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A b s t r a c t  

A pragmatic architecture for voice dialog ma- 
chines aimed at the equipment repair problem 
has been implemented which exhibits a num- 
ber of behaviors required for efficient human- 
machine dialog. These behaviors include: 

(1) problem solving to achieve a target 
goal, 

(2) the ability to carry out subdialogs to 
achieve appropriate subgoals and to 
pass control arbitrarily from one sub- 
dialog to another, 

(3) the use of a user model to enable use- 
ful verbal exchanges and to inhibit un- 
necessary ones, 

(4) the ability to change initiative from 
strongly computer controlled to 
strongly user controlled or somewhere 
in between, and 

(5) the ability to use context dependent 
expectations to correct speech recog- 
nition and track user movement to 
new subdialogs. 

A description of the implemented dialog control 
algorithm is given; an example shows the fun- 
damental mechanisms for achieving the listed 
behaviors. The system implementation is de- 
scribed, and results from its performance in 141 
problem solving sessions are given. 

1 A V o i c e - I n t e r a c t i v e  D i a l o g  M a c h i n e  

A limited vocabulary voice dialog system designed to aid 
a user in the repair of electronic circuits has been con- 
structed in our laboratory. The system contains a model 
of the device to be repaired, debugging and repair proce- 
dures, voice recognition and sentence processing mech- 
anisms, a user model, language generation capabilities, 
and a dialog control system which orchestrates the be- 
haviors of the various parts. This paper describes the 
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dialog control algorithm and the performance of the to- 
tal system in aiding a series of subjects in the repair of 
an electronic circuit. 

2 T a r g e t  B e h a v i o r s  

The purpose of the dialog control algorithm is to direct 
the activities of the many parts of the system to obtain 
efficient human-machine dialog. Specifically, it is aimed 
at achieving the following behaviors. 

Convergence to a goal. Efficient dialog requires that 
each participant understand the purpose of the interac- 
tion and have the necessary prerequisites to cooperate 
in its achievement. This is the intentional structure of 
[Grosz and Sidner, 1986], the goal-oriented mechanism 
that gives direction to the interaction. The primary re- 
quired facilities are a problem solver that can deduce 
the necessary action sequences and a set of subsystems 
capable of carrying out those sequences. 

Subdialogs and effective movement between them. Ef- 
ficient human dialog is usually segmented into utter- 
ance sequences, subdialogs, that are individually aimed 
at achieving relevant subgoals ([Grosz, 1978], [Linde and 
Goguen, 1978], [Polanyi and Scha, 1983], and [Reichman, 
1985]). These are called "segments" by [Grosz and Sid- 
ner, 1986J and constitute the linguistic structure defined 
in their paper. The global goal is approached by a series 
of attempts at subgoals each of which involves a set of 
interactions, the subdialogs. 

An aggressive strategy for global success is to choose 
the most likely subgoals needed for success and carry out 
their associated subdialogs. As the system proceeds on 
a given subdialog, it should always be ready to abruptly 
drop it if some other subdialog suddenly seems more ap- 
propriate. This leads to the fragmented style that so 
commonly appears in efficient human communication. 
A subdialog is opened which leads to another, then an- 
other, then a jump to a previously opened subdialog, 
and so forth, in an unpredictable order until the neces- 
sary subgoals have been solved for an overall success. 

Accounting for user knowledge and abilities. Cooper- 
ative problem solving involves maintaining a dynamic 
profile of user knowledge, termed a user model. This 
concept is described for example in [Kobsa and Wahlster, 
1988] and [Kobsa and Wahlster, 1989], [Chin, 1989], [Co- 
hen and Jones, 1989], [Finin, 1989], [Lehman and Car- 
bonell, 1989], [Morik, 1989], and [Paris, 1988]. The user 
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model specifies information needed for efficient interac- 
tion with the conversational partner. Its purpose is to 
indicate what needs to be said to the user to enable the 
user to function effectively. It also indicates what should 
be omitted because of existing user knowledge. 

Because considerable information is exchanged during 
the dialog, the user model changes continuously. Men- 
tioned facts are stored in the model as known to the 
user and are not repeated. Previously unmentioned in- 
formation may be assumed to be unknown and may be 
explained as needed. Questions from the user may indi- 
cate lack of knowledge and result in the removal of items 
from the user model. 

Change o f  initiative. A real possibility in a coopera- 
tive interaction is that  the user's problem solving ability, 
either on a given subgoal or on the global task, may ex- 
ceed that  of the machine. When this occurs, an efficient 
interaction requires that  the machine yield control so 
that  the more competent partner can lead the way to 
the fastest possible solution. Thus, the machine must be 
able to carry out its own problem solving process and di- 
rect the actions to task completion or yield to the user's 
control and respond cooperatively to his or her requests. 
This is a mixed-initiative dialog as studied by [Kitano 
and Van Ess-Dykema, 1991], [Novick, 1988], [Whittaker 
and Stenton, 1988], and [Walker and Whittaker,  1990]. 
As a pragmatic issue, we have found that  at least four 
initiative modes are useful: 

(1) directive - The computer has complete dialog 
control. It recommends a subgoal for comple- 
tion and will use whatever dialog is necessary 
to obtain the needed item of knowledge related 
to the subgoal. 

(2) suggestive - The computer still has dialog con- 
trol, but  not as strongly. The computer will 
make suggestions about the subgoal to perform 
next, but it is also willing to change the di- 
rection of the dialog according to stated user 
preferences. 

(3) declarative - The user has dialog control, but  
the computer is free to mention relevant, 
though not required, facts as a response to the 
user's statements. 

(4) passive - The user has complete dialog control. 
The computer responds directly to user ques- 
tions and passively acknowledges user state- 
ments without recommending a subgoal as the 
next course of action. 

Expectation of  user  input. Since all interactions occur 
in the context of a current subdialog, the user's input 
is far more predictable than would be indicated by a 
general grammar for English. In fact, the current subdi- 
alog specifies the focus of the interaction, the set of all 
objects and actions that  are locally appropriate. This is 
the attentional s tructure described by [Grosz and Sidner, 
1986] and its most important  function in our system is 
to predict the meaning structures the user is likely to 
communicate in a response. For illustration, the open- 
ing of a chassis cover plate will often evoke comments 
about the objects behind the cover; the measurement of 

a voltage is likely to include references to a voltmeter, 
leads, voltage range, and the locations of measurement 
points. 

The subdialog structure thus provides a set of ex- 
pected utterances at each point in the conversation and 
these have two important  roles: 

(1) The expected utterances provide strong guid- 
ance for the speech recognition system so that  
error correction can be maximized. Where 
ambiguity arises, recognition can be biased 
in the direction of meaningful statements in 
the current context. Earlier researchers who 
have investigated this insight are [Erman et 
al., 1980], [Walker, 1978], [Fink and Biermann, 
1986], [Mudler and Paulus, 1988], [Carbonell 
and Pierrel, 1988], [Young et al., 1989], and 
[Young and Proctor,  1989]. 

(2) The expected utterances from subdialogs other 
than the current one can be used to indicate 
that  one of those others is being invoked. Thus, 
expectations are one of the primary mecha- 
nisms needed for tracking the conversation as 
it jumps from subdialog to subdialog. This is 
known elsewhere as the plan recognition prob- 
lem and it has received much attention in re- 
cent years. See, for example, [Allen, 1983], [Lit- 
man and Allen, 1987], [Pollack, 1986], and [Car- 
berry, 1990]. 

Systems capable of all of the above behaviors are rare 
as has been observed by [Allen et al., 1989]: "no one 
knows how to fit all of the pieces together." One of the 
contributions of the current work is to present an archi- 
tecture that  can provide them all in the limited domair 
of electric circuit repair. [Allen et al., 1989] describe 
their own architecture which concentrates on represen- 
tations for subdialog mechanisms and their interactiom, 
with sentence level processing. Our work differs fro~ 
theirs on many dimensions including our emphasis oR 
achieving mixed-initiative, real time, voice interactiv~ 
dialog which utilizes a user model. 

3 T h e  Z e r o  L e v e l  M o d e l  

The system implemented in our laboratory (described 
in great detail in [Smith, 1991]) achieves the above b¢~ 
haviors sufficiently to enable efficient human-machine di. 
alogs in the electric circuit repair environment. The com. 
plexity of the system prevents its complete descriptior 
here. However, a zero level model  has been devised fol 
pedagogical purposes which illustrates its principles o: 
operation. This model mimicks the mechanism of th~ 
dialog machine while omit t ing the huge array of detail., 
necessary to make a real system work. A later sectiot 
in this paper describes the actual implementation an¢ 
some of its major  modules. 

The zero level model is the recursive subroutine Zmod 
Subdialog shown in figure 1. This routine is entered witl 
a single argument, a goal to be proven, and its actiont 
are to carry out a Prolog-style proof of the goal. A sid~ 
effect of the proof may be a resort to voice interaction~ 
with the user to supply necessary missing axioms, h 
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Recursive suh~ialog routine (enter with a goal to prove) 

ZmodSubdialog(Goal) 

Create sul~ialog data structures 
While there are rules available which may achieve Goal 

Grab next available rule R from knowledge; unify with Goal 
If R trivially satisfies Goal, return with success 
If R is vocalize(X) then 

Execute verbal output X (mode) 
Record expectation 
Receive response (mode) 

Record implicit and explicit meanings for response 
Transfer control depending on which expected response was received 

Successful response: Return with success 
Negative response: No action 
Confused response: Modify rule for clarification; prioritize rule for execution 
Interrupt: Match response to expected response of another subdialog; 

go to that subdialog (mode) 
If R is a general rule then 

Store its antecedents 

While there are more antecedents to process Do 
Grab the next one and enter ZmodSuh~ialog with it 
If the ZmodSubdialog exits with failure then terminate processing on rule R 

If all antecedents of R succeed, return wit h success 

NOTE: SUCCESSFUL COMPLETION OF THIS ROUTINE DOES NOT NECESSARILY MEAN TRANSFER OF CONTROL 
TO THE CALLING ROUTINE. CONTROL PASSES TO THE SUBDIALOGUE SELECTED BY THE DIALOG CONTROLLER. 

Figure 1: Zero Level Model 

fact, the only voice interactions the system undertakes 
are those called for by the theorem proving machinery. 

The ZmodSubdialog routine has a unique capabil- 
ity needed for proper modeling of subdialog behaviors. 
Specifically, its actions may be suspended at any time 
so that  control may be passed to another subdialog, 
another instantiation of ZmodSubdialog that  is aimed 
at achieving another goal. However, control may at a 
later t ime return to the current instantiation to continue 
its execution. In fact, a typical computation involves 
a set of ZmodSubdialog instantiations all advanced to 
some point in the proofs of their respective goals; con- 
trol passes back and forth between them looking for the 
most likely chances of success until, finally, enough goals 
are proven to complete the global proof. 

The algorithm becomes understandable if an example 
is followed through in full detail. Assume that  the fol- 
lowing database of Prolog-like rules are contained in the 
system knowledge base. 

General Debugging Rules 
set(knob,Y) <-- find(knob), adjust(knob,Y) 

General Dialog Rules 
Y <-- usercan(Y), vocalize(Y) 
vocalize(X) 

User Model Rules 
find(knob) 
usercan(adjust (knob,X)) 

Further assume that  ZmodSubdialog is entered with 

argument Goal = set(knob,10). Then in Prolog fashion, 
the routine grabs the rule R: 

set(knob,Y) ~-- find(knob),adjust(knob,Y), 
and at tempts to prove set(knob,10). The algorithm of- 
fers three choices depending on whether R is trivial (a 
single predicate which is not vocalize(X)), t t  is vocal- 
ize(X), or R is a rule with antecedents as is the case here. 
Thus, in this case the third alternative is followed, and 
the two antecedents are queued for sequential execution 
(find(knob) and adjust(knob,10)). Then the first an- 
tecedent is selected and ZmodSubdialog is entered with 
argument Goal = find(knob). 

The new subdialog to achieve find(knob) is short, how- 
ever, since the user model indicates the user already 
knows how to find the knob because find(knob) ex- 
ists as an available rule. In fact, ZmodSubdialog finds 
find(knob) in the rule base, enters the first choice (triv- 
ial) and returns with success. If find(knob) had not been 
found in the user model, the system might have engaged 
in dialog to achieve this goal. The  subdialog control 
mechanism is not obligated to pass control back to the 
calling routine, but  in this example we will assume that  
it does. 

Satisfactory proof of find(knob) means that  the next 
antecedent at this level, adjust(knob,10), can be at- 
tempted,  and ZmodSubdialog is entered with this goal. 
Here, our model selects R = Y ~-- usercan(Y), vocal- 
ize(Y), unifying Y with adjust(knob,lO). Then a deeper 
call to ZmodSubdialog finds usercan(adjust(knob,X)) in 
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the user model which means control passes to the an- 
tecedent vocalize(adjust(knob,10)). This yields another 
entry to ZmodSubdialog and a selection of the second 
branch. Here the system executes a voice output to 
satisfy vocalize(adjust(knob,10)): "Set the knob to one 
zero." 

The handling of the goal find(knob) illustrates how 
the user model can act to satisfy the theorem proving 
process and prevent the enunciation of unneeded infor- 
mation. As the theorem proving process proceeds, the 
fact that  a user knows something is represented in the 
knowledge base as an achieved goal. Theorem proving 
will encounter this and proceed without voice interac- 
tion. In the example, the model already indicates that  
the user knows how to find the knob so no voice interac- 
tion is needed for this goal. 

The handling of the goal adjust(knob,10) illustrates 
how the user model supports the theorem proving pro- 
cess by enabling voice dialog when it is needed. This 
goal could not be proven by application of rules available 
in the database and the proof was blocked from further 
progress. In our terminology, there was a "missing ax- 
iom" for the proof. So the system must either give up on 
this proof or try to fill in the missing axiom by resorting 
to voice dialog. In the current case, voice dialog was en- 
abled by the user model fact usercan(adjust(knob,X)). 
This fact opens the way for a query to the user. If the 
query is positively answered, then the missing axiom is 
made available. 

The role of the user model is thus to supply or fail to 
supply axioms at the bot tom of the proof tree. It both 
inhibits extraneous verbalism and enables interactions 
necessary to prove the theorem. 

Returning to the example computat ion of ZmodSub- 
dialog, a voice output  has just  been given, and the sys- 
tem then records, for this output ,  the set of expected 
r e s p  o a s e s :  

user (adjust (knob, I0) ) 
assertion(knob,position, I0) 
trivialrssponse (affirmation) 
trivialresponse (negat ire) 
query(location(knob) ) 
query (color (knob)) 

Expected responses are compiled from the domain 
knowledge base and from the dialog controller knowl- 
edge base. 

The user's response is then matched (unified) against 
the expected meanings and subsequent actions depend 
on which meaning fits best. Four different types of ac- 
tions may occur at this point. 

(1) The user might respond with some paraphrase 
of "I set the knob to one zero," or "Okay", 
which would be interpreted as successful re- 
sponses. The routine ZmodSubdialog would re- 
turn with success. 

(2) The user might also answer "No" yielding a 
failure and another cycle around the theorem 
proving loop looking for an applicable rule. 

(3) The user might respond with "What  color is 
the knob?" indicating, there may be a chance 

for a success here if there is further dialog. 
In fact, our system handles such a need for 
clarification by dynamically modifying the rule 
and reexecuting with a newly required clarifi- 
cation subdialog. Here the rule set(knob,10) 

find(knob), adjust(knob,10) becomes mod- 
ified to set(knob,10) ~-- find(knob), vocal- 
ize(knob,white), adjust(knob,10). Reexecution 
will then yield an explanation of the knob color 
followed by the previous request reenunciated: 
"Set the knob to one zero." 

(4) The user might respond with an utterance that 
matches no local expectation. Here the sys- 
tem examines expectations of other subdialogs 
and searches for an acceptable match. If one 
is found, control will pass to that subdialog. 
For example, if the response is, "The LED is 
flashing seven," and if this is an appropriate 
response in some other subdialog, control will 
pass to it. 

The control of initiative in ZmodSubdialog is handled 
by special processing at the steps marked "mode." Thus, 
in strongly directive mode, verbal outputs will be very 
positively stated, responses will be expected to be obedi- 
ent, and interrupts to other subdialogs will be restricted. 
In less demanding modes, outputs will be weaker or 
merely suggestive, a wider range of responses will be al- 
lowed, and transitions to other subdialogs will be more 
freely permitted. In the most passive mode, there are 
few outputs except answers to questions, and an inter- 
rupt to any subdialog is acceptable. 

A very important part of the dialog system is the do- 
main processor, the application dependent portion of 
the system. It receives all information related to the 
current problem and suggests debugging steps to carry 
the process further. We model calls to this processor 
with the rule: d e b u g ( X )  ~-- (debugg ings t ep (X) )* .  This 
rule is called upon to debug device X with the predi- 
cate debug(X) and its effect is to specify a sequence ot 
debugging steps which will be specified dynamically as 
the problem unfolds and which will lead to repair of the 
device. 

4 T h e  I m p l e m e n t a t i o n  

4.1 An Integrated Architecture 

The implemented system is based on a computational 
model for dialog processing presented in [Smith, 1991]. 
The model is applicable to the general class of task- 
oriented dialogs, dialogs where the computer  is assistin~ 
the user in completing a task as the dialog ensues. The 
derived implementation consists of the following mod- 
ules: 

dialog controller - This is the supervisor of the 
dialog processing system. It provides the sub- 
dialog processing highlighted in the zero level 
model. In addition, it provides the complex al- 
gorithm required to properly handle arbitrary 
clarification subdialogs and interrupts as well 
as provide the dialog expectations needed to 
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assist with input interpretation. It also main- 
tains all dialog information shared by the other 
modules and controls their activation. 

domain processor- As previously mentioned, 
it provides suggestions about debugging steps 
to pursue. In our system the domain proces- 
sor assists users in circuit repair. It receives 
user-supplied domain information from the di- 
alog controller and returns suggested debug- 
ging subgoals to the controller for considera- 
tion. The subgoal selection process weighs the 
level of expected usefulness of a subgoal with 
the number of times the subgoal has been previ- 
ously selected. Consequently, the module may 
recommend challenging previously reported in- 
formation if no noticeable progress in the task 
is being made. In this manner, the module and 
system can recover from erroneous inputs. If 
the dialog system is to be used to repair other 
devices, this is the module that needs to be re- 
placed. 

knowledge This is the repository of in- 
formation about task-oriented dialogs includ- 
ing: (1) rules for proving completion of goals; 
(2) user model information including a set of 
rules for inferring user model information from 
user input; (3) rules for determining when a 
clarification subdialog should be initiated; and 
(4) rules for defining the expectations for the 
user's response as a function of the type of goal 
being attempted. Note that the predefined in- 
formation of this module is easily modified with- 
out requiring changes to the dialog controller. 

theorem prover - This provides the general rea- 
soning capability of the system. In order to 
allow the dialog controller to control the poten- 
tially arbitrary movement among subdialogs, 
the theorem prover has been made interruptible 
and put under the supervision of the dialog con- 
troller. Consequently, the theorem prover can 
maintain a set of partially completed proofs, 
and can activate different proofs as instructed 
by the dialog controller. It can also dynami- 
cally modify the proof structure, a key feature 
for handling clarification subdialogs. Foremost, 
the theorem prover is able to suspend itself 
when it encounters a missing axiom, permit- 
ting natural language interaction to assist in 
axiom acquisition. This contrasts with tradi- 
tional theorem proving approaches (e.g. Pro- 
log) which simply engage in backtracking when 
a missing axiom is encountered. 

linguistic interface - This consists of the gen- 
eration and recognition modules. They use in- 
formation on context and expectation as pro- 
vided by the dialog controller. The linguistic 
generator was developed by Robin Gambill. It 
uses a rule-driven approach that takes as input 
an utterance specification which encapsulates 
the desired meaning and produces as output an 

English string that is sent to a text-to-speech 
converter for enunciation. Various approaches 
to generation have been described in [Danlos, 
1987], [Hovy, 1988], [Jacobs, 1987], [McKeown, 
1985], and [Patten, 1988]. The recognition 
module was designed to be able to recover from 
ungrammatical inputs. It will be described in 
greater detail below. 

4.2 M i n i m u m  dis tance  pars ing  

A challenging design problem in any natural language 
system is the development of a parser which will trans- 
late the lattice of words output by the speech recognizer 
into a phrase of some synthetic language (Prolog in our 
instance) which encapsulates the meaning of what was 
originally spoken. The design difficulty is exacerbated 
by the fact that due to speech recognition errors, the 
word lattice output by the speech recognizer is proba- 
bly different from what the user spoke, and the fact that 
users will sometimes speak with a word order or sen- 
tence construction which the designers of the parser's 
grammar did not forsee. (These, and other problems 
associated with robust parsing of speech are further de- 
scribed in [Eastman and McLean, 1981], [Hayes et aL, 
1986], and [Young et al., 1989].) In our system, pars- 
ing is accomplished using a minimum-distance parsing 
algorithm, similar to algorithms described in [Aho and 
Peterson, 1972], [Lyon, 1974], and [Levinson, 1985], but 
extended to accept a lattice as input, instead of a simple 
word list, and also extended to simultaneously perform 
syntax-directed translation [Aho and Ullman, 1969] into 
the target language. Minimum-distance parsing finds 
strings in a given context-free language which can be 
converted to a string of the input lattice with a mini- 
mum number of weighted insertions and deletions. When 
two or more strings are equidistant from the input, dia- 
log expectation is used to break the tie. The minimum- 
distance parsing algorithm is very robust - it always finds 
at least one parse - but it is also computationally expen- 
sive. Our algorithm is faster than previously reported 
parsing algorithms of the same generality, but it still re- 
quired careful hand-crafting and optimization on a fast 
machine in order to provide real-time response. It should 
also be noted that our recognition system is capable of 
selective verification of meaning. This is highlighted in 
the following sample dialogs. 

5 S a m p l e  D i a l o g s  

Figure 2 shows two dialogs obtained from actual usage 
of the system. These dialogs can be seen in [Hipp and 
Smith, 1991] that is part of the video presentation of 
the conference. The words in parentheses found beside 
certain user statements are the words actually provided 
by the speech recognizer. Where the discrepancy be- 
tween the output of the speech recognizer and the words 
produced by the user is insignificant, they have been 
omitted. 

The first dialog is an entire dialog conducted in declar- 
ative mode. Particular points to notice from this user- 
controlled dialog are: 
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Dialog 1 - Declarative Mode (C denotes the computer, U the user, and R the recognizer) 

1. C: 
2. U: 
3. C: 

4 U: 
S C: 
6 
7 
8 
9 

10. U: 
11. C: 

This is the circuit fix it shop. Hoe may I help you? 

I want to fix this rs111. 
I am familiar with that circuit. The LED is supposed to be displaying alternately 

flashing one and seven. 
The LED is displaying an alternately flashing one and the top corner of a seven. 
There is supposed to be a wire between connector nine nine and connector one zero zero. 

U: It is there. 
C: There is supposed to be a wire between connector nine nine and connector one zero two. 
U: There is no wire on connector one zero four. (R: stays know wire i connector one zero for) 
C: There is supposed to be a wire between connector one zero four and connector one zero two. 

[User adds wire and verifies the circuit is repaired, a three step process.] 

The circuit is working. 
Glad to have been of assistance. Good-bye. 

Dialog 2 - Directive Mode excerpt (begins just after computer describes what circuit does) 

8. U: 
9 .  C: 

I0: U: 
11.  C: 
12. U: 
13. C: 
14. U: 
15.  C: 

16. U: 
17 C: 
18 U: 
19 C: 
20 U: 
21 C: 
22 U: 
23 C: 

The LED is displaying nothing. 
What is the switch at when the LED is off? 
The switch is down. 
Put the switch up. 
Done. 
Put the knob to one zero. 

Which knob7 
Near the top boundary and in the center is a green region. 
right of this green region is the control knob. 

The knob is at one zero. 
What is the LED displaying? 
The LED is displaying a one and seven at the same time. 

Put the knob to zero. 

Done. 
What is the LED displaying? 
The same thing. (R: the same same) 
Did you mean to say the LED is displaying the same thing? 

Now, i n  t h e  m i d d l e  

24. U: Yes. 
[Eventually, a missing wire is detected and added, and the computer explicitly guides 
the user through the verification process. The entire dialog lasts 51 utterances.] 

Figure 2: Sample Dialogs 

(1) Successful processing of anaphoric reference at 
utterance 6. 

(2) Successful shifts to user-initiated subdialogs at 
utterances 8 and 10. 

(3) Successful recovery from speech recognition er- 
rors at utterance 8. 

The second dialog is an excerpt from a dialog con- 
ducted in directive mode (strongly computer-controlled 
dialog). The total dialog lasted 51 utterances in contrast 
to the 11 utterance declarative mode dialog. Particular 
points to notice from this excerpt include: 

(1) Computer  responses which are more directed 
and forceful in content than in dialog 1. 

(2) Successful handling of a clarification subdialog 
(utterances 13-16). 

(3) Successful verification of the implicit meaning 
of a user utterance in the presence of speech 

recognition errors in utterance 22. In contrast 
with utterance 8 of diMog 1, the system decided 
an explicit verification subdialog was required 
to ascertain the meaning of the user's utter- 
ante. 

6 Experimental Results 
The system has been implemented on a Sun 4 worksta- 
tion with the majori ty  of the code written in Quintus 
Prolog 1, and the parser in C. Speech recognition is per- 
formed by a Verbex 6000 running on an IBM PC and 
speech production is performed by a DECtalk 2 DTCO1 
text-to-speech converter. The  users are restricted to a 
125 word vocabulary in the connected speech system. 

1Quintus Prolog is a trademark of Quintus Computer Sys- 
tems, Incorporated 

2DECtalk is a trademark of Digital Equipment 
Corporation. 
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The implemented domain processor has been loaded with 
a model for a particular experimental circuit assembled 
on a Radio Shack 160-in-One Electronic Project Kit. 

After testing system prototypes with a few volunteers, 
eight subjects used the system during the formal exper- 
imental phase. After a warmup session where the sub- 
ject trained on the speech recognizer and practiced us- 
ing the system, each subject participated in two sessions 
where up to ten problems were attempted. The system 
ran in declarative mode (user-controlled dialogs) during 
one session and in directive mode (strongly computer- 
controlled dialog) in the other session. Subjects at- 
tempted a total of 141 dialogs of which 118 or 84% were 
completed successfully. 3 Subjects spoke a total of 2840 
user utterances, with 81.5% correctly interpreted by the 
system although only 50.0% were correctly recognized 
word for word by the speech recognizer. The average 
speech rate was 2.8 sentences per minute, and the aver- 
age task completion times for successful dialogs were 4.5 
and 8.5 minutes, respectively, for declarative and direc- 
tive modes. The average number of user utterances per 
successful dialog was 10.7 in declarative mode and 27.6 in 
directive mode. A detailed description of the experiment 
and results is given in [Smith, 1991]. The substantially 
shorter completion times for users in declarative mode 
can be attributed to the fact that the subjects learned 
many of the debugging procedures during the experiment 
and did not need the detailed descriptions given in the 
directive mode. 

7 Summary 

A voice interactive dialog architecture has been devel- 
oped which achieves simultaneously a variety of behav- 
iors believed to be necessary for efficient human-machine 
dialog. Goal oriented behavior is supplied by the theo- 
rem proving paradigm. Subdialogs and movement be- 
tween them is implemented with an interruptible theo- 
rem prover that maintains a set of partially completed 
proofs and can work on the most appropriate one at 
any given time. A user model is provided by a contin- 
uously changing set of rules that are referenced in the 
theorem proving process either to enable or inhibit voice 
dialog. Mixed initiative is made possible by variable 
types of processing by the output and input routines 
and by restricting or releasing the ability to interrupt to 
a new subdialog. Expectation is associated with indi- 
vidual subdialogs, is compiled from domain and dialog 
information related to each specific output, and is used 
to improve voice recognition and enable movement be- 
tween subdialogs. 

~Of the 23 dialogs which were not completed, 22 were ter- 
minated prematurely due to excessive time being spent on 
the dialog. Misunderstandings due to misrecognition were 
the cause in 13 of these failures. Misunderstandings due to 
inadequate grammar coverage occurred in 3 of the failures. 
In 4 of the failures the subject misconnected a wire. In one 
failure there was confusion by the subject about when the 
circuit was working, and in another failure there were prob- 
lems with the system software. A hardware failure caused 
termination of the final dialog. 
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