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A b s t r a c t  

The paper describes a principled approach to 
the problem of deriving database queries from 
logical forms produced by a general NL in- 
terface. Our method at tempts to construct a 
database query and a set of plausible assump- 
tions, such that  the logical form is equivalent 
to the query given the assumptions. The do- 
main information needed is provided as declar- 
ative meaning postulates, including "defini- 
tional equivalences". The technical basis for 
the approach is that  a "definition" of the form 
Head A Conditions ~ Body can be read pro- 
cedurally as "Expand Head to Body if it oc- 
curs in an environment where Conditions can 
be inferred". The "environment" is provided 
by the other conjuncts occurring together with 
Head in the original logical form, together with 
other meaning postulates and the contents of 
the database. The method has been imple- 
mented in CLARE, a language and reasoning 
system whose linguistic component is the SRI 
Core Language Engine. 

1 I n t r o d u c t i o n  

The basic question addressed in this paper is that  of 
how to connect a general NL interface and a back-end 
application in a principled way. We will assume here 
that  the interface takes input in a natural language and 
produces a representation in some kind of enriched first- 
order logic, and that  the application is some kind of rela- 
tional database; this is a common and important  situa- 
tion, and it is well-known that  the problems involved are 
non-trivial. The techniques used apply equally well to 
other NLP applications which involve mapping linguistic 
concepts to knowledge base predicates. Concrete exam- 
ples in the paper will be taken from the SRI CLARE 
system, working in the domain of project resource man- 
agement. CLARE is a combined natural language and 

*CLARE is being developed as part of a collaborative 
project involving BP Research, British Aerospace, British 
Telecom, Cambridge University, SRI International and the 
UK Defence Research Agency. The project is funded in part 
by the UK Department of Trade and Industry. 

reasoning system which includes the Core Language En- 
gine (or CLE, Alshawi 1992) as its language component. 
The CLE produces semantic interpretations of sentences 
in a notation called Quasi Logical Form. For database 
interface applications, the semantic interpretations are 
converted into fairly conventional logical forms before 
query derivation takes place. 

A NL interface like CLARE which is general (rather 
than being tailored to the application) will produce log- 
ical forms that  essentially mirror the linguistic content 
of the input. It will thus normally contain what might 
be called "linguistic" predicates (i.e. word senses): for 
example, the logical form for a query like 

($1)  List all payments made to BT during 1990. 

would be expected to contain predicates corresponding 
directly to payment, make and during. An appropriate 
database query, on the other hand, might be a command 
to search for "transaction" tuples where the "payee" field 
was filled by "BT",  and the "date" field by a date con- 
strained to be between 1st January and 31st December, 
1990. The differing nature of the two representations can 
lead to several possible kinds of difficulties, depending on 
how the "linguistic" and "database" representations are 
connected. There are three in particular that we will 
devote most of our at tention to in what follows: 

1. A query can be conceptually outside the database's 
domain. For example, if "payments" in (S1) is re- 
placed by "phone-calls", the interface should be able 
to indicate to the user that  it is unable to relate the 
query to the information contained in the database. 

2. A query can be contingently outside the database's 
domain. Thus if "1990" is replaced by "1985", it 
may be possible to derive a query; however, if the 
database only contains records going back to 1989, 
the result will be an empty list. Presenting this to 
the user without explanation is seriously misleading. 

3. A query may need additional implicit assumptions 
to be translatable into database form. Asking (S1) 
in the context of our example Project Resource 
Management domain, it is implicitly understood 
that  all payments referred to have been made by 
SRI. If the user receives no feedback describing the 
assumptions that  have been made to perform the 
translation, it is again possible for misunderstand- 
ings to arise. 
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One at t ract ive way to a t tempt  to effect the connec- 
tion between LF and database query is to encode the 
database as a set of unit clauses, and to build an inter- 
preter for the logical forms, which encodes the relations 
between linguistic and database predicates as "rules" or 
"meaning postulates" written in Horn-clause form (cf. 
e.g. McCord 1987). Anyone who has experimented with 
this scheme will, however, know that  it tends to suf- 
fer from all three of the types of problem listed above. 
This is hardly surprising, when one considers that  Horn- 
clauses are "if" rules; they give conditions for the LF's 
being true, but (as pointed out in Konolige 1981), they 
lack the "only if" half that  says when they are false. 
It is of course possible to invoke the Closed World As- 
sumption (CWA); in this interpretation,  finite failure is 
regarded as equivalent to negation. Unfortunately, ex- 
perience also shows tha t  it is extremely difficult to write 
meaning postulates for non-trivial domains that  are valid 
under this strict interpretation. 

For these reasons, Scha (1983) argues that  approaches 
which express the connection between LF and database 
query in terms of first-order logic formulas are unpromis- 
ing. Instead,  previous approaches to query derivation 
which a t t empt  to justify equivalence between queries 
and semantic represenations have been limited (at least 
in implemented systems) to employing restricted forms 
of inference. Examples  are the type inference used in 
PHLIQA (Bronnenberg et al 1980) and Stallard's 're- 
cursive terminological simplification' (Stallard 1986). 

In this paper  we will show how a more general de- 
ductive approach can be taken. This depends on coding 
the relationship between LF and database forms not as 
Horn-clauses but as "definitional equivalences", explicit 
if-and-only-if rules of a particular form. Our approach 
retains computat ional  t ractabil i ty by limiting the way 
in which the equivalences can take part  in deductions, 
roughly speaking by only using them to perform directed 
expansions of definitions. However we still permit  non- 
trivial goal-directed domain reasoning in justifying query 
derivation, allowing, for example,  the translation of an 
LF conjuct to be influenced by any other LF conjuncts, 
in contrast  to the basically local translation in PHLIQA.  
This approach deals with the first two points above with- 
out recourse to the CWA and simultaneously allows a 
clean integration of the "abductive" reasoning needed to 
take care of point 3. The main technical problems to be 
solved are caused by the fact that  the left-hand sides of 
the equivalences are generally not atomic. 

The rest of the paper  is organized as follows. The main 
concepts are introduced in sections 2 and 3, followed by 
a simple example in section 4. Section 5 discusses the 
role of existential quantification in equivalences. In sec- 
tion 6 we introduce abductive reasoning, and relate this 
to the problems discussed above. Section 8 then briefly 
describes issues related to implementing efficient search 
strategies to support  the various kinds of inference used, 
and in section 9 we present an extended example showing 
how an LF can be successively reduced by equivalences 
into DB query form. 

2 Q u e r y  T r a n s l a t i o n  a s  D e f i n i t i o n  

E x p a n s i o n  

The task which the CLARE database interface carries 
out is essentially that  of translating a logical formula in 
which all predicates are taken from one set of symbols 
(word sense predicates) into a formula in which all pred- 
icates are taken from another set (database relations) 
and determining the assumptions under which the two 
formulae are equivalent. Since database relations are 
generally more specific than word senses, it will often 
be the case that  the set of assumptions is non-empty. 
The same mechanism is used for translating both queries 
and assertions into database form; moreover, the declar- 
ative knowledge used is also compiled, using a differ- 
ent method,  so as to permit  generation of English from 
database assertions, though further description of this is 
beyond the scope of the paper.  

The main body of the declarative knowledge used is 
coded in a set of equivalential meaning postulates in 
which word sense predicates appear  on one side and 
database relations appear  on the other. (In fact, inter- 
mediate predicates, on the way to translating from lin- 
guistic predicates to database predicates may appear on 
either side.) The translation process then corresponds to 
abductive reasoning that  views the meaning postulates 
as conditional definitions of the linguistic predicates in 
terms of database (or intermediate) predicates, the con- 
ditions being either discharged or taken as assumptions 
for a particular derivation. We will therefore refer to th~ 
translation process as 'definition expansion' .  

If  the left-hand sides of equivalences needed to be arbi. 
trary formulas, the whole scheme would probably be im- 
practical. However, experimentat ion with CLARE ha~ 
lead us to believe that  this is not the case; sufficient ex- 
pressive power is obtained by restricting them to be nc 
more complex than  existentially quantified conjunction, 
of atomic formulas. Thus we will assume that  equivalen. 
tim meaning postulates have the general form 1 

(3yl,  Y2,..--P1 A P2 A P3...) *--* P '  (1' 

In the implementat ion these rules are written in a nota  
tion illustrated by the following example, 

exists ( [Event] , 

and(work_onl (Event, Person, Project), 
p r o j e c t  l ( P r o j  e c t ) ) )  <-> 

DB_PRO JECT_MEMBER(Proj e c t ,  Pe r son)  

in which work_onl and p r o j e c t l  are linguistic predi. 
cates and DB_PROJECT_MEMBER is a database relation (w( 
will adhere to the convention of capitalizing names ol 
database relations). 

The at t ract ive aspect of this type of equivalence stem: 
from the fact tha t  it can be given a sensible interpre. 
tat ion in terms of the procedural  notion of "definition- 
expansion". Neglecting for the moment  the existentia 
quantification, the intuitive idea is that  is that  (1) car 
be read as "P1 can be expanded to P '  if it occurs ir 

a Quantification over the yl on the left-hand side will offer 
in practice be vacuous. In this and other formulas, we assum( 
implicit universal quantification over free variables. 
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an environment where /)2 ^ P3... can be inferred". The 
"environment" is provided by the other conjuncts occur- 
ring together with P1 in the original logical form, to- 
gether with other meaning postulates and the contents 
of the database. This provides a framework in which 
arbitrary domain inference can play a direct role in jus- 
tifying the validity of the translation of an LF into a 
particular database query. 

3 T r a n s l a t i o n  S c h e m a s  

The ideas sketched out above can be formalised as the 
inference rules (2), (3) and (4): 

(3yl, Y2, ....P1 A P2 ^ P3...) ~ P '  A 

Conds ~ O(P2 h Pa...) 

Conds --+ (O(P1) +-+ P')  (2) 
where 0 is a substitution that  replaces each Yi with a 
different unique constant. 

Conds A Q ---, (P  *--, P' )  

Conds --+ (P  A Q +-+ P'  A Q) (3) 

Co.ds (O( P) O( P') ) ) 
Conds --+ (3x .P  +-+ 3x .P ' ) )  (4) 

where 0 substitutes a unique constant for x. 
In each of these, the formulas before the :=> are the 

premises, and the formula after the conclusion. The in- 
ference rules can be justified within the framework of 
the sequent calculus (Robinson 1979), though space lim- 
itations prevent us from doing so here. (2) is the base 
case: it gives sufficient conditions for using (1) to ex- 
pand P1 (the head of the definition) to P '  (its body). 
The other formulas, (3) and (4), are the main recursive 
cases. (3) expresses expansion of a conjunction in terms 
of expansion of one of its conjuncts, adding the other 
conjunct to the environment of assumptions as it does 
so; (4) expresses expansion of an existentially quantified 
form in terms of expansion of its body, replacing the 
bound variables with unique constants. We will refer to 
inference rules like (3) and (4) as expansion-schemas or 
just schemas. One or more such schema must be given 
for each of the logical operators of the representation lan- 
guage, defining the expansion of a construct built with 
that operator in terms of the expansion of one of its con- 
stituents. 

The central use of the equivalences is thus as truth- 
preserving conditional rewriting rules, which licence 
translation of the head into the body in environments 
where the conditions hold. There is a second use of the 
equivalences as normal Horn-clauses, which as we soon 
shall see is also essential to the translation process. An 
equivalence of the form 

/'1 ^ P 2  ^ . . .  ~ 0 1 ^ 0 2  A . . .  

implies the validity, for any i, of all Horn-clauses either 
of the form 

Pi ~- Q1 ^ Q2 A . . .  

o r  

Q i ' , - - P I A P 2 A . . .  

We will refer to these, respectively, as normal and back- 
ward Horn-clause readings of the equivalence. For exam- 
ple, the rule 

and(manl(X) ,employeel(X)) <-> 
exists ( [HasCar], employee (X ,m, HasCar) ) 

produces two normal Horn-clause readings, 

manl(X) <- employee(X,m,HasCar). 

employeel(X) <- employee(X,m,HasCar). 

and one backward Horn-clause reading, 

employee(X,m,sk l (X))  <- manl (X) ,employee l (X) .  

where ski  is a Skolem function. Note that in the equiv- 
alential reading, as well as in the backward one, it is 
essential to distinguish between existential and univer- 
sal quantification of variables on the left-hand side. The 
equivalential reading of a rule of type 

p(X,Y) <-> q(Y) 

licences, for example, expansion of p(a,b) to q(b); the 
justification for this is that  q(b)  implies p(X,b)  for any 
value of X. However, if the rule is changed to 

exisgs([X],p(X,Y)) <-> q(Y) 

the expansion is no longer valid, since q(b) only implies 
that p(X,b) is valid for some value of X, and not nec- 
essarily for a. This pair of examples should clarify why 
the constants involved in schema (2) must be unique. 

We are now in a position to explain the basic expan- 
sion process; in the interests of expositional clarity, we 
will postpone mention of the abductive proof mecha- 
nism until section 6. Our strategy is to use (2) and 
the expansion-schemas as the kernel of a system that al- 
lows expansion of logical forms, using the equivalences 
as expandable complex definitions. 

The actual process of expansion of a complex formula 
F is a series of single expansion steps, each of which 
consists of the expansion of an atomic constituent of F. 
An expansion step contains the following sub-steps: 

Recurse: descend through F using the expansion- 
schemas, until an atomic sub-formula A is reached. 
During this process, an environment E has been ac- 
cumulated in which conditions will be proved, and 
some bound variables will have been replaced by 
unique constants. 

T r a n s l a t e :  find a rule Byi.(H A C) ~ B such that (i) 
H (the 'head') unifies with A with m.g.u. 0, and 
(ii) 0 pairs the ~Yi only with unique constants in A 
deriving from existentially bound variables. If it is 
then possible to prove 0(C) in E,  replace A with 
O(B). 

Simpl i fy :  if possible, apply simplifications to the result- 
ing formula. 

4 A S i m p l e  E x a m p l e  

We now present a simple example to illustrate how the 
process works. 

In CLARE, the sentence ($2) 

(S2) Do any women work on CLARE? 
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receives the LF 

exists( [C,E] , 
and (woman I (C), work onl (E, C, clare) ) ) 

This has to be mapped to a query which accesses two 
database relations, DB_EMPLOYEE(Emp1,Sex,HasCar) 
and DB_PROJECT_MEMBER(Emp1,Project); the desired 
result is thus: 

exists([C,H], 
and (DB_ EMP LOYEE ( C, w, H ), 

DB_PRO JECT_MEMBER (clare, C) ) ) 

(Sex can be w or  m). The most clearly non-triviM 
par t  is justifying the conversion between the lin- 
guistic relation womanl(X) and the database relation 
DB_EMPLOYEE(X,w,_). Even in the limited PRM do- 
main, it is incorrect to state that  "woman" is equivMent 
to "employee classed as being of female sex"; there are 
for example large numbers of women who are listed in 
the DB_PAYEE relation as having been the recipients of 
payments.  It  is more correct to say that  a tuple of type 
DB EMPLOYEE (X, w, _) is equivalent to the conjunction of 
two pieces of information: firstly that  X is a woman, and 
secondly that  she is an employee. This can be captured 
in the rule 

and (womanl (Person), 
employeel (Person)) <-> 

exists ( [HasCar] , 
and (DB_EMPLOYEE (Person, w, HasCar) ) ) (EQI) 

In the left-to-right direction, the rule can be read as 
"womanl (X) translates to DB_EMPLOYEE(X, w,_),  in con- 
texts where it is possible to prove employee l (X) . "  
For the rule to be of use in the present example, we 
must therefore provide a justification for employee l  (X) 's 
holding in the context of the query. The simplest way to 
ensure that  this is so is to provide a Horn-clause meaning 
postulate, 

employeel (X) <- 
DB_PROJECT_MEMBER(Proj ect, X). (HCI) 

which encodes the fact that  project members  are em- 
ployees. 

Similarly, we will need an equivalence rule to convert 
between work_onl  and DB_PROJECT_MEMBER. Here the 
fact we want to s tate  is tha t  project -members  are pre- 
cisely people who work on projects, which we write as 
follows: 

exists ( [Event], 
and(work_onl (Event, Person, Project ), 

p r o j e c t  l ( P r o j e c t ) ) )  <-> 
DB_PRO JECT_MEMBER(Pro j ect, Person) (EQ2) 

We will also make indirect use of the rule that states 
tha t  projects are objects that  can be found in the first 
field of a DB_PROJECT tuple, 

project l(Proj) <-> 
exists ( [ProjNum, Start ,End] , 

DB_PROJECT(Pro3, ProjNum, Start, End) ) (EQ3) 

since this will allow us to infer (by looking in the 
database)  that  the predicate p r o j e c t  1 holds of c l a r e .  

Two expansions now produce the desired transforma- 
tion; in each, the schemas (4) and (3) are used in turn 

to reduce to the base case of expanding an atom. Re- 
member  that  schema (4) replaces variables with unique 
constants; when displaying the results of such a trans- 
formation, we will consistently write X* to symbolize the 
new constant associated with the variable X. 

The first a tom to be expanded is womanl(C*), 
and the corresponding environment of assumptions 
is {work_onl(E*,C*,clare)}. womanl(C*) unifies 
with the head of the rule (EQ1), making its con- 
ditions employee l (C*) .  Using the Horn-clause 
meaning postulate (HCl), this can be reduced tc 
DB_PROJECT_MEMBER(Proj e c t ,  C*). Note that  C* in thi, 
formula is a constant,  while P r o j e c t  is a variable. Thi,, 
new goal can now be reduced again, by applying the rul~ 
(EQ2) as a backwards Horn-clause, to 

and(work_onl (Event, C*, Project) , 
project I (Project ) ) ), 

The first conjunct can be proved from the assumptions 
instantiat ing P r o j e c t  to c l a r e ;  the second conjunct ca* 
now be derived from the normal Horn-clause reading o 
rule (EQ3), together with the fact that  c l a r e  is listed a 
a project in the database.  This completes the reasoninl 
that  justifies expanding womanl (C) in the context of thi 
query, to 

exists ( [HasCar], 
and(DB_EMPLOYEE ( C, w, HasCar) ) ) 

The second expansion is similar; the atom to be e~ 
panded here is work_onl(E*,C*,clare), and the en 
vironment  of assumptions is {womanl(C*)}. Now th 
rule (EQ2) can be used; its conditions after unif 
cation with the head are p r o j e c t l ( c l a r e ) ,  the w 
lidity of which follows from another application c 
(EQ3). So work onl(E,C,clare) can be expanded t 
DB_PROJECT_MEMBEK(clare,C), giving the desired r~ 
sult. 

5 E x i s t e n t i a l  Q u a n t i f i c a t i o n  

We have so far given little justification for the complic~ 
tions introduced by existential quantification on the left 
hand sides of equivalences. These become important  i 
connection with the so-called "Doctor on Board" pro[ 
lem (Perrault  and Grosz, 1988), which in our domai 
can be illustrated by a query like ($3), 

(S3) Does Mary have a car? 

This receives the LF 

exists([C,E] , 
and(carl (C) , havel (E ,mary, C) ) ) ) 

for which the intended database query will be 

exists ( IS], 
DB_EMPLOYEE (mary, S, y) ) 

if Mary is listed as an employee. However, we also d, 
mand that  a query like ($4) 

(S4) Which car does Mary have? 

should be untranslatable,  since there is clearly no way 
extract  the required information from the DB_EMPLOYE 
relationship. 

The key equivalence is (EQ4) 
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exists([E,C] , 
and( carl (C) , 

and(havel (E,P, C), 
employeel (P))) <-> 

exist s ( IS], DB_EMPLOYEE(P, S, y) ) (EQ4) 

which defines the linguistic predicate c a r l .  When used 
in the context of ($3), (EQ4) can be applied in exactly 
the same way as (EQ2) and (E{~3) were in the previ- 
ous example; the condition have  l (E, P, C) will be proved 
by looking at the other conjunct, and employee l  (mary) 
by referring to the database.  The substi tution used to 
match the c a r l  predication from the LF with the head of 
(EQ4) fulfills the conditions on the t rans la te  step of the 
expansion procedure: the argument  of c a r l  is bound by 
an existential quantifier both  in the LF and in (EQ4). In 
($4), on the other hand, c a r l  occurs in the LF in a con- 
text where its argument  is bound by a f i n d  quantifier, 
which is regarded as a type of universal. The matching 
substi tution will thus be illegal, and translation will fail 
as required. 

6 A b d u c t i v e  E x p a n s i o n  

We now turn to the topic of abductive expansion. As 
pointed out in section 1, it is normally impossible to jus- 
tify an equivalence between an LF and a database query 
without making use of a number  of implicit assumptions, 
most commonly ones s temming from the hypothesis that  
the LF should be interpretable within the given domain. 
The approach we take here is closely related to that  pio- 
neered by Hobbs and his colleagues (Hobbs et a188). We 
inclu~le declarations asserting that  certain goals may be 
assumed without proof during the process of justifying 
conditions; each such declaration associates an assump- 
tion cost with a goal of this kind, and proofs with low 
assumption cost are preferred. So for example the mean- 
ing postulate relating the linguistic predicate paymentl 
and the intermediate predicate t r a n s a c t i o n  is 

and (payment I (Trans) ,  
payment f r o m _ S R I ( T r a n s ) )  <-> 

exist s ( [Cheque, Dat e, Payee], 
transaction(Trans, Cheque ,Date, Payee) )) (EQS) 

"transactions are payments  from SRI" 
and there is also a Horn-clause meaning postulate 

payment_from_SRI (X) <- 
payment s _ r e f  e r r e d _ t  o _ a r e _ f  rom_SRI. 

and an assumpt iondeclara t ion  

as sume (payment s _ r e f  e r r e d _ t  o_a re_ f  rom_SRI, 
cost (0)) 

The advantage of this mechanism (which may at first 
sight seem rather indirect) is that it makes it possi- 
ble explicitly to keep track of when the assumption 
payments ._veferred_to_are_from_SRI has been used in 
the course of deriving a database query from the original 
LF. Applied systematically, it allows a set of assumptions 
to be collected in the course of performing the transla- 
tion; if required, CLARE can then inform the user as to 
their nature. In the current version of the PRM applica- 
tion, there are about  a dozen types of assumption that  

can be made. Most of these are similar to the one shown 
above: that  is to say, they are low-cost assumptions that  
cheques, payments ,  projects and so on are SRI-related. 

One type of assumption,  however, is sufficiently dif- 
ferent as to deserve explicit mention. These are related 
to the problem, mentioned in Section 1, of queries "con- 
tingently" outside the database 's  domain. The PRM 
database, for instance, is limited in time, only con- 
taining records of transactions carried out over a spec- 
ified eighteen-month period. Reflecting this, mean- 
ing postulates distinguish between the two predicates 
transaction and DB_TRANSACTION, which respectively 
are intended to mean "A t ransaction of this type took 
place" and "A transaction of this type is recorded in the 
database".  The meaning postulate linking them is 

and(transaction(Id, CNum, Date, Payee), 
transaction_data_available(Date)) <-> 

DB_TRANSACTION (Id~ CNum, Dat e, Payee) (EQ6) 

transaction_data_available is defined by the further 
postulate 

transaction_data_available (Date) <- 
and(c_before (date(17,8,89) ,Date), 

c_before(Dat e, date (31,3,91))) (HC2) 

The interesting thing about (HC2) is that the infor- 
mation needed to prove the condition transaction- 
_data_available(Date) is sometimes, though not al- 
ways, present in the LF. It will be present in a query 
like ($I), which explicitly mentions a period; there are 
further axioms that allow the system to infer in these cir- 
cumstances that the conditions are fulfilled. However, a 
query like ($5), 

($5) Show the largest payment to Cow's Milk. 

contains no explicit mention of time. To deal with sen- 
tences like ($5), there is a meaning postulate 

transaction_data_available(X) <- 
payments_referred_to made_between( 17/8/89, 

3 1 / 3 / 9 1 ) .  

with an associated assumption declaration 

as sume ( 
payments_referred_to_made_between( 17/8/89, 

3 1 / 3 / 9 1 ) ,  
cost (15)). 

The effect of charging the substantial cost of 15 units 
for the assumption (the maximum permitted cost for an 
expansion step being 20) is in practice strongly to pre- 
fer proofs where it is not used; the net result from the 
user's perspective is that s/he is informed of the contin- 
gent temporal limitation of the database only when it 
is actually relevant to answering a query. This has ob- 
vious utility in terms of increasing the interface's user- 
friendliness. 

7 S i m p l i f i c a t i o n  U s i n g  F u n c t i o n a l  
I n f o r m a t i o n  

A problem arising from the definition-expansion pro- 
cess which we have so far not mentioned is that  the 

5



database queries it produces tend to contain a consid- 
erable amount  of redundancy. For example, we shall 
see below in section 9 that  the database query derived 
from sentence (S1) originally contains three separate 
instances of the transaction relation, one from each 
of the original linguistic predicates payment l ,  make2 
and d u r i n g l .  Roughly speaking, payraent l (Ev)  ex- 
pands to t r a n s a c t i o n ( E v  . . . . . .  ), make2(Ev,Ag,P,To)  
to t r a n s a c t i o n ( E v ,  _, To,_) and dur ing_Temporal  (Ev, 
Date)  to t r a n s a c t i o n ( E v  . . . . .  Date) ;  the database 
query will conjoin all three of these together. It  is clearly 
preferable, if possible, to merge them instead, yielding a 
composite predication t r a n s a c t  ion (Ev,_,  To,Dat  e).  

Our framework allows an elegant solution to this prob- 
lem if a little extra  declarative information is provided, 
specifically information concerning functional relation- 
ships in predicates. The key fact is that  t r a n s a c t i o n  is 
a function from its first argument  (the transaction iden- 
tifier) to the remaining ones (the cheque number, the 
payee and the date).  The system allows this informa- 
tion to be entered as a "function" meaning postulate in 
the form 

funct ion (transact ion ( Id, ChequeNo, Payee, Date ), 
[Id] -> [ChequeNo,Payee,Date]) 

This is treated as a concise notation for the meaning 
postulate 

t ransac t ion ( i ,  cl ,  Pl,  dl ) 

( t ransac t ion ( i ,  c2, P2, d2 ) ~-~ 

Cl -- c2 A Pl = P2 A dl = d2) 

which is just  a conditional form of the equivalential 
meaning postulates already described. It  is thus pos- 
sible to handle "merging" simplification of this kind, as 
well as definition expansion, with a uniform mechanism. 
In the current version of the system, the transformation 
process operates in a cycle, alternating expansions fol- 
lowed by simplifications using the same basic interpreter; 
simplification consists of functional "merging" followed 
by reduction of equalities where this is applicable. 

The simplification process is even more impor tant  
when processing assertions. Consider, for example, what 
would happen to the pair of sentences ($6) - ($7) without 
simplification: 

(S6)  Clara is an employee who has a car. 

($7)  Clara is a woman. 

($6) t ranslates into the database form 

exists([A,B] , 
DB_EMPLOYEE ( clara, A, y) ) 

(The second field in DB_EMPLOYEE indicates sex, and the 
third whether or not the employee has a company car). 
This can then be put  into Horn-clause form as 

DB_EMPLOYEE ( c l a r a ,  skl  ,y )  

and asserted into the Prolog database.  Since Clara is 
now known to be an employee, ($7) will produce the 
unit clause 

DB_EMPLOYEE ( clara, w, sk2) 

The two clauses produced would contain all the infor- 
mation entered, but they could not be entered into a re- 
lational database as they stand; a normal database has 
no interpretation for the Skolem constants sk l  and sk2. 
However, it is possible to use function information to 
merge them into a single record. The trick is to arrange 
things so that  the system can when necessary recover 
the existentially quantified form from the Skolemized 
one; all assertions which contain Skolem constants are 
kept together in a "local cache". Simplification of asser- 
tions then proceeds according to the following sequence 
of steps: 

1. Retrieve all assertions from the local cache. 

2. Construct  a formula A, which is their logical con- 
junction. 

3. Let A0 be A, and let { s k l . . . s k n )  be the Skolem 
constants in A. For i = 1 . . .  n, let xi be a new vari- 
able, and let Ai be the formula 3 x i . A i _ l  [ski/xi],  i.e. 
the result of replacing ski  with xi and quantifying 
existentially over it. 

4. Perform normal function merging on Am, and call 
the result A'. 

5. Convert  A' into Horn-clause form, and replace the 
result in the local cache. 

In the example above, this works as follows. After ($6) 
and ($7) have been processed, the local cache contains 
the clauses 

DB_EMPLOYEE ( c l a r a ,  sk 1, y) 

DB_EMPLOYEE ( clara, w, sk2) 

A = A0 is then the formula 

and (DB EMPLOYEE ( c l a r a ,  sk 1, y) 
DB_EMPLOYEE ( c l a r a ,  w, sk2) ) 

and A2 is 

exists([Xl,X2] 
and (DB EMPLOYEE ( c l a r a ,  X 1, y) 

DB_EMPLOYEE ( c l a r a ,  w, X2) ) 

Since DB_EMPLOYEE is declared functional on its first ar- 
gument,  the second conjunct is reduced to two equalities: 
giving the formula 

exists ( [Xl, X2] 
and (DB_EMPLOYEE ( clara, X I, y) 

and(Xl = w, 
y = x2)) 

which finally simplifies to A ', 

DB_EMPLOYEE (clara, w, y) 

a record without Skolem constants, which can be added 
to a normal relational database. 

8 Search Strategies for Definition 
Expansion 

This section describes the problems that  must  be solved 
at the implementat ion level if the definition-expansion 
scheme is to work with acceptable efficiency. The struc- 
ture of the top loop in the definition-expansion process is 
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roughly that  of a Prolog meta-interpreter ,  whose clauses 
correspond to the "expansion-schemas" described in sec- 
tion 2. 

The main predicate in the expansion interpreter con- 
tains an argument  used to pass the environment of 
assumptions, which corresponds to the Conds in the 
schemas above. The interpreter successively reduces 
the formula to be expanded to a sub-formula, possibly 
adding new hypotheses to the environment of assump- 
tions. When an atomic formula is reached, the inter- 
preter a t tempts  to find an equivalence with a match- 
ing head (where "matching" includes the restrictions on 
quantification described at the end of section 2), and if 
it does so then a t tempts  to prove the conditions. If a 
proof is found, the a tom is replaced by the body of the 
selected equivalence. 

The computat ionally expensive operation is that  of 
proving the conditions; since inference uses the equiva- 
lences in both directions, it can easily become very inef- 
ficient. The development of search techniques for mak- 
ing this type of inference tractable required a significant 
effort, though their detailed description is beyond the 
scope of this paper. Very briefly, two main strategies are 
employed. Most importantly,  the application of "back- 
ward" Horn clause readings of equivalences is restricted 
to cases similar to that  illustrated in section 4, where 
there are dependencies between the expansion of two or 
more conjuncts. In addition to this, there are a num- 
ber of heuristics for penalizing expenditure of effort on 
branches judged likely to lead to infinite recursion or re- 
dundant  computat ion.  

For the project resource management  domain, which 
currently has 165 equivalence rules, the time taken for 
query derivation from LF is typically between 1 and 10 
seconds under Quintus Prolog on a Sun Sparcstation 2. 

9 A Full Example 

In this section, we will present a more elaborate illustra- 
tion of CLARE's  current capabilities in this area, show- 
ing how the process of definition expansion works for the 
sentence (S1). This initially receives an LF which after 
some simplification has the form 

find( [PayEv] , 
exist s ( [Payer, MakeEv] , 

and (payment I (PayEr), 
and (make2 (MakeEv, Payer, PayEr, bt ), 

duringl (PayEr, 
interval(date(1990, I, 1 ) ) ,  

date (1990 ,12 ,31 ) ) ) ) )  

As already indicated, the resulting database query 
will have as its main predicate the relation DB_TRAN- 
SACTION ( I d ,  ChequeNo, Dat e,  Payee) .  We will also need 
an evaluable binary predicate c b e f o r e ,  which takes two 
representations of calendar dates and succeeds if the first 
is temporally before the second. The final query will be 
expressed entirely in terms of these two predicates. 

The first step is to apply meaning postulates which re- 
late the linguistic predicates payment l ,  make2 to the in- 
termediate predicate t r a n s a c t i o n .  Recall, as explained 

in section 6 above, that  transaction is distinct from 
DB_TRANSACTION. The relevant postulates are 

and (payment 1 ( I d ) ,  
paymen t_ f rom_SRI ( Id ) )  <-> 

exists([C,D,Payee] , 
transaction( Id, C, D, Payee) ) (EQT) 

'CA payment from SRI is something that enters into a 
transact ion relation as its first argument" .  

and(make2 (Event, As sumed_SRl, Payment, Payee), 
and (payment_from_SRl (Event), 

transactionl (Payment)) ) <-> 
e x i s t s  ( [C ,D], 

and(transact ion (Event, C, D, Paye e), 
Event = Payment)) (EQ8) 

"A payment is made by SRI to a payee if it and the payee 
enter into a transaction relation as first and fourth 
arguments." 

Note that the atom payment_from_SRl(PayEv), oc- 
curring in the first two rules, will have to be proved using 
an abductive assumption,  as explained in section 6. Af- 
ter (EQ7) and (EQ8) have been applied and the equality 
introduced by (EQ8) removed, the form of the query is 

find( [PayEv], 
exists ( [A ,B, C,D, El, 

and(transact ion (PayEv ,A, B, C), 
and (transact ion (PayEv ,D, E, bt) ), 

duringl (PayEr, 
interval(date(1990,1,1)) , 

d a t e ( 1 9 9 0 , 1 2 , 3 1 ) ) ) ) )  

under the abductive assumption p a y m e n t s _ r e f e r r e d -  
_to_are_from_SRI. 

The next rules to be applied are those that expand 
duringl. The intended semantics of duringl (EI,E2) 
are "El and E2 are events, and the time associated with 
E1 is inside that  associated with E2". The relevant equiv- 
alences are now 

duringl(EI,E2) <-> 
exists([Ti,T2] , 

and(associated_time(El ,TI), 
and(associat ed_t ime (E2, T2), 

c_during (TI, T2) ) ) ) ) (EQ9) 

"The d u r i n g l  relation holds between E1 and E2 if and 
only if the calendar event associated with E1 is inside 
that  associated with E2." 

and(associat ed_t ime (Id, Dat e), 
transactionl (Id)) <-> 

exists([C,Payee,Y,M,D], 
transaction (Id, C ,Date ,P) ) (EQ I0) 

"Date is the event associated with a transaction event if 
and only if they enter into the t r a n s a c t i o n  relation as 
third and first arguments  respectively." 

Applying (EQ9) and (EQ10) in succession, the query 
is translated to 

find( [PayEr], 
exists( [Date,A,B,C,D,E,F,G], 
and(transact ion (PayEv, A, B, C), 
and(transact ion (PayEv ,D, E ,bt ) ) , 
and(transact ion (PayEv ,F,Date, G), 
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and(c_dur ing  (Dat e, 
i n t e r v a l ( d a t e ( 1 9 9 0 , 1 , 1 )  ) ,  

daze (1990 ,12 ,31)  )) ) ) ) 

The query is now simplified by exploiting the fact that 
t r a n s a c t i o n  is functional on its first argument: it is 
possible to merge all three occurrences, as described in 
section 7, to produce the form 

find( [PayEr] , 
exists( [ChequeId,Dat e], 

and (trans act ion (PayEr, Cheque Id, Dat e, bt ), 
c_during(Date, 

interval (date( 1990, I, I) ), 
d a t e ( 1 9 9 0 , 1 2 , 3 1 ) ) ) ) )  

Equivalences for temporal predicates then expand the 
second conjunct, producing the form 

f i n d (  [PayEr] ,  
exists ( [ChequeId,Date] , 
and (transact ion (PayEr, ChequeId, Date, bt), 
and(c_before (date (1990, I, I) ,Date), 

c_before(Date,date(1990,12,31)))))) 

Finally, (EQ6) above is applied, to expand the interme- 
diate predicate t r a n s a c t i o n  into the database relation 
DB_TKANSACTION. 

When the transaction predication is expanded, 
PayEv and Date are replaced by corresponding constants 
PayEr* and Date*, as explained in section 2; the envi- 
ronment of assumptions is the set 

{ c _ b e f o r e ( d a t e ( 1 9 9 0 , 1 , 1 )  ,DaZe*),  
c _ b e f o r e ( D a t e * , d a t e  (1990 ,12 ,31)  } 

The relevant clauses are now (tiC2) and a meaning pos- 
tulate that  encodes the fact that  c _ b e f o r e  is transitive, 
namely 

c_before(Datel,Date3) <- 
c_before(Datel,Date2), 
c_before(Date2, Date3) (HC3) 

By chaining backwards through these to the assump- 
tions, it is then possible to prove that t r a n s a c t i o n -  
_ d a t e _ a v a i l a b l e ( D a t e * )  holds, and expand to the final 
form 

f i n d (  [PayEr] ,  
exists ( [ChequeId ,Date] , 
and (DB_TRANSACTI ON (PayEr, ChequeId, Date, bt ), 
and(c_before (dat e(1990, I, I) ,Date), 

c_before(Date,date(1990,12,31))))) 

This can be evaluated directly against the database; 
moreover, the system has managed to prove, under 
the abductive assumption payments_re fe r red_ to_are_-  
from_SKI, that  it is equivalent to the original query. 

10  C o n c l u s i o n s  a n d  F u r t h e r  D i r e c t i o n s  

We believe that  the definition-expansion mechanism pro- 
vides a powerful basic functionality that CLARE will be 
able to exploit in many ways, some of which we expect 
to begin investigating in the near future. Several inter- 
esting extensions of the framework presented here are 
possible, of which we mention two. 

Firstly, it can be the case that  an expansion can only 
be carried out if a certain set of assumptions A is made, 
but that  it is also possible to deduce the negation of 
one of the assumptions in A from the original LF. (For 
example, the query may refer to a time-period that is 
explicitly outside the one covered by the database). In 
a situation of this kind it is likely that  the user has a 
misconception concerning the contents of the database, 
and will appreciate being informed of the reason for the 
system's inability to answer. 

It is also fairly straight-forward to use the method 
to answer "meta~level" questions about the database's 
knowledge (cf. Rayner and Jansen, 1987). For exam- 
ple, Does the database know how many transactions were 
made in July? can be answered affirmatively (relative 
to assumptions) if the embedded question How many 
transactions were made in July? can be expanded to 
an equivalent database query. We expect to be able to 
report  more fully on these ideas at a later date. 

R e f e r e n c e s  

Alshawi, H., ed. 1992. The Core Language Engine. 
Cambridge, Massachusetts: The MIT Press. 

Bronneberg, W.J.H.J. ,  H.C. Bunt,  S.P.J. Landsbergen, 
R.J.H. Scha, W.J. Schoenmakers and E.P.C. van 
Utteren. 1980. "The Question Answering System 
PHLIQAI" .  In L. Bole (ed.), Natural Language 
Question Answering Systems. Macmillan. 

Hobbs, J.R., M. Stickel, P. Martin and D. Edwards. 
1988. "Interpretation as Abduction".  Proceedings 
of the 26th Annual Meeting of the Association for 
Computational  Linguistics, 95-103 

Konolige, K. 1981. The Database as Model: A Metathe- 
oretic Approch, SRI technical note 255. 

McCord, M.C. 1987. "Natural Language Processing in 
Prolog". In A. Walker (ed.) Knowledge Systems 
and Prolog. Addison-Wesley, Reading, MA. 

Perrault ,  C.R. and B.J. Grosz. 1988. "Natural Lan- 
guage Interfaces". In Exploring Artificial Intelli- 
gence: Survey Talks from the National Conferences 
on Artificial Intelligence, Morgan Kaufmann, San 
Mateo. 

Rayner, M. and S. Janson. 1987. "Epistemic Reason- 
ing, Logic Programming, and the Interpretation of 
Questions". Proceedings of the 2nd International 
Workshop on Natural Language Understanding and 
Logic Programming, North-Holland. 

Robinson, J.A. 1979. Logic: Form and Function. Edin- 
burgh University Press. 

Scha, R.J.H. 1983. Logical Foundations for Question An- 
swering, Ph.D. Thesis, University of Groningen, the 
Netherlands. 

Stallard, D.G. 1986. A Terminological Simplification 
Transformation for Natural Language Question- 
Answering Systems. Proceedings of the 24th An- 
nual Meeting of the Association for Computational 
Linguistics, 241-246. 

8


