
Deriving Database Queries from Logical Forms
by Abductive Definition Expansion

M a n n y R a y n e r a n d H i y a n A l s h a w i *

S R I I n t e r n a t i o n a l

C a m b r i d g e C o m p u t e r S c i en ce R e s e a r c h C e n t r e

23 Mi l le rs Y a r d , C a m b r i d g e C B 2 1 R Q , U .K .

manny©cam, sri. com hiyan~cam, sri. tom

A b s t r a c t

The paper describes a principled approach to
the problem of deriving database queries from
logical forms produced by a general NL in-
terface. Our method at tempts to construct a
database query and a set of plausible assump-
tions, such that the logical form is equivalent
to the query given the assumptions. The do-
main information needed is provided as declar-
ative meaning postulates, including "defini-
tional equivalences". The technical basis for
the approach is that a "definition" of the form
Head A Conditions ~ Body can be read pro-
cedurally as "Expand Head to Body if it oc-
curs in an environment where Conditions can
be inferred". The "environment" is provided
by the other conjuncts occurring together with
Head in the original logical form, together with
other meaning postulates and the contents of
the database. The method has been imple-
mented in CLARE, a language and reasoning
system whose linguistic component is the SRI
Core Language Engine.

1 I n t r o d u c t i o n

The basic question addressed in this paper is that of
how to connect a general NL interface and a back-end
application in a principled way. We will assume here
that the interface takes input in a natural language and
produces a representation in some kind of enriched first-
order logic, and that the application is some kind of rela-
tional database; this is a common and important situa-
tion, and it is well-known that the problems involved are
non-trivial. The techniques used apply equally well to
other NLP applications which involve mapping linguistic
concepts to knowledge base predicates. Concrete exam-
ples in the paper will be taken from the SRI CLARE
system, working in the domain of project resource man-
agement. CLARE is a combined natural language and

*CLARE is being developed as part of a collaborative
project involving BP Research, British Aerospace, British
Telecom, Cambridge University, SRI International and the
UK Defence Research Agency. The project is funded in part
by the UK Department of Trade and Industry.

reasoning system which includes the Core Language En-
gine (or CLE, Alshawi 1992) as its language component.
The CLE produces semantic interpretations of sentences
in a notation called Quasi Logical Form. For database
interface applications, the semantic interpretations are
converted into fairly conventional logical forms before
query derivation takes place.

A NL interface like CLARE which is general (rather
than being tailored to the application) will produce log-
ical forms that essentially mirror the linguistic content
of the input. It will thus normally contain what might
be called "linguistic" predicates (i.e. word senses): for
example, the logical form for a query like

($1) List all payments made to BT during 1990.

would be expected to contain predicates corresponding
directly to payment, make and during. An appropriate
database query, on the other hand, might be a command
to search for "transaction" tuples where the "payee" field
was filled by "BT", and the "date" field by a date con-
strained to be between 1st January and 31st December,
1990. The differing nature of the two representations can
lead to several possible kinds of difficulties, depending on
how the "linguistic" and "database" representations are
connected. There are three in particular that we will
devote most of our at tention to in what follows:

1. A query can be conceptually outside the database's
domain. For example, if "payments" in (S1) is re-
placed by "phone-calls", the interface should be able
to indicate to the user that it is unable to relate the
query to the information contained in the database.

2. A query can be contingently outside the database's
domain. Thus if "1990" is replaced by "1985", it
may be possible to derive a query; however, if the
database only contains records going back to 1989,
the result will be an empty list. Presenting this to
the user without explanation is seriously misleading.

3. A query may need additional implicit assumptions
to be translatable into database form. Asking (S1)
in the context of our example Project Resource
Management domain, it is implicitly understood
that all payments referred to have been made by
SRI. If the user receives no feedback describing the
assumptions that have been made to perform the
translation, it is again possible for misunderstand-
ings to arise.

1

One at t ract ive way to a t tempt to effect the connec-
tion between LF and database query is to encode the
database as a set of unit clauses, and to build an inter-
preter for the logical forms, which encodes the relations
between linguistic and database predicates as "rules" or
"meaning postulates" written in Horn-clause form (cf.
e.g. McCord 1987). Anyone who has experimented with
this scheme will, however, know that it tends to suf-
fer from all three of the types of problem listed above.
This is hardly surprising, when one considers that Horn-
clauses are "if" rules; they give conditions for the LF's
being true, but (as pointed out in Konolige 1981), they
lack the "only if" half that says when they are false.
It is of course possible to invoke the Closed World As-
sumption (CWA); in this interpretation, finite failure is
regarded as equivalent to negation. Unfortunately, ex-
perience also shows tha t it is extremely difficult to write
meaning postulates for non-trivial domains that are valid
under this strict interpretation.

For these reasons, Scha (1983) argues that approaches
which express the connection between LF and database
query in terms of first-order logic formulas are unpromis-
ing. Instead, previous approaches to query derivation
which a t t empt to justify equivalence between queries
and semantic represenations have been limited (at least
in implemented systems) to employing restricted forms
of inference. Examples are the type inference used in
PHLIQA (Bronnenberg et al 1980) and Stallard's 're-
cursive terminological simplification' (Stallard 1986).

In this paper we will show how a more general de-
ductive approach can be taken. This depends on coding
the relationship between LF and database forms not as
Horn-clauses but as "definitional equivalences", explicit
if-and-only-if rules of a particular form. Our approach
retains computat ional t ractabil i ty by limiting the way
in which the equivalences can take part in deductions,
roughly speaking by only using them to perform directed
expansions of definitions. However we still permit non-
trivial goal-directed domain reasoning in justifying query
derivation, allowing, for example, the translation of an
LF conjuct to be influenced by any other LF conjuncts,
in contrast to the basically local translation in PHLIQA.
This approach deals with the first two points above with-
out recourse to the CWA and simultaneously allows a
clean integration of the "abductive" reasoning needed to
take care of point 3. The main technical problems to be
solved are caused by the fact that the left-hand sides of
the equivalences are generally not atomic.

The rest of the paper is organized as follows. The main
concepts are introduced in sections 2 and 3, followed by
a simple example in section 4. Section 5 discusses the
role of existential quantification in equivalences. In sec-
tion 6 we introduce abductive reasoning, and relate this
to the problems discussed above. Section 8 then briefly
describes issues related to implementing efficient search
strategies to support the various kinds of inference used,
and in section 9 we present an extended example showing
how an LF can be successively reduced by equivalences
into DB query form.

2 Q u e r y T r a n s l a t i o n a s D e f i n i t i o n

E x p a n s i o n

The task which the CLARE database interface carries
out is essentially that of translating a logical formula in
which all predicates are taken from one set of symbols
(word sense predicates) into a formula in which all pred-
icates are taken from another set (database relations)
and determining the assumptions under which the two
formulae are equivalent. Since database relations are
generally more specific than word senses, it will often
be the case that the set of assumptions is non-empty.
The same mechanism is used for translating both queries
and assertions into database form; moreover, the declar-
ative knowledge used is also compiled, using a differ-
ent method, so as to permit generation of English from
database assertions, though further description of this is
beyond the scope of the paper.

The main body of the declarative knowledge used is
coded in a set of equivalential meaning postulates in
which word sense predicates appear on one side and
database relations appear on the other. (In fact, inter-
mediate predicates, on the way to translating from lin-
guistic predicates to database predicates may appear on
either side.) The translation process then corresponds to
abductive reasoning that views the meaning postulates
as conditional definitions of the linguistic predicates in
terms of database (or intermediate) predicates, the con-
ditions being either discharged or taken as assumptions
for a particular derivation. We will therefore refer to th~
translation process as 'definition expansion' .

If the left-hand sides of equivalences needed to be arbi.
trary formulas, the whole scheme would probably be im-
practical. However, experimentat ion with CLARE ha~
lead us to believe that this is not the case; sufficient ex-
pressive power is obtained by restricting them to be nc
more complex than existentially quantified conjunction,
of atomic formulas. Thus we will assume that equivalen.
tim meaning postulates have the general form 1

(3yl, Y2,..--P1 A P2 A P3...) *--* P ' (1'

In the implementat ion these rules are written in a nota
tion illustrated by the following example,

exists ([Event] ,

and(work_onl (Event, Person, Project),
p r o j e c t l (P r o j e c t))) <->

DB_PRO JECT_MEMBER(Proj e c t , Pe r son)

in which work_onl and p r o j e c t l are linguistic predi.
cates and DB_PROJECT_MEMBER is a database relation (w(
will adhere to the convention of capitalizing names ol
database relations).

The at t ract ive aspect of this type of equivalence stem:
from the fact tha t it can be given a sensible interpre.
tat ion in terms of the procedural notion of "definition-
expansion". Neglecting for the moment the existentia
quantification, the intuitive idea is that is that (1) car
be read as "P1 can be expanded to P ' if it occurs ir

a Quantification over the yl on the left-hand side will offer
in practice be vacuous. In this and other formulas, we assum(
implicit universal quantification over free variables.

2

an environment where /)2 ^ P3... can be inferred". The
"environment" is provided by the other conjuncts occur-
ring together with P1 in the original logical form, to-
gether with other meaning postulates and the contents
of the database. This provides a framework in which
arbitrary domain inference can play a direct role in jus-
tifying the validity of the translation of an LF into a
particular database query.

3 T r a n s l a t i o n S c h e m a s

The ideas sketched out above can be formalised as the
inference rules (2), (3) and (4):

(3yl, Y2,P1 A P2 ^ P3...) ~ P ' A

Conds ~ O(P2 h Pa...)

Conds --+ (O(P1) +-+ P') (2)
where 0 is a substitution that replaces each Yi with a
different unique constant.

Conds A Q ---, (P *--, P')

Conds --+ (P A Q +-+ P' A Q) (3)

Co.ds (O(P) O(P')))
Conds --+ (3x .P +-+ 3x .P ')) (4)

where 0 substitutes a unique constant for x.
In each of these, the formulas before the :=> are the

premises, and the formula after the conclusion. The in-
ference rules can be justified within the framework of
the sequent calculus (Robinson 1979), though space lim-
itations prevent us from doing so here. (2) is the base
case: it gives sufficient conditions for using (1) to ex-
pand P1 (the head of the definition) to P ' (its body).
The other formulas, (3) and (4), are the main recursive
cases. (3) expresses expansion of a conjunction in terms
of expansion of one of its conjuncts, adding the other
conjunct to the environment of assumptions as it does
so; (4) expresses expansion of an existentially quantified
form in terms of expansion of its body, replacing the
bound variables with unique constants. We will refer to
inference rules like (3) and (4) as expansion-schemas or
just schemas. One or more such schema must be given
for each of the logical operators of the representation lan-
guage, defining the expansion of a construct built with
that operator in terms of the expansion of one of its con-
stituents.

The central use of the equivalences is thus as truth-
preserving conditional rewriting rules, which licence
translation of the head into the body in environments
where the conditions hold. There is a second use of the
equivalences as normal Horn-clauses, which as we soon
shall see is also essential to the translation process. An
equivalence of the form

/'1 ^ P 2 ^ . . . ~ 0 1 ^ 0 2 A . . .

implies the validity, for any i, of all Horn-clauses either
of the form

Pi ~- Q1 ^ Q2 A . . .

o r

Q i ' , - - P I A P 2 A . . .

We will refer to these, respectively, as normal and back-
ward Horn-clause readings of the equivalence. For exam-
ple, the rule

and(manl(X) ,employeel(X)) <->
exists ([HasCar], employee (X ,m, HasCar))

produces two normal Horn-clause readings,

manl(X) <- employee(X,m,HasCar).

employeel(X) <- employee(X,m,HasCar).

and one backward Horn-clause reading,

employee(X,m,sk l (X)) <- manl (X) ,employee l (X) .

where ski is a Skolem function. Note that in the equiv-
alential reading, as well as in the backward one, it is
essential to distinguish between existential and univer-
sal quantification of variables on the left-hand side. The
equivalential reading of a rule of type

p(X,Y) <-> q(Y)

licences, for example, expansion of p(a,b) to q(b); the
justification for this is that q(b) implies p(X,b) for any
value of X. However, if the rule is changed to

exisgs([X],p(X,Y)) <-> q(Y)

the expansion is no longer valid, since q(b) only implies
that p(X,b) is valid for some value of X, and not nec-
essarily for a. This pair of examples should clarify why
the constants involved in schema (2) must be unique.

We are now in a position to explain the basic expan-
sion process; in the interests of expositional clarity, we
will postpone mention of the abductive proof mecha-
nism until section 6. Our strategy is to use (2) and
the expansion-schemas as the kernel of a system that al-
lows expansion of logical forms, using the equivalences
as expandable complex definitions.

The actual process of expansion of a complex formula
F is a series of single expansion steps, each of which
consists of the expansion of an atomic constituent of F.
An expansion step contains the following sub-steps:

Recurse: descend through F using the expansion-
schemas, until an atomic sub-formula A is reached.
During this process, an environment E has been ac-
cumulated in which conditions will be proved, and
some bound variables will have been replaced by
unique constants.

T r a n s l a t e : find a rule Byi.(H A C) ~ B such that (i)
H (the 'head') unifies with A with m.g.u. 0, and
(ii) 0 pairs the ~Yi only with unique constants in A
deriving from existentially bound variables. If it is
then possible to prove 0(C) in E, replace A with
O(B).

Simpl i fy : if possible, apply simplifications to the result-
ing formula.

4 A S i m p l e E x a m p l e

We now present a simple example to illustrate how the
process works.

In CLARE, the sentence ($2)

(S2) Do any women work on CLARE?

3

receives the LF

exists([C,E] ,
and (woman I (C), work onl (E, C, clare)))

This has to be mapped to a query which accesses two
database relations, DB_EMPLOYEE(Emp1,Sex,HasCar)
and DB_PROJECT_MEMBER(Emp1,Project); the desired
result is thus:

exists([C,H],
and (DB_ EMP LOYEE (C, w, H),

DB_PRO JECT_MEMBER (clare, C)))

(Sex can be w or m). The most clearly non-triviM
par t is justifying the conversion between the lin-
guistic relation womanl(X) and the database relation
DB_EMPLOYEE(X,w,_). Even in the limited PRM do-
main, it is incorrect to state that "woman" is equivMent
to "employee classed as being of female sex"; there are
for example large numbers of women who are listed in
the DB_PAYEE relation as having been the recipients of
payments. It is more correct to say that a tuple of type
DB EMPLOYEE (X, w, _) is equivalent to the conjunction of
two pieces of information: firstly that X is a woman, and
secondly that she is an employee. This can be captured
in the rule

and (womanl (Person),
employeel (Person)) <->

exists ([HasCar] ,
and (DB_EMPLOYEE (Person, w, HasCar))) (EQI)

In the left-to-right direction, the rule can be read as
"womanl (X) translates to DB_EMPLOYEE(X, w,_), in con-
texts where it is possible to prove employee l (X) . "
For the rule to be of use in the present example, we
must therefore provide a justification for employee l (X) 's
holding in the context of the query. The simplest way to
ensure that this is so is to provide a Horn-clause meaning
postulate,

employeel (X) <-
DB_PROJECT_MEMBER(Proj ect, X). (HCI)

which encodes the fact that project members are em-
ployees.

Similarly, we will need an equivalence rule to convert
between work_onl and DB_PROJECT_MEMBER. Here the
fact we want to s tate is tha t project -members are pre-
cisely people who work on projects, which we write as
follows:

exists ([Event],
and(work_onl (Event, Person, Project),

p r o j e c t l (P r o j e c t))) <->
DB_PRO JECT_MEMBER(Pro j ect, Person) (EQ2)

We will also make indirect use of the rule that states
tha t projects are objects that can be found in the first
field of a DB_PROJECT tuple,

project l(Proj) <->
exists ([ProjNum, Start ,End] ,

DB_PROJECT(Pro3, ProjNum, Start, End)) (EQ3)

since this will allow us to infer (by looking in the
database) that the predicate p r o j e c t 1 holds of c l a r e .

Two expansions now produce the desired transforma-
tion; in each, the schemas (4) and (3) are used in turn

to reduce to the base case of expanding an atom. Re-
member that schema (4) replaces variables with unique
constants; when displaying the results of such a trans-
formation, we will consistently write X* to symbolize the
new constant associated with the variable X.

The first a tom to be expanded is womanl(C*),
and the corresponding environment of assumptions
is {work_onl(E*,C*,clare)}. womanl(C*) unifies
with the head of the rule (EQ1), making its con-
ditions employee l (C*) . Using the Horn-clause
meaning postulate (HCl), this can be reduced tc
DB_PROJECT_MEMBER(Proj e c t , C*). Note that C* in thi,
formula is a constant, while P r o j e c t is a variable. Thi,,
new goal can now be reduced again, by applying the rul~
(EQ2) as a backwards Horn-clause, to

and(work_onl (Event, C*, Project) ,
project I (Project))),

The first conjunct can be proved from the assumptions
instantiat ing P r o j e c t to c l a r e ; the second conjunct ca*
now be derived from the normal Horn-clause reading o
rule (EQ3), together with the fact that c l a r e is listed a
a project in the database. This completes the reasoninl
that justifies expanding womanl (C) in the context of thi
query, to

exists ([HasCar],
and(DB_EMPLOYEE (C, w, HasCar)))

The second expansion is similar; the atom to be e~
panded here is work_onl(E*,C*,clare), and the en
vironment of assumptions is {womanl(C*)}. Now th
rule (EQ2) can be used; its conditions after unif
cation with the head are p r o j e c t l (c l a r e) , the w
lidity of which follows from another application c
(EQ3). So work onl(E,C,clare) can be expanded t
DB_PROJECT_MEMBEK(clare,C), giving the desired r~
sult.

5 E x i s t e n t i a l Q u a n t i f i c a t i o n

We have so far given little justification for the complic~
tions introduced by existential quantification on the left
hand sides of equivalences. These become important i
connection with the so-called "Doctor on Board" pro[
lem (Perrault and Grosz, 1988), which in our domai
can be illustrated by a query like ($3),

(S3) Does Mary have a car?

This receives the LF

exists([C,E] ,
and(carl (C) , havel (E ,mary, C))))

for which the intended database query will be

exists (IS],
DB_EMPLOYEE (mary, S, y))

if Mary is listed as an employee. However, we also d,
mand that a query like ($4)

(S4) Which car does Mary have?

should be untranslatable, since there is clearly no way
extract the required information from the DB_EMPLOYE
relationship.

The key equivalence is (EQ4)

4

exists([E,C] ,
and(carl (C) ,

and(havel (E,P, C),
employeel (P))) <->

exist s (IS], DB_EMPLOYEE(P, S, y)) (EQ4)

which defines the linguistic predicate c a r l . When used
in the context of ($3), (EQ4) can be applied in exactly
the same way as (EQ2) and (E{~3) were in the previ-
ous example; the condition have l (E, P, C) will be proved
by looking at the other conjunct, and employee l (mary)
by referring to the database. The substi tution used to
match the c a r l predication from the LF with the head of
(EQ4) fulfills the conditions on the t rans la te step of the
expansion procedure: the argument of c a r l is bound by
an existential quantifier both in the LF and in (EQ4). In
($4), on the other hand, c a r l occurs in the LF in a con-
text where its argument is bound by a f i n d quantifier,
which is regarded as a type of universal. The matching
substi tution will thus be illegal, and translation will fail
as required.

6 A b d u c t i v e E x p a n s i o n

We now turn to the topic of abductive expansion. As
pointed out in section 1, it is normally impossible to jus-
tify an equivalence between an LF and a database query
without making use of a number of implicit assumptions,
most commonly ones s temming from the hypothesis that
the LF should be interpretable within the given domain.
The approach we take here is closely related to that pio-
neered by Hobbs and his colleagues (Hobbs et a188). We
inclu~le declarations asserting that certain goals may be
assumed without proof during the process of justifying
conditions; each such declaration associates an assump-
tion cost with a goal of this kind, and proofs with low
assumption cost are preferred. So for example the mean-
ing postulate relating the linguistic predicate paymentl
and the intermediate predicate t r a n s a c t i o n is

and (payment I (Trans) ,
payment f r o m _ S R I (T r a n s)) <->

exist s ([Cheque, Dat e, Payee],
transaction(Trans, Cheque ,Date, Payee))) (EQS)

"transactions are payments from SRI"
and there is also a Horn-clause meaning postulate

payment_from_SRI (X) <-
payment s _ r e f e r r e d _ t o _ a r e _ f rom_SRI.

and an assumpt iondeclara t ion

as sume (payment s _ r e f e r r e d _ t o_a re_ f rom_SRI,
cost (0))

The advantage of this mechanism (which may at first
sight seem rather indirect) is that it makes it possi-
ble explicitly to keep track of when the assumption
payments ._veferred_to_are_from_SRI has been used in
the course of deriving a database query from the original
LF. Applied systematically, it allows a set of assumptions
to be collected in the course of performing the transla-
tion; if required, CLARE can then inform the user as to
their nature. In the current version of the PRM applica-
tion, there are about a dozen types of assumption that

can be made. Most of these are similar to the one shown
above: that is to say, they are low-cost assumptions that
cheques, payments , projects and so on are SRI-related.

One type of assumption, however, is sufficiently dif-
ferent as to deserve explicit mention. These are related
to the problem, mentioned in Section 1, of queries "con-
tingently" outside the database 's domain. The PRM
database, for instance, is limited in time, only con-
taining records of transactions carried out over a spec-
ified eighteen-month period. Reflecting this, mean-
ing postulates distinguish between the two predicates
transaction and DB_TRANSACTION, which respectively
are intended to mean "A t ransaction of this type took
place" and "A transaction of this type is recorded in the
database". The meaning postulate linking them is

and(transaction(Id, CNum, Date, Payee),
transaction_data_available(Date)) <->

DB_TRANSACTION (Id~ CNum, Dat e, Payee) (EQ6)

transaction_data_available is defined by the further
postulate

transaction_data_available (Date) <-
and(c_before (date(17,8,89) ,Date),

c_before(Dat e, date (31,3,91))) (HC2)

The interesting thing about (HC2) is that the infor-
mation needed to prove the condition transaction-
_data_available(Date) is sometimes, though not al-
ways, present in the LF. It will be present in a query
like ($I), which explicitly mentions a period; there are
further axioms that allow the system to infer in these cir-
cumstances that the conditions are fulfilled. However, a
query like ($5),

($5) Show the largest payment to Cow's Milk.

contains no explicit mention of time. To deal with sen-
tences like ($5), there is a meaning postulate

transaction_data_available(X) <-
payments_referred_to made_between(17/8/89,

3 1 / 3 / 9 1) .

with an associated assumption declaration

as sume (
payments_referred_to_made_between(17/8/89,

3 1 / 3 / 9 1) ,
cost (15)).

The effect of charging the substantial cost of 15 units
for the assumption (the maximum permitted cost for an
expansion step being 20) is in practice strongly to pre-
fer proofs where it is not used; the net result from the
user's perspective is that s/he is informed of the contin-
gent temporal limitation of the database only when it
is actually relevant to answering a query. This has ob-
vious utility in terms of increasing the interface's user-
friendliness.

7 S i m p l i f i c a t i o n U s i n g F u n c t i o n a l
I n f o r m a t i o n

A problem arising from the definition-expansion pro-
cess which we have so far not mentioned is that the

5

database queries it produces tend to contain a consid-
erable amount of redundancy. For example, we shall
see below in section 9 that the database query derived
from sentence (S1) originally contains three separate
instances of the transaction relation, one from each
of the original linguistic predicates payment l , make2
and d u r i n g l . Roughly speaking, payraent l (Ev) ex-
pands to t r a n s a c t i o n (E v ), make2(Ev,Ag,P,To)
to t r a n s a c t i o n (E v , _, To,_) and dur ing_Temporal (Ev,
Date) to t r a n s a c t i o n (E v Date) ; the database
query will conjoin all three of these together. It is clearly
preferable, if possible, to merge them instead, yielding a
composite predication t r a n s a c t ion (Ev,_, To,Dat e).

Our framework allows an elegant solution to this prob-
lem if a little extra declarative information is provided,
specifically information concerning functional relation-
ships in predicates. The key fact is that t r a n s a c t i o n is
a function from its first argument (the transaction iden-
tifier) to the remaining ones (the cheque number, the
payee and the date). The system allows this informa-
tion to be entered as a "function" meaning postulate in
the form

funct ion (transact ion (Id, ChequeNo, Payee, Date),
[Id] -> [ChequeNo,Payee,Date])

This is treated as a concise notation for the meaning
postulate

t ransac t ion (i , cl , Pl, dl)

(t ransac t ion (i , c2, P2, d2) ~-~

Cl -- c2 A Pl = P2 A dl = d2)

which is just a conditional form of the equivalential
meaning postulates already described. It is thus pos-
sible to handle "merging" simplification of this kind, as
well as definition expansion, with a uniform mechanism.
In the current version of the system, the transformation
process operates in a cycle, alternating expansions fol-
lowed by simplifications using the same basic interpreter;
simplification consists of functional "merging" followed
by reduction of equalities where this is applicable.

The simplification process is even more impor tant
when processing assertions. Consider, for example, what
would happen to the pair of sentences ($6) - ($7) without
simplification:

(S6) Clara is an employee who has a car.

($7) Clara is a woman.

($6) t ranslates into the database form

exists([A,B] ,
DB_EMPLOYEE (clara, A, y))

(The second field in DB_EMPLOYEE indicates sex, and the
third whether or not the employee has a company car).
This can then be put into Horn-clause form as

DB_EMPLOYEE (c l a r a , skl ,y)

and asserted into the Prolog database. Since Clara is
now known to be an employee, ($7) will produce the
unit clause

DB_EMPLOYEE (clara, w, sk2)

The two clauses produced would contain all the infor-
mation entered, but they could not be entered into a re-
lational database as they stand; a normal database has
no interpretation for the Skolem constants sk l and sk2.
However, it is possible to use function information to
merge them into a single record. The trick is to arrange
things so that the system can when necessary recover
the existentially quantified form from the Skolemized
one; all assertions which contain Skolem constants are
kept together in a "local cache". Simplification of asser-
tions then proceeds according to the following sequence
of steps:

1. Retrieve all assertions from the local cache.

2. Construct a formula A, which is their logical con-
junction.

3. Let A0 be A, and let { s k l . . . s k n) be the Skolem
constants in A. For i = 1 . . . n, let xi be a new vari-
able, and let Ai be the formula 3 x i . A i _ l [ski/xi], i.e.
the result of replacing ski with xi and quantifying
existentially over it.

4. Perform normal function merging on Am, and call
the result A'.

5. Convert A' into Horn-clause form, and replace the
result in the local cache.

In the example above, this works as follows. After ($6)
and ($7) have been processed, the local cache contains
the clauses

DB_EMPLOYEE (c l a r a , sk 1, y)

DB_EMPLOYEE (clara, w, sk2)

A = A0 is then the formula

and (DB EMPLOYEE (c l a r a , sk 1, y)
DB_EMPLOYEE (c l a r a , w, sk2))

and A2 is

exists([Xl,X2]
and (DB EMPLOYEE (c l a r a , X 1, y)

DB_EMPLOYEE (c l a r a , w, X2))

Since DB_EMPLOYEE is declared functional on its first ar-
gument, the second conjunct is reduced to two equalities:
giving the formula

exists ([Xl, X2]
and (DB_EMPLOYEE (clara, X I, y)

and(Xl = w,
y = x2))

which finally simplifies to A ',

DB_EMPLOYEE (clara, w, y)

a record without Skolem constants, which can be added
to a normal relational database.

8 Search Strategies for Definition
Expansion

This section describes the problems that must be solved
at the implementat ion level if the definition-expansion
scheme is to work with acceptable efficiency. The struc-
ture of the top loop in the definition-expansion process is

6 6

roughly that of a Prolog meta-interpreter , whose clauses
correspond to the "expansion-schemas" described in sec-
tion 2.

The main predicate in the expansion interpreter con-
tains an argument used to pass the environment of
assumptions, which corresponds to the Conds in the
schemas above. The interpreter successively reduces
the formula to be expanded to a sub-formula, possibly
adding new hypotheses to the environment of assump-
tions. When an atomic formula is reached, the inter-
preter a t tempts to find an equivalence with a match-
ing head (where "matching" includes the restrictions on
quantification described at the end of section 2), and if
it does so then a t tempts to prove the conditions. If a
proof is found, the a tom is replaced by the body of the
selected equivalence.

The computat ionally expensive operation is that of
proving the conditions; since inference uses the equiva-
lences in both directions, it can easily become very inef-
ficient. The development of search techniques for mak-
ing this type of inference tractable required a significant
effort, though their detailed description is beyond the
scope of this paper. Very briefly, two main strategies are
employed. Most importantly, the application of "back-
ward" Horn clause readings of equivalences is restricted
to cases similar to that illustrated in section 4, where
there are dependencies between the expansion of two or
more conjuncts. In addition to this, there are a num-
ber of heuristics for penalizing expenditure of effort on
branches judged likely to lead to infinite recursion or re-
dundant computat ion.

For the project resource management domain, which
currently has 165 equivalence rules, the time taken for
query derivation from LF is typically between 1 and 10
seconds under Quintus Prolog on a Sun Sparcstation 2.

9 A Full Example

In this section, we will present a more elaborate illustra-
tion of CLARE's current capabilities in this area, show-
ing how the process of definition expansion works for the
sentence (S1). This initially receives an LF which after
some simplification has the form

find([PayEv] ,
exist s ([Payer, MakeEv] ,

and (payment I (PayEr),
and (make2 (MakeEv, Payer, PayEr, bt),

duringl (PayEr,
interval(date(1990, I, 1)) ,

date (1990 ,12 ,31)))))

As already indicated, the resulting database query
will have as its main predicate the relation DB_TRAN-
SACTION (I d , ChequeNo, Dat e, Payee) . We will also need
an evaluable binary predicate c b e f o r e , which takes two
representations of calendar dates and succeeds if the first
is temporally before the second. The final query will be
expressed entirely in terms of these two predicates.

The first step is to apply meaning postulates which re-
late the linguistic predicates payment l , make2 to the in-
termediate predicate t r a n s a c t i o n . Recall, as explained

in section 6 above, that transaction is distinct from
DB_TRANSACTION. The relevant postulates are

and (payment 1 (I d) ,
paymen t_ f rom_SRI (Id)) <->

exists([C,D,Payee] ,
transaction(Id, C, D, Payee)) (EQT)

'CA payment from SRI is something that enters into a
transact ion relation as its first argument" .

and(make2 (Event, As sumed_SRl, Payment, Payee),
and (payment_from_SRl (Event),

transactionl (Payment))) <->
e x i s t s ([C ,D],

and(transact ion (Event, C, D, Paye e),
Event = Payment)) (EQ8)

"A payment is made by SRI to a payee if it and the payee
enter into a transaction relation as first and fourth
arguments."

Note that the atom payment_from_SRl(PayEv), oc-
curring in the first two rules, will have to be proved using
an abductive assumption, as explained in section 6. Af-
ter (EQ7) and (EQ8) have been applied and the equality
introduced by (EQ8) removed, the form of the query is

find([PayEv],
exists ([A ,B, C,D, El,

and(transact ion (PayEv ,A, B, C),
and (transact ion (PayEv ,D, E, bt)),

duringl (PayEr,
interval(date(1990,1,1)) ,

d a t e (1 9 9 0 , 1 2 , 3 1)))))

under the abductive assumption p a y m e n t s _ r e f e r r e d -
_to_are_from_SRI.

The next rules to be applied are those that expand
duringl. The intended semantics of duringl (EI,E2)
are "El and E2 are events, and the time associated with
E1 is inside that associated with E2". The relevant equiv-
alences are now

duringl(EI,E2) <->
exists([Ti,T2] ,

and(associated_time(El ,TI),
and(associat ed_t ime (E2, T2),

c_during (TI, T2))))) (EQ9)

"The d u r i n g l relation holds between E1 and E2 if and
only if the calendar event associated with E1 is inside
that associated with E2."

and(associat ed_t ime (Id, Dat e),
transactionl (Id)) <->

exists([C,Payee,Y,M,D],
transaction (Id, C ,Date ,P)) (EQ I0)

"Date is the event associated with a transaction event if
and only if they enter into the t r a n s a c t i o n relation as
third and first arguments respectively."

Applying (EQ9) and (EQ10) in succession, the query
is translated to

find([PayEr],
exists([Date,A,B,C,D,E,F,G],
and(transact ion (PayEv, A, B, C),
and(transact ion (PayEv ,D, E ,bt)) ,
and(transact ion (PayEv ,F,Date, G),

7

and(c_dur ing (Dat e,
i n t e r v a l (d a t e (1 9 9 0 , 1 , 1)) ,

daze (1990 ,12 ,31))))))

The query is now simplified by exploiting the fact that
t r a n s a c t i o n is functional on its first argument: it is
possible to merge all three occurrences, as described in
section 7, to produce the form

find([PayEr] ,
exists([ChequeId,Dat e],

and (trans act ion (PayEr, Cheque Id, Dat e, bt),
c_during(Date,

interval (date(1990, I, I)),
d a t e (1 9 9 0 , 1 2 , 3 1)))))

Equivalences for temporal predicates then expand the
second conjunct, producing the form

f i n d ([PayEr] ,
exists ([ChequeId,Date] ,
and (transact ion (PayEr, ChequeId, Date, bt),
and(c_before (date (1990, I, I) ,Date),

c_before(Date,date(1990,12,31))))))

Finally, (EQ6) above is applied, to expand the interme-
diate predicate t r a n s a c t i o n into the database relation
DB_TKANSACTION.

When the transaction predication is expanded,
PayEv and Date are replaced by corresponding constants
PayEr* and Date*, as explained in section 2; the envi-
ronment of assumptions is the set

{ c _ b e f o r e (d a t e (1 9 9 0 , 1 , 1) ,DaZe*),
c _ b e f o r e (D a t e * , d a t e (1990 ,12 ,31) }

The relevant clauses are now (tiC2) and a meaning pos-
tulate that encodes the fact that c _ b e f o r e is transitive,
namely

c_before(Datel,Date3) <-
c_before(Datel,Date2),
c_before(Date2, Date3) (HC3)

By chaining backwards through these to the assump-
tions, it is then possible to prove that t r a n s a c t i o n -
_ d a t e _ a v a i l a b l e (D a t e *) holds, and expand to the final
form

f i n d ([PayEr] ,
exists ([ChequeId ,Date] ,
and (DB_TRANSACTI ON (PayEr, ChequeId, Date, bt),
and(c_before (dat e(1990, I, I) ,Date),

c_before(Date,date(1990,12,31)))))

This can be evaluated directly against the database;
moreover, the system has managed to prove, under
the abductive assumption payments_re fe r red_ to_are_-
from_SKI, that it is equivalent to the original query.

10 C o n c l u s i o n s a n d F u r t h e r D i r e c t i o n s

We believe that the definition-expansion mechanism pro-
vides a powerful basic functionality that CLARE will be
able to exploit in many ways, some of which we expect
to begin investigating in the near future. Several inter-
esting extensions of the framework presented here are
possible, of which we mention two.

Firstly, it can be the case that an expansion can only
be carried out if a certain set of assumptions A is made,
but that it is also possible to deduce the negation of
one of the assumptions in A from the original LF. (For
example, the query may refer to a time-period that is
explicitly outside the one covered by the database). In
a situation of this kind it is likely that the user has a
misconception concerning the contents of the database,
and will appreciate being informed of the reason for the
system's inability to answer.

It is also fairly straight-forward to use the method
to answer "meta~level" questions about the database's
knowledge (cf. Rayner and Jansen, 1987). For exam-
ple, Does the database know how many transactions were
made in July? can be answered affirmatively (relative
to assumptions) if the embedded question How many
transactions were made in July? can be expanded to
an equivalent database query. We expect to be able to
report more fully on these ideas at a later date.

R e f e r e n c e s

Alshawi, H., ed. 1992. The Core Language Engine.
Cambridge, Massachusetts: The MIT Press.

Bronneberg, W.J.H.J. , H.C. Bunt, S.P.J. Landsbergen,
R.J.H. Scha, W.J. Schoenmakers and E.P.C. van
Utteren. 1980. "The Question Answering System
PHLIQAI" . In L. Bole (ed.), Natural Language
Question Answering Systems. Macmillan.

Hobbs, J.R., M. Stickel, P. Martin and D. Edwards.
1988. "Interpretation as Abduction". Proceedings
of the 26th Annual Meeting of the Association for
Computational Linguistics, 95-103

Konolige, K. 1981. The Database as Model: A Metathe-
oretic Approch, SRI technical note 255.

McCord, M.C. 1987. "Natural Language Processing in
Prolog". In A. Walker (ed.) Knowledge Systems
and Prolog. Addison-Wesley, Reading, MA.

Perrault , C.R. and B.J. Grosz. 1988. "Natural Lan-
guage Interfaces". In Exploring Artificial Intelli-
gence: Survey Talks from the National Conferences
on Artificial Intelligence, Morgan Kaufmann, San
Mateo.

Rayner, M. and S. Janson. 1987. "Epistemic Reason-
ing, Logic Programming, and the Interpretation of
Questions". Proceedings of the 2nd International
Workshop on Natural Language Understanding and
Logic Programming, North-Holland.

Robinson, J.A. 1979. Logic: Form and Function. Edin-
burgh University Press.

Scha, R.J.H. 1983. Logical Foundations for Question An-
swering, Ph.D. Thesis, University of Groningen, the
Netherlands.

Stallard, D.G. 1986. A Terminological Simplification
Transformation for Natural Language Question-
Answering Systems. Proceedings of the 24th An-
nual Meeting of the Association for Computational
Linguistics, 241-246.

8

