
The A C Q U I L E X LKB: representation issues in semi-automatic
acquisition of large lexicons

A n n C o p e s t a k e

U n i v e r s i t y of C a m b r i d g e C o m p u t e r L a b o r a t o r y

N e w M u s e u m s Si te , P e m b r o k e S t r e e t , C a m b r i d g e , C B 2 3 Q G , U K

A n n . C o p e s t a k e @ c l . c a m . a c . u k

A b s t r a c t

We describe the lexical knowledge base sys-
tem (LKB) which has been designed and im-
plemented as part of the ACQUILEX project 1
to allow the representation of multilinguM syn-
tactic and semantic information extracted from
machine readable dictionaries (MRDs), in such
a way that it is usable by natural language

processing (NLP) systems. The LKB's lex-
ical representation language (LRL) augments
typed graph-based unification with default in-
heritance, formalised in terms of default unifi-
cation of feature structures. We evaluate how
well the LRL meets the practical requirements
arising from the semi-automatic construction of
a large scale, multilingual lexicon. The system
as described is fully implemented and is being
used to represent substantial amounts of infor-
mation automatically extracted from MRDs.

1 I n t r o d u c t i o n

The ACQUILEX LKB is designed to support repre-
sentation of multilingual lexical information extracted
from machine readable dictionaries (MRDs) in such a
way that it can be utilised by NLP systems. In con-
trast to lexical database systems (LDBs) or thesaurus-
like representations (e.g. Alshawi et al., 1989; Calzolari,
1988) which represent extracted data in such a way as
to support browsing and querying, our goal is to build
a knowledge base which can be used as a highly struc-
tured reusable lexicon, albeit one much richer in lexi-
cal semantic information than those commonly used in
NLP. Thus, although we are using information which
has been derived from MRDs (possibly after consider-
able processing involving some human intervention), our
aim is not to represent the dictionary entries themselves.
Our methodology is to store the dictionary entries and
raw extracted data in our LDB (Carroll, 1990) and to
use this information to build LKB entries which could
be directly utilised by an NLP system. Briscoe (1991)
discusses the LDB/LKB distinction in more detail and
describes the ACQUILEX project as a whole.

1'The Acquisition of lexical knowledge for Natural Lan-
guage Processing systems' (Esprit BRA-3030)

Practical NLP systems need large lexicons. Even in
cases such as database front ends, where the domain of
the application is highly restricted, a practical natural
language interface must be able to cope with an exten-
sive vocabulary, in order to respond helpfully to a user
who lacks domain knowledge, for example. For applica-
tions such as text-to-speech synthesis, interfaces to large-
scale knowledge based systems, summarising and so on,
large lexicons are clearly needed; for machine transla-
tion the requirement is for a large scale, multilingua]
lexical resource. Acquisition of such information is a
serious bottleneck in building NLP systems, and MRD
sources currently seem the most promising source for
semi-automatically acquiring the syntactic and semantic
information needed.

Previous work on extracting and representing syntac-
tic information includes the work done on the Alvey
Tools lexicon project (Carroll and Grover 1989) in which
a large scale lexicon was produced semi-automatically
from LDOCE (Longman Dictionary of Contemporary
English, Procter, 1978) using a feature and unification
based representation. There has been considerable dis-
cussion and some implementation of LKBs for the repre-
sentation of semantic information extracted from MRD~,
(e.g. Boguraev and Levin, 1990; Wilks et ai, 1989). How-
ever the knowledge representation languages assumed
are rarely described formally; typically a semantic net-
work or a frame representation has been suggested, but
the interpretation and functionality of the links has been
left vague. Several networks based on taxonomies have
been built, and these are useful for tasks such as sense-
disambiguation, but are not directly utilisable as NL1 c
lexicons. For a reusable lexicon, a declarative, formallb
specified, representation language is essential.

In the ACQUILEX project we are concerned with the
extraction and representation of both syntactic and lexi-
cal semantic information. A common representation lan-
guage is needed, to allow the interaction of lexical se-
mantic and syntactic properties to be described. Ther~
is currently a considerable amount of work in lexical se-
mantics where unification based formalisms are used tc
represent this interaction (e.g. Briscoe et al. 's (1990'
account of logical metonymy (Pustejovsky, 1989, 1991)
Sanfilippo's (1990) representation of thematic and aspec.
tual information). However we also wish to structure th~
lexicon, in order to link lexical entries. This is essential

88

since we are ultimately considering lexicons with maybe
100,000 entries for each language. Although the aim of
the ACQUILEX project is to determine the feasibility of
using MRD sources, rather than at tempting to build a
lexicon of such size, we nevertheless need an LKB which
can cope with tens of thousands of entries.

There are currently several approaches to develop-
ing representation languages which allow the lexicon
to be structured, in particular by inheritance. These
include object-oriented approaches (Daelemans, 1990),
and DATR (Evans and Gazdar, 1990). We chose to
use a graph unification based representation language
for the LKB, because this offered the flexibility to rep-
resent both syntactic and semantic information in a way
which could be easily integrated with much current work
on unification grammar, parsing and generation. In con-
trast to DATR for example, the LKB's representation
language (LRL) is not specific to lexical representation.
This made it much easier to incorporate a parser in the
LKB (for testing lexical entries) and to experiment with
notions such as lexical rules and interlingual links be-
tween lexical entries. Although this means that the LRL
is in a sense too general for its main application, the typ-
ing system provides a way of constraining the represen-
tations, and the implementation can then be made more
efficient by taking advantage of such constraints.

Our typed feature structure mechanism is based on
Carpenter 's work on the HPSG formalism (Carpenter
1990) although there are some significant differences.
We augment the formalism with the more flexible psort
inheritance mechanism, which allows for default inheri-
tance. Much of the motivation behind this comes from
consideration of the sense-disambiguated taxonomies
semi-automatically derived from MRDs, which we are
using to structure the LKB (see Copestake 1990). The
notion of types, and features appropriate for a given
type, gives some of the properties of frame representa-
tion languages, and allows us to provide a well-defined,
declarative representation, which integrates relatively
straightforwardly with much current work on natural
language processing and lexical semantics.

Thus the operations that the LKB supports are (de-
fault) inheritance, (default) unification, and lexical rule
application. It does not support any more general forms
of inference and is thus designed specifically to support
processes which concern lexical rather than general rea-
soning. In the rest of this paper we first informally intro-
duce the way in which lexical entries are represented in
the LKB. We then describe the LRL, and discuss how the
design of the default inheritance system was influenced
by the application. (A fuller and more formal account
of the LRL appears in papers in Briscoe et al., forth-
coming.) We conclude with an overview of the actual
implementation and a discussion of the utility of typed
feature structures and the psort mechanism in practise.

2 L e x i c a l e n t r i e s i n t h e L K B

Consider Figure 1, which is a screen dump of the
LKB system showing part of a file containing a semi-
automatically generated lexical entry for the Dutch noun
kippevlees (chicken meat) (top right of figure), the fea-

ture structure (FS) representation of that description
(bottom right) and the fully typed feature structure
into which it is expanded in the LKB (left of figure).
See Vossen (1991) for the details of the generation of
this entry. Features are shown uppercased, types are
in lowercase bold, reentrancy is indicated by numbers
in angle brackets. The identifier for the lexical entry,
kippevlees_V_O_l, indicates that it corresponds to the
sense kippevlees 1 in the Van Dale dictionary. The un-
expanded lexical entry is relatively compact, but a large
amount of information is inherited via the type and psort
systems. The expanded lexical entry is not shown com-
pletely; the entry's syntactic type is n o u n - c a t , and the
box round this indicates that its internal structure is
not displayed. The same applies to the sense-id infor-
mation (which enables the corresponding LDB entry to
be accessed) and the argument structure. Figure 2 (left)
shows the type l e x - u n c o u n t - n o u n , which determines
the basic skeleton of the entry. Feature structures (called
constraints) are associated with types and inherited by
all FSs of a particular type. Thus the form of this lexi-
cal entry is due to the constraint on l e x - u n c o u n t - n o u n
shown in the figure.

Default inheritance from the lexical semantic struc-
ture for the lexical entry for vlees_V_0_l augments the
type information for the entry for kippevlees. We encode
a relatively rich lexical semantic structure for nouns (re-
ferred to as the 'relativised qualia structure' , RQS) based
on the notion of qualia structure, described by Puste-
jovsky (1989, 1991). Noun lexical entries are parsed to
yield a genus term, vlees in this case, and differentia.
The genus term is normally interpreted in LKB terms
as specifying the lexical entry from which information is
inherited by default; as explained in Section 4 this also
partially defines the lexical semantic type (RQS type),
which is c_na t_subs t in this example (for comestible,
natural, substance). A fragment of the RQs type hierar-
chy is also shown in Figure 2 2. The differentia can be
partially interpreted relative to the RQS type; in this ex-
ample < rqs : o r i g i n > = "k ip " is an indication that
kippevlees comes from kip; eventually this will allow their
lexical entries to be linked automatically by the appro-
priate lexical rule (Copestake and Briscoe, 1991; Copes-
take et al., 1992). The feature ORIGIN is introduced at
type n a t u r a l (the FS definition of n a t u r a l is shown in
Figure 2, top right, before expansion by inheritance from
n o m r q s) . Since n a t u r a l is a parent of c_nat_subst ,
ORIGIN is an appropriate feature for c_nat._subst.

The feature T E L I C is used to provide a slot for the se-
mantics of the verb sense which is associated with the
purpose of an entity (eating in this case). The way in
which such a representation may be used in the treat-
ment of logical metonymy was described in Briscoe et
al (1990). Other features (such a s PHYSICAL-STATE) are
used to encode information which is useful for applica-
tions such as sense-disambiguation. This at tempt to rep-
resent detailed lexical semantic information illustrates a
general principle of the ACQUILEX project; such lexical

2Unlike Carpenter(1990) we adopt a notation with the
m o s t general type at the top of any diagram, because this
seems more natural to the main users of the system.

89

I I File Edit Find W i n d o w s Tools P r e f e r e n c e s Ldb Lkb

k i p p e v l e e s - ex landed

',_ip.p~,~ee~ v a n (l - f o o d . l e x
lex-uncount-noun k ippev lees U-O_1
ORTH:kippevlees < s e n s e - l d : d i o t l o n a P u > = "URHD"
C A T : ~ - - ~ < s e n s e - i d : I d b - e n t r t j - n o > = "16810605"
SEM'. pnm2f- l femula-enti ty-eqi l lJ < s e n s e - i d : homonym-no > - "0"
SENSE-ID:lsense-id j < s e n s e - i d : s e n s e - n o > - " ! "
RQS:[c_n~t._subst < r'qs : o r - i g l n > = (" k i p ")

ORIGIN~REA: st~ing < I e x - u n c o u n t - n o u n rqs >
]I_=LIC: [strict-trams--.;em < ULEES_U_D_I < l e x - n o u n - s ign r'qs >.

IND: <0> = e~e
PRED: ~t41
ARG I : [verb- fennels

IND: ,(0>
PRED: ea t_ l_O_ l
ARG1 : <0>]

ARG2: [b im~ / - i f e rmul l
IND: <0>
PRED: stud
~RQ 1 : p-4ql t~ennul~ I
ARG2: p-pltt-I'onnul:lQJ

PHVS ICAL: true
OBJECT-INDEX: <1 > = obi
ANIMACV: f , , Ise
PHVS ICAL..STATE: s o l i d _ i
@UAL: phys.-quai I
FORM: [physfonn

VOLUME: seeJmr
WEIGHT: s e a l ~
SHA PE: nor , - indiv idul ted]

CONSTITUENCY: ~:enstituency 1
ORIGIN: kip]]

k i p p e v l e e s - de f in i t ion

'OR'~: IdllqPe~4ees
SENBE-ID: [top

LANGUAGE: 4vtah
FB-ID:kippevlees v 0 |
D ICTIONARY: ylmd
LDB-ENll:IY-NO: 16610606
HOkC>NYM-HO: 0
SEHSEJ~O: I]

RQS: [e subst
ORIGIN: kip]]

< lex-unoouet-~ou, rqs > < YLI=I~8

Expanded psor t

Figure 1: A lexical entry

entries are usable by a wide range of NLP systems be-
cause they are relatively rich and detailed; applications
which do not make use of detailed lexicM semantic infor-
mation can simply discard the information. Clearly the
converse is not true, and a more impoverished represen-
tation would be less generally useful. We thus aim for
representations which are as rich as possible in informa-
tion which we can extract automatically, and represent
formally, but which are also well motivated linguistically
and/or useful for practical NLP applications. This also
applies to our use of thematic roles in the semantics; see
the examples of LKB entries for verbs given in Sanfilippo
and Poznanski (1992, this volume).

3 The type sys t em

In the definition of a type hierarchy we follow Carpen-
ter(1990) very closely. The type hierarchy defines a par-
tial order (notated E_, "is more specific than") on the
types and specifies which types are consistent. Only
FSs with mutually consistent types can be unified - -
two types which are unordered in the hierarchy are as-
sumed to be inconsistent unless the user explicitly spec-
ifies a common subtype. Every consistent set of types
S C_ TYPE must have a unique greatest lower bound or

meet (notation [7S). 3 This condition allows FSs to be
typed deterministically - - if two FSs of types a and b
are unified the type of the result will be a [7 b, which
must be unique if it exists. If a ~ b does not exist unifi-
cation fails. In the fragment of a type hierarchy shown in
Figure 2 c__natural and n a t u r a l . . s u b s t a n c e are consis-
tent; c _ n a t u r a l R n a t u r a L s u b s t a n c e --- c_na t_subs t
Because the type hierarchy is a partial order it has prop-
erties of reflexivity, transitivity and anti-symmetry (frorr
which it follows that the type hierarchy cannot contair
cycles).

We define a typed feature structure as a tuple F =
(Q, q0,/f, 0), where the only difference from the untypec
case is that every node of a typed FS has a type, 6(q)
The type of a FS is the type of its initial node, O(qo)
The definition of subsumption of typed FSs is very sire
liar to that for untyped FSs, with the additional provis(
that the ordering must be consistent with the ordering oI
their types. We thus overload the symbol E ("is-more.

3In order to check the type hierarchy for uniqueness o
greatest lower bounds we carry out a p~irwise comparison el
types with multiple parents to see if they have a unique low
es t greater bound. Since the number of types with multipb
parents is typically much less than the totaJ number of types
this is considerably more efficient than carrying out p~irwis,
comparisons on all the types in the hierarchy.

90

r 4 Fi le Edi t F ind W i n d o w s Tools

l e x - u n c o u n t - n o x n e x p a n d e d
~erents = lex.-noun-sigm

lex-uncount-noun
OR~: [orth]
CAT: [noun-o~

CAT-TVPE: n
M-FEATS: [nominsi-m--/ests

REG-MOR PH: beele=lm
AGR: [nomined-eor

PERS: person •
HUM: number .%

GENDER: gender]
NOMINAL-FORM: nominll-ferm
CASE: oqere
COUNT: hdse]]

SEM: [unery-formuli-entit y-erg !
IND: (0>- entity
PRED: <! > = string

I ARG1." <0>]
SENSE-ID:
RGS: bomrqs]

P r e f e r e n c e s Ldb Lkb

n a t u r a l - d e f i n i t i o n ~=I~I|

! I/'l='entsmlturll = nomnls

[ORIGIN: (string basic)]

T y p e h i e r a r c h y
r~'IRQS

HRTURRL

_ ,

0 NRTURR .VS,CRL

C~J~ff~ C_DIRT..SI_m~_ T C R / ~ E HRTURRL_ I rRl~

I-M'l:lN RN I I'IRL

Figure 2: Types

specific-than", "is-subsumed-by") to express subsump-
tion of FSs as well as the ordering on the type hierarchy.
Thus if/ '1 and F2 are FSs of types tl and t~ respectively,
then F1 E F~ only if tl E t2.

3.1 C o n s t r a i n t s

Our system differs somewhat from that described by
Carpenter in that we adopt a different notion of well-
formedness of typed feature structures. In our system
every type must have exactly one associated FS which
acts as a constraint on all FSs of that type; by subsuming
all well-formed FSs of that type. The constraint also de-
fines which features are appropriate for a particular type;
a well-formed FS may only contain appropriate features.
Constraints are inherited by all subtypes of a type, but
a subtype may introduce new features (which will be in-
herited as appropriate features by all its subtypes). A
constraint on a type is a well-formed FS of that type; all
constraints must therefore be mutually consistent.

Features may only be introduced at one point in the
type hierarchy (cf Carpenter 's minimal introduction).
Because of the condition that any consistent set of types
must have a unique greatest lower bound, it is also the

case that sets of features will become valid at unique
greatest points in the type hierarchy. This allows under-
typed feature structures to be introduced into the system
by the user which are then given the most general possi-
ble type. The importance of this form of type inference
for our application is discussed in Section 5.2, below.

Constraints are given by the function

C: (TYPE, E:) --, .Z-

where ~" is the set of FS. C(t) denotes the constraint FS
associated with type t. We define the notion of appro-
priate features as follows:

D e f i n i t i o n 1 / f C(t) = (Q, qo, 6, O) we define
Appfeat(t) = reat(qo) where we define Feat(q) to be
the set of features labelling transitions from the node q
such that f e Feat(q) if 6(f, q) is defined.

The conditions on the constraint function are as fol-
lows:

M o n o t o n i c i t y Given types tl and t2, if tl ~ t2 then
C(tl) E_ C(t~)

T y p e For a given type t, if C(t) is the FS (Q, q0, 6, 0)
then O(qo) = t.

91

Consistency of constraints For all q E Q, we have
that F' = (Q',q,~,O) E C(O(q)) and Feat(q) =
Appfeat(O(q)).
We therefore disallow any occurrence of t in a sub-
structure of C(t), thus if C(t) = (Q, q0, ~, 0) then for
all q E Q, q ¢ q0 implies that 0(q) # t. Since we dis-
allow cycles in FSs such a constraint could only be
satisfied by an infinite FS, which is also disallowed.

M a x i m a l i n t r o d u c t i o n o f f e a t u r e s For every fea-
ture f E FEAT there is a unique type t =
M a z t y p e (f) such that f E Appfeat (t) and
there is no type s such that t F- s and f E
Appfeat(s) . The maximal appropriate value of a
feature M a za p p va l (f) is the type t such tha t if
C (M a z t y p e (f)) = (Q, qo, 6, 0> then t = 0(~(f, q0))

D e f i n i t i o n 2 We say that a given FS F = (Q, qo, 6, 0>
is a well-formed FS iff for all q E Q, we have that F' =
(Q', q, 6, 0) E C(O(q)) and Feat(q) = Appfeat(O(q)).

Carpenter separates the notion of typing and con-
straints. This allows a more powerful constraint lan-
guage, but complicates the system. Since the users of
the LKB were initially not familiar with feature struc-
ture representations it was impor tant to keep the sys-
tem as simple as possible, and in practice we have not
yet found the additional power of Carpenter ' s constraint
language necessary.

Some relatively minor extensions to the formalism al-
low the implementat ion of some cooccurrence restric-
tions and the disjunction of atomic types. It is necessary
to allow types with string values, representing orthogra-
phy for example, to be introduced as needed rather than
predefined; we therefore define an atomic type s t r i n g
which is allowed to have any string as a subtype without
these being explicitly specified. All subtypes of s t r i n g
are taken to be disjoint.

4 D e f a u l t i n h e r i t a n c e a n d t a x o n o m i e s

We extend the typed FS system with default inheritance.
FSs may be specified as inheriting by default f rom one
or more other (well-formed) FSs which we refer to in
this context as psorts. Psorts may correspond to (parts
of) lexical entries or be specially defined. Since psorts
may themselves inherit information, default inheritance
(notated by <, "inherits f rom") in effect operates over a
hierarchy of psorts. We prohibit cycles in the inheritance
ordering. Inheritance order must correspond to the type
hierarchy order.

Pl < P2 :=~ Typeo f (p l) E Typeof(p2)
where Pl and P2 are psorts

The typing system thus restricts default inheritance es-
sentially to the filling in of values for features which are
defined by the type system.

Default inheritance is implemented by a version of de-
fault unification, for a detailed discussion of which see
Carpenter (1991, forthcoming). In default unification,
unlike ordinary unification, inconsistent information is
ignored rather than causing failure; however the defini-
tion is complicated by the need to consider the interac-
tions between reentrant FSs. The way we deal with this

is discussed in detail in Copestake(1991, forthcoming),
but since the problematic cases seem to arise relatively
rarely in our particular application, we will not discuss
the full definition here. We use Iq< to signify default uni-
fication, where A R< B means that A is the non-default
and B the default FS. When no reentrancy interactions
are involved the definition is:

AM< B = AM ['3{¢ E q/ I A ~ ¢ #±}

where @ is the set of all component FSs of B.
The ordering on the psort hierarchy gives us an or-

dering on defaults. So for example, assume that the
following is the lexical entry for BOOK_L_I_I:

lex-noun-s lgn

"artifact_physlcal

R S T E L I C [verb-sere
Q = = [PRED = read_L_l_ l]

P H Y S I C A L - S T A T E ---- solid_a

The following pa th specifications make the lexical entries
defined inherit from BooK_L_I_I:

autobiography <rqs> < book_L_l_l <rqs>
dictionary <rqs> < book_L_l_l <rqs>

<rqs : relic : prod >
= refer_to_L_O_2

lexicon <rqs> < dictionary <rqs>

AUTOBIOGRAPHY would thus have the same values
BOoK_L_I_I for both telic and physical-state. DIC-
TIONARY will inherit the value sol id_a for the featur~
PHYSICAL-STATE but the value of TELIC overrides tha~
inherited from BOOK_L_I_ 1. LEXICON inherits its valu,
for the telic role from DICTIONARY rather than fron
BOOK_L_I_I:

lex-noun-s ign
artifact _physical

verl>-sem
R Q S = T E L I C =]PRED = refer_to_L_0_2

L
P H Y S I C A L - S T A T E = solid_a

Multiple default inheritance is allowed but is restricte,
to the case where the information from the parent psort
does not conflict. This is enforced by unifying all (full~
expanded) immediate parent psorts before default un!
fying the result with the daughter psort. The type re
striction on default inheritance means tha t all the psort
must have compatible types and the type of the daughte
must be the meet of those types. We define inheritan¢
to operate top-down; tha t is a psort will be fully e~
panded with inherited information before it is used fc
default inheritance. We adopted this approach as
are primarily interested in default inheritance betwee
fully formed lexical entries; since we disallow conflict
arising from multiple inheritance, distinctions betwee
top-down and bo t tom-up inheritance only arise with tl~
problematic cases of default unification alluded to abov,

We also allow non-default inheritance from psorts, in
plemented by ordinary unification. This is a relative]

92

recent addition to the LKB, prompted part ly by issues in
the representation of the multilingual translation links.
It also seemed to be desirable in the representation of
qualia structure, in order to allow the telic role of a noun
to be specified directly in terms of a verb sense, without
allowing other information in that lexical entry to con-
flict. Thus the entry for dictionary above would actually
specify:

<rqs : relic > =-- refer_to_L 0_2 < sem >

where == indicates non-default inheritance.
Although introducing psorts as well as types may seem

unnecessarily complex there seem to be compelling rea-
sons for doing so for this application, where we wish
to use taxonomic information extracted from MRDs to
structure the lexicon. The type hierarchy is not a suit-
able way for representing taxonomic inheritance for sev-
eral reasons. Perhaps the most important is that taxo-
nomically inherited information is defeasible, but typing
and defaults are incompatible notions. Types are needed
to enforce an organisation on the lexicon - - if this can
be overridden it is useless. Furthermore the type system
is taken to be complete, and various conditions are im-
posed on it, such as the greatest lower bound condition,
which ensure tha t deterministic classification is possible.
Taxonomies extracted from dictionaries will not be com-
plete in this sense, and will not meet these conditions.
Intuitively we would expect to be able to classify lexical
entries into categories such as h u m a n , a r t i f a c t and so
on, and to be able to state that all c r e a t u r e s are either
h u m a n s or an ima l s , since in effect this is how we are
defining those types. But we would not expect to be
able to use the finer-grained, automatical ly acquired in-
formation in this way; we will never extract all possible
categories of horse for example.

In implementat ional terms, using the type hierar-
chy to provide the fine-grain of inheritance possible
with taxonomic information would be very difficult.
A type scheme should be relatively static; any alter-
ations may affect a large amount of data and check-
ing that the scheme as a whole is still consistent is a
non-trivial process. Because the inheritance hierarchies
are derived from taxonomies and thus are derived semi-
automatical ly from MRDs, they will contain errors and it
is important that these can be corrected easily. In prac-
tise, deciding whether to make use of the type mecha-
nism or the psort mechanism has been relatively straight-
forward. If we wish to use a feature which is particular
to some group of lexical entries we have to introduce a
type, otherwise, especially if the information might be
defeasible, we use a psort.

Several of the decisions involved in designing the de-
fault inheritance system were thus influenced by the ap-
plication. The condition that the default inheritance or-
dering reflects the type ordering was part ly motivated
by the desire to be able to provide an rqs type for lexical
entries on the basis of taxonomic data alone. However it
also seems intuitively reasonable as a way of restricting
default inheritance; without some such restriction it is
difficult to make any substantive claims when default in-
heritance is used to model some linguistic phenomenon.

5 U s i n g t h e L K B

5.1 Interface and implementat ion

The LKB as described here is fully implemented in Pro-
cyon Common Lisp running on Apple Macintoshes. It
is in use by all the academic groups involved in the AC-
QUILEX project. In total there are currently about 20
users on five sites in different countries. Interaction with
the LKB is entirely menu-driven. Besides the obvious
functions to load and view types, lexical entries, psorts,
lexical rules and so on, there are various other facilities
which are necessary for the application. A very simple
(and inefficient) parser is included, to aid development
of types and lexical entries. There are tools for support-
ing multilingual linked lexicons, described in Copestake
et al. (1992). The LKB is integrated with our LDB
system so tha t information extracted from dictionary
entries stored in the LDB can be used to build LKB
lexicons.

The type system which has been developed for use on
the ACQUILEX project is fairly large (about 450 types
and 80 features). Currently nearly 15,000 lexical entries
containing syntactic and semantic information have been
stored in the LKB. The bulk of these entries are currently
made up of nouns for which the main semantic informa-
tion is inherited down semi-automatically derived tax-
onomies. Sanfilippo and Poznanski (1992) describe the
semi-automatic derivation of entries for English psycho-
logical predicates by augmenting LDOCE with thesaurus
information derived from the Longman Lexicon. Work
has begun on deriving multi-lingual linked lexicons.

Given the complexity of the FSs for lexical entries, and
the size of the lexicons to be supported by the LKB, it
is clearly not possible to store lexicons in main memory.
Lexical entries are thus stored on disk, to be expanded
as required. Entries may be indexed by type of FS at
the end of user-defined paths, and also by the psort(s)
from which they are defined to inherit, although pro-
ducing such indices for large lexicons is t ime consuming.
Checking lexical entries (for well-formedness, default in-
heritance conflicts and presence of cycles) can be carried
out at the same t ime as indexing or acquisition.

Efficiency gains arising directly from the use of types
were not a major factor in our decision to use a typed sys-
tem. Although parsing with typed FSs is more efficient
than with untyped ones, since unification will fail when
type conflict occurs, this is not particularly important in
the LKB, since most unifications will be performed while
expanding lexical entries, when the vast majori ty of uni-
fications would be expected to succeed. Since there is
some overhead in typing the FSs, the use of types proba-
bly decreases efficiency slightly, although the unifications
involved will be comparable to those needed if the same
information were conveyed by templates. Since the LKB
has to cope with large lexicons, with thousands of com-
plex lexical entries, space efficiency rather than speed is
the major consideration. The most important factor in
space efficiency is the use of inheritance, both in the type
system and the psort system, which allows unexpanded
lexical entries to be very compact.

93

5.2 T y p i n g a n d a u t o m a t i c a c q u i s i t i o n o f l a rge
l ex i cons

Our notion of typing of FSs can be regarded as a way
of getting the functionality of templates in untyped FS
formalisms, with the added advantages of type checking
and type inference. As a method of lexical organisation,
types have significant advantages over templates, espe-
cially for a large scale collaborative project. Once an
agreed type system is adopted, the compatabi l i ty of the
da ta collected by each site is guaranteed. There may of
course be problems of differing interpretation of types
and features, but this applies to any representation; to
ameliorate them we associate short documentat ion in-
formation with each type, accessible via the menu in-
terface from any point where the type is displayed. In
an untyped feature system, typographical errors and so
on may go undetected, and debugging a large template
system can be extremely difficult; a type system makes
error detection much simpler. Since a given FS has a
type permanent ly associated with it, is also much more
obvious how information has come to be inherited than
if templates are used.

Essentially the same advantages of safety and clarity
apply to strict typing of FSs as to strict typing in pro-
gramming languages. Of course a reduction in flexibility
of representation has to be accepted, once a particular
type system is adopted. It is possible to achieve a very
considerable degree of modularisation; we have found
that we could develop the noun RQS type system almost
completely independently of the verb type system, once a
small number of common types were agreed on, and that
name clashes were the only problem found when reinte-
grating the two. After approximately eight months of
use we are now on the third version of both the verb and
the noun type systems; individual users have been ex-
perimenting with various representations which are then
integrated into the general system as appropriate. En-
coding the agreed representation in terms of a type sys-
tem, rather than by means of templates, makes global
alterations relatively easy because of the localisation of
the information (for example, since a feature can only be
introduced at one point in the hierarchy, it is easy to find
all types which will be affected by a change in feature
name) and the error checking. It is important that re-
processing of raw dictionary data is avoided when a type
system is changed, particularly if user interaction is in-
volved, but storing intermediate results in the LDB as
a derived dictionary helps achieve this. Even within the
project it has proved useful to have local type systems
and lexicons, and to derive entries for these automati-
cally from the general LKB. Currently this is achieved
by ad-hoc methods; we intend to investigate the devel-
opment of tools to make transfer of information easier
and more declarative.

Ageno et al. (1992) describe one way in which the type
system can be integrated with tools for semi-automatic
analysis of dictionary definitions. Types are correlated
with the templates used in a robust pat tern matching
parser, and user interaction can be controlled by the type
system. The user is only allowed to introduce informa-
tion appropriate for a particular type, and a menu-based

interface can both inform the user of the possible values
and preclude errors.

The utility of typing for error checking when repre-
senting automatical ly acquired data can be seen in the
following simple example. The machine readable version
of LDOCE associates semantic codes with senses. Ex-
amples of such codes are P for plant, H for human, M for
male human, K for male human or animal, and so on.
When automatical ly acquiring information about nouns
from LDOCE, we specify a value for the feature SEX,
where this is possible according to the semantic codes.
Thus the automatical ly created lexical entry for bull 1 1
contains the line:

< rqs : sex > = male

In the current type system the feature sex is introduced
at type c r e a t u r e . A few LDOCE entries have incor-
rect semantic codes; I r i s h s t e w for example has code
K. Since I r i s h s t e w has rtQs type c_a r t i f ac t , which is
not consistent with c r e a t u r e , SEX was detected as an
inappropriate feature. At tempts at expansion of the au-
tomatical ly generated lexical entry caused an error mes-
sage to be output , and the user had the opportunity to
correct the mistake. If the LKB were not a typed system,
errors such as this would not be detected automatically
in this way.

In contrast, automat ic classification of lexical entries
by type, according to feature information, can be used to
force specification of appropriate information. A lexical
entry which has not been located in a taxonomy will be
given the most general possible type for its RQS. However
i f a value for the feature sex has been specified this forces
an rtQs type of c r e a t u r e . This would also force the value
of ANIMATE to be t r u e , for example.

5.3 T h e p s o r t i n h e r i t a n c e m e c h a n i s m .

Manual association of information with psorts has
proved to be a highly efficient method of acquiring in-
formation, since many psorts have hundreds of daughtel
entries. Creating 'artificial ' psorts, which can be used
where there is no simple lexicalisation of a concept, ia
also a powerful technique. Disjunctions such as persor,
or animal , for example, can be represented as the gener-
alisation of the two psorts involved. This and other case.,
of more complex taxonomic inheritance are discussed b~
Vossen and Copestake (1991, forthcoming).

We adopted the most conservative approach to multi.
pie default inheritance (i.e. information inherited frorr
multiple parents has to be consistent) because we kne~
we would have to cope with errors in extraction of in.
formation from MRDs, and with the lexicographers
original mistakes. We expected this to be overrestric.
tive, but in fact our consistency condition seems to be
met fairly natural ly by the data. Taxonomies extractec
from MRDs are in general tree-structured (once sense.
disambiguation has been performed); there do not tenc
to be many examples of genuine conjunction, for exam
pie. Multiple inheritance is mainly needed for cross
classification; artifacts for example may be defined prin
cipally in terms of their form or in terms of their func
tion, but here different sets of features are typically spec
ified, so the information is consistent. Furthermore i

94

frequently turns out to be difficult to identify a second
psort parent from the dictionary definition differentia.
However type inference resulting from feature instantia-
tion may still force a type to be assigned which represents
the cross-classification.

A c k n o w l e d g e m e n t s

Several people contributed in various ways to the design,
implementation and development of the LKB, especially
Valeria de Paiva, Antonio Sanfilippo, Ted Briscoe, John
Carroll, John Bowler and Horacio Rodriguez. We are
very grateful to Bob Carpenter for his detailed comments
on our use of types and default unification. We are grate-
ful to the publishers Longman, Biblograf, Van Dale and
Garzanti for allowing groups involved in ACQUILEX to
use their dictionaries.

R e f e r e n c e s

A. Ageno el al.. SEISD: An Environment for Extraction
of Semantic Information from On-Line Dictionaries. In
Proceedings of the 3rd Conference on Applied Natural
Language Processing, Trento, Italy, 1992.
H. Alshawi, B. Boguraev and D. Carter. Placing the dic-
tionary on-line. In B. Boguraev and T. Briscoe (eds.),
Computational lexicography for natural language process-
ing, pages 41-63, Longman, London, 1989.
B. Boguraev and B. Levin. Models for lexical knowledge
bases. In Proceedings of the 6lh Annual Conference of
the UW Center for the New OED, pages 65-78, Water-
loo, 1990.
T. Briscoe. Lexical Issues in Natural Language Process-
ing. In E. Klein and F. Veltman (eds.), Natural Language
and Speech, pages 39-68, Springer-Verlag, 1991.
T. Briscoe, A. Copestake and B. Boguraev. Enjoy the
paper: Lexical semantics via lexicology. In Proceedings
of the 13th Coling, pages 42-47, Helsinki, 1990.
T. Briscoe, A. Copestake and V. de Paiva (eds.). De-
fault Inheritance in Unification based approaches to the
Lexicon. Cambridge University Press, New York, forth-
coming.
N. Calzolari. The dictionary and the thesaurus can be
combined. In M. W. Evens (ed.), Relational models of
the lexicon, pages 75-96, Cambridge University Press,
1988.
B. Carpenter. Typed feature structures: Inheritance,
(In)equality and Extensionality. In Proceedings of the
First International Workshop on Inheritance in Natural
Language Processing, pages 9-18, Tilburg, The Nether-
lands, 1990.
B. Carpenter. Skeptical and Credulous Default Unifica-
tion with Applications to Templates and Inheritance. In
T. Briscoe, A. Copestake and V. de Paiva (eds.), De-
fault Inheritance in Unification based approaches to the
Lexicon, CUP, New York, 1991, forthcoming.
J. Carroll and C. Grover. The derivation of a large com-
putational lexicon for English from LDOCE. In B. Bogu-
racy and T. Briscoe (eds.), Computational lexicography
for natural language processing, pages 117-134, Long-
man, London, 1989.

J. Carroll. Lexical Database System: User Manual.
Esprit BRA-3030 ACQUILEX deliverable no. 2.3.3(c),
April 1990.
A. Copestake. An approach to building the hierarchical
element of a lexical knowledge base from a machine read-
able dictionary. In Proceedings of the First International
Workshop on Inheritance in Natural Language Process-
ing, pages 19-29, Tilburg, The Netherlands, 1990.
A. Copestake. Default Unification in the LKB. In T.
Briscoe, A. Copestake and V. de Paiva (eds.), Default
Inheritance in Unification based approaches to the Lexi-
con, CUP, New York, 1991, forthcoming.
A. Copestake and T. Briscoe. Lexical Operations in
a Unification Based Framework. In Proceedings of
the ACL SIGLEX Workshop on Lexical Semantics and
Knowledge Representation, pages 88-101, Berkeley, Cal-
ifornia, 1991.
A. Copestake, B. Jones, A. Sanfilippo, H. Rodriguez and
P. Vossen. Multilingual lexical representation, ms Uni-
versity of Cambridge, Computer Laboratory, 1992.
W. Daelemans. Inheritance in Object-Oriented Natu-
ral Language Processing. In Proceedings of the First
International Workshop on Inheritance in Natural Lan-
guage Processing, pages 30-39, Tilburg, The Nether-
lands, 1990.
R. Evans and G. Gazdar (editors). The DATR papers.
Cognitive Science Research Paper CSRP 139, School of
Cognitive and Computing Sciences, University of Sussex,
1990.
P. Procter (editor). Longman Dictionary of Contempo-
rary English. Longman, England, 1978.
J. Pustejovsky. Current issues in computational lexi-
cal semantics. In Proceedings of the 4th European ACL,
pages xvii-xxv, Manchester, 1989.
J. Pustejovsky. The Generative Lexicon. Computational
Linguistics, 17(4) 1991.
A. Sanfilippo. Grammatical Relations, Thematic Roles
and Verb Semantics. PhD thesis, Centre for Cognitive
Science, University of Edinburgh, 1990.
A. Sanfilippo and V. Poznanski. The Acquisition of Lex-
ical Knowledge from Combined Machine-Readable Dic-
tionary Sources. In Proceedings of the 3rd Conference
on Applied Natural Language Processing, Trento, Italy,
1992.
P. Vossen. Converting Data from a Lexical Database to
a Knowledge Base. ACQUILEX Working paper, No 27,
1991.
P. Vossen and A. Copestake. Untangling definition
structure into knowledge representation. In T. Briscoe,
A. Copestake and V. de Paiva (eds.), Default Inheritance
in Unification based approaches to the Lexicon, CUP,
New York, 1991, forthcoming.
Y. Wilks, D. Fass, C-M. Guo, J. McDonald, T. Plate
T and B. Slator. A tractable machine dictionary as a
resource for computational semantics. In B. Boguraev
and T. Briscoe (eds.), Computational lexicography for
natural language processing, pages 193-231, Longman,
London, 1989.

95

