of its closed
class words is an old one. A recent, comparably systematic
system where closed class words are used is described by
O'Shaughnessy (1989). And it appears that something like
this scheme is used in Hindle's FIDDITCH parser (partially
described in Hindle 1983).

The segment delimiter starts at the last position where a
segment terminated (or initially at position 0). It makes
successive calls to Scan, adding words and their immediate
pre-terminal edges to the chart and running any of the non-
phrase structure parsing processes that the words trigger.
This processes stops when a word is scanned that introduces
a close bracket ("]"). At this point control is passed the
second process, to form whatever constituents may be found
within the new segment by looking for combinations of the
pre-terminal edges.

When using a normal "all edges" bottom-up algorithm,
the criteria for which of the many trees to select is usually
to choose the combination that provides the longest consis-
tent account of the text and strands the fewest unattached
edges. We mimic that selection criteria online, by having
the parser first respect the linguistically motivated bound-
aries provided by closed class and other known words---pars-
ing within a segment before combining any edges across a
segment boundary. And second by respecting the possibility
of that the rightmost edge in a segment may be extended by
some not-yet-formed edge to its right in the adjacent seg-
ments-the algorithm does not allow a rightmost edge to be
combined with an edge to its left if the resulting edge would
not have the same label and consequently does not have the
same possibilities for rightward extensions.

In terms of the interaction of the three processes, this
means first that within-segment parsing is constrained not to
permit any combinations of the segment's rightmost edge
and its immediate neighbor edge to its left if that would
change the possibilities for extending that rightmost edge
later through a combination with some edge to its right.
(This is a trivial check against the grammar tables.)

Once the within-segment parsing has finished, the result-
ing rightmost edge is similarly examined: If it permits
rightward combinations then we return to the segment-
delimiting process, and from that to the within-segment
parsing process. Once there is finally a segment whose
rightmost edge does not have a possible rightward extension,
then the across-segment parsing process is allowed to start
operating, beginning with the then rightmost edge in the
chart overall. 4 As this third process moves leftwards form-
ing successively larger edges, the possibility of rightward
extensions is continually checked for, and the segment-
delimiting process re-entered as needed.

We can see this control structure loop in action by walk-
ing through the excerpted text. Let us assume that have
reached the point where the segment containing "the Celeron
Corp. unit" has just been delimited. The chart will be as
shown below. Positions are indicated by their index numbers
between and below each of the words. Edges are indicated by
half rectangles connecting the positions. The numbers on
the edges (e.g. "el") are for expository purposes only; they
reflect the order in which each edge was introduced. The
edge labels are not shown. For clarity the edges in the just
delimited segment are shown above the text, and those of
earlier and later segments below.

The within-segment parsing process will look for com-
binations of the edges between position 100 and 105, work-
ing rightwards from edge9. Edge9, the preterminal edge
over the word "unit", is labeled "head-of-subsidiary-phrase"
in this grammar. There are no rules in the grammar that
would extend that edge into a larger edge to its right, and so
the process is allowed to look for leftward combinations.

There are two edges adjacent to the left of edge9.
Following the restricted search space convention of the algo-
rithm, only the more recent of these, edge7, is checked.
According to rule number two of the set listed earlier, edge7
and edge9 combine to form a new edge, which will then
combined with edge5 according to rule three. There is now
one edge spanning all of the segment; if there was a gap, say
due to the presence of unknown words in the segment, then
heuristic rules would be attempted, as briefly mentioned at
the end of § 1.1.

4 In some cases this can mean that an entire sentence is scanned
before any across-segment edges are formed. This assumes, of
course, that one does not write a grammar rule where period is
not the left term of some rule, in which case the scan would
continue.

199

The new topmost edge over the segment, labeled
"subsidiary-company", does participate in rules that could
combine it with an edge to its right, and so the delimiting
process is resumed to scan until the next segment is termi-
nated. That segment will contain the words "a holding
company". Within-segment parsing will span the segment
with a phrase labeled "company-description", which in the
present grammar takes rightwards extensions and so the the
delimiting process is run again. This iterates until the
period after "pipeline" is reached, at which point across-
segment parsing is finally begun. It rolls up the accumu-
lated edges one after the other from the right. The penulti-
mate composition in this example is the title phrase (edge4)
and a "subsidiary-company" phrase spanning all the way
from position 99 to position 115 just before the period.

5. C o n c l u s i o n s : W h y is this efficient ?

Given two parsers that employ the same algorithms, the
more efficient one will be the one with the most carefully
designed and optimized implementation. The two parsers
will carry out the same steps (at the aigodthmic level), but
one will do them more quickly, consuming less storage, etc.
From this mechanical point of view Sparser comes off well
as compared with other parsing systems that the author is
familiar with: A Lisp program, it uses only preallocated
storage, which led to a three-fold increase in speed relative to
its prior implementation.

Holding the quality of the implementation constant (and
of course the choice of machine on which any tests are
made), the greatest increase in efficiency comes from im-
proving the algorithm so that fewer steps are taken. We
achieved this in two ways.

First, we employed a particular technique for reducing the
search space through which the parser searched, thereby
reducing the number of checks make against the grammar to
see whether two edge could be combined, and also reducing
the number of edges ever entered into the chart. While we
have not yet made a systematic comparison, this technique
of checking only the topmost edges at a position appears to
result in three to ten times fewer edges ever being formed
(depending on the article and the grammar) when compared
to an earlier variant of Sparser's algorithm that checking all
of the edges.

Second, we employed a grammar with semantically
labeled terms, thereby ensuring that only edges that could
receive a valid semantic interpretation would ever be formed.
This does not cut down on the number of edges checked
against the grammar, but it has a dramatic effect on the
number of edges ever allowed to be formed in the first place.
While again we do not have systematic counts (which would
effectively require having an entirely new grammar that used
only syntactic labels), our impression is that the reduction
in ambiguity that the semantic labels brought about had a
more significant effect on the number of edges and checks
than any variation in the algorithm.

Earley, J. (1970) "An Efficient Context-Free Parsing
Algorithm", Communications of the ACM, 13(2),
February 1970.
Hindle, Don (1983) "Deterministic Parsing of Syntactic
Non-fluencies", Proc. 21st Annual Meeting of the
Association for Computational Linguistics, June 15-17
1983, MIT, pp. 123-128.
Kaplan, Ronald M. (1973) "A General Syntactic Parser"
in Rustin (ed.) Natural Language Processing, Algorithmics
Press, New York, pp.193-242.
Kay, Martin (1980) "Algorithm Schemata and Data
Structures in Syntactic Processing", Xerox PARC Technical
Report CSL-80-12; reprinted in Grosz, Sparck Jones and
Webber (eds) Readings in Natural Language Processing,
Morgan Kaufmann. 1986.

Martin, William A., Kenneth W. Church, Ramesh S. Patil
(1981) "preliminary Analysis of a Breadth-First Parsing
Algorithm: Theoretical and Experimental Results" MIT
Laboratory for Computer Science Technical Report #261.

McDonald, David D. (1990) "Robust Partial-Parsing
through Incremental, Multi-level Processing: rationales and
biases", AAAI Spring Symposium paper reprinted in Jacobs
(ed.) "Text-Based Intelligent Systems: Current Research in
Text Analysis, Information Extraction, and Retrieval, GE
R&D Center technical report 90CRD198, Schenectady, NY.
O'Shaughnessey, Douglas D. (1989) "Parsing with a
Small Dictionary for Applications such as Text to Speech"
Computational Linguistics 15(2), June 1989, pp.97-108.
Winograd, Terry (1983) Language as a Cognitive Process,
Addison Wesley.

6. References

Aho, Alfred V. & Ullman, Jeffrey D. (1972) The Theory
of Parsing, Translation, and Compiling, Prentice-Hall.

200

