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chart parser for a shared-memory multipro- 
cessor. The speed-ups obtained with this 
parser have been measured for a number 
of small natural-language grammars. For 
the largest of these, part of an operational 
question-answering system, the parser ran 5 
to 7 times faster than the serial version. 

1. I n t r o d u c t i o n  
We report here on a series of experiments to deter- 
mine whether the parsing component of a natural 
language analyzer can be easily converted to a par- 
allel program which provides significant speed-up 
over the serial program. 

These experiments were prompted in part by 
the rapidly growing availability of parallel proces- 
sor systems. Parsing remains a relatively time- 
consuming component of language analysis sys- 
tems. This is particularly so if constraints are 
being systematically relaxed in order to handle 
ill-formed input (as suggested, for example, in 
(Weischedel and Sondheimer, 1983)) or if there is 
uncertainty regarding the input (as is the case for 
speech input, for example). This time could be 
reduced if we can take advantage of the new par- 
allel architectures. Such a parallel parser could be 
combined with parallel implementations of other 
components (the acoustic component of a speech 
system, for example) to improve overall system 
performance. 

2. B a c k g r o u n d  
There have been a number of theoretical and algo- 
rithmic studies of parallel parsing, beginning well 
before the current availability of suitable experi- 
mental facilities. 

For general context-free grammars, it is possi- 
ble to adapt the Cocke-Younger-Kasami algorithm 
(Aho and Ullman 1972, p. 314 if) for parallel use. 

This algorithm, which takes time proportional to 
rt 3 (rt -" length of input string) on a single pro- 
cessor, can operate in time n using n 2 proces- 
sors (with shared memory and allowing concur- 
rent writes). This algorithm, and its extension 
to unification grammars, has been described by 
Haas (1987b). The matrix form of this algorithm 
is well suited to large arrays of synchronous pro- 
cessors. The algorithm we describe below is basi- 
cally a CYK parser with top-down filtering 1, but 
the main control structure is an event queue rather 
than iteration over a matrbc. Because tile CYK 
matrix is large and typically sparse 2, we felt that 
the event-driven algorithm would be more efficient 
in our environment of a small number of asyn- 
chronous processors (<< n 2 for our longest sen- 
tences) and grammars augmented by conditions 
which must be checked on each rule application 
and which vary widely in compute time. 

Cohen et al. (1982) present a general upper 
bound for speed-up in parallel parsing, based ou 
the number of processors and properties of the 
grammar. Their  more detailed analysis, and the 
subsequent work of Sarkar and Deo (1985) focus 
on algorithms and speed-ups for parallel parsing of 
deterministic context-free grammars. Most pro- 
gramming language grammars are deterministic, 
but most natural language grammars are not, so 
this work (based on shift-reduce parsers) does not 
seem directly applicable. 

Experimental data involving actual imple- 
mentations is more limited. Extensive measure- 
ments were made on a parallel version of the 

1 We also differ f rom C Y K  in t ha t  we do not  merge  dif- 
ferent  ana lyses  of  the  s ame  s t r ing  as the  s ame  symbol .  As 
a result ,  our  p rocedure  would not  opera te  in l inear  t ime for 
general  ( ambiguous )  g r a m m a r s .  

2For g r a m m a r  # 4  given below and  a 15-word sentence,  
the mat r ix  would have  roughly  15,000 ent r ies  (one en t ry  for 
each subs t r i ng  and  each symbo l  in the  equivalent  C h o m s k y  
no rma l  form $ ranunar ) ,  of  which only abou t  1000 entr ies  
are filled. 
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Hearsay-II  speech understanding system (R. Fen- 
nel and V. Lesser, 1977). However, the syntactic 
analysis was only one of many  knowledge sources, 
so it is difficult to make any direct comparison be- 
tween their results and those presented here. Bolt 
Beranek and Newman is currently conducting ex- 
periments with a parallel parser quite similar to 
those described below (Haas, 1987a). BBN uses 
a unification g rammar  in place of the procedural 
restrictions of our system. At the time of this writ- 
ing, we do not yet have detailed results from BBN 
to compare to our own. 

3. E n v i r o n m e n t  

Our programs were developed for the NYU Ultra- 
computer  (Gottl ieb et al., 1983), a shared-memory 
MIMD parallel processor with a special instruc- 
tion, fetch-and-add, for processor synchronization. 
The programs should be easily adaptable  to any 
similar shared memory  architecture. 

The programs have been writ ten in ZLISP, 
a version of LISP for the Ul t racomputer  which 
has been developed by Isaac Dimitrovsky (1987). 
Both an interpreter and a compiler are avail- 
able. ZLISP supports  several independent pro- 
cesses, and provides both global variables (shared 
by all processes) and variables which are local to 
each process. Our programs have used low-level 
synchronization operations, which directly access 
the fetch-and-add primitive. More recent versions 
of ZLISP also suppor t  higher level synchroniza- 
tion primitives and da ta  structures such as parallel 
queues and parallel stacks. 

4. A l g o r i t h m s  

Our parser is intended as par t  of the PROTEUS 
system (Ksiezyk et al. 1987). P R O T E U S  uses 
augmented context-free grammars  - context-free 
grammars  augmented by procedural restrictions 
which enforce syntactic and semantic constraints. 

The basic parsing algori thm we use is a chart 
parser (Thompson 1981, Thompson and Ritchie, 
1984). Its basic da ta  structure, the chart,  consists 
of nodes and edges. For an n word sentence, there 
are n + 1 nodes, numbered O to n. These nodes 
are connected by active and inactive edges which 
record the state of the parsing process. If  A 
W X Y Z is a production, an active edge from 
node nl to n2 labeled by A -+ W X . Y Z 
indicates tha t  the symbols W X of this production 
have been matched to words nl + 1 through n2 
of the sentence. An inactive edge from nl to n2 

labeled by a category Y indicates that  words n 1 + 1 
through n2 have been analyzed as a consti tuent of 
type Y. The "fundamental  rule" for extending an 
active edge states tha t  if we have an active edge 
A ---* W X . Y Z from nl to n 2 and an inactive 
edge of category Y from n 2 to n3, we can build a 
new active edgeA---* W X  Y . Z  f r o m n l  ton3 .  
If  we also have an inactive edge of type Z from n 3 
to n4, we can then extend once more, creating this 
t ime an inactive edge of type A (corresponding to 
a completed production) from nl to n4. 

If we have an active edge A ---* W X . Y Z 
from nl to n2, and this is the first t ime we have 
tried to match  symbol Y star t ing at n2 (there are 
no edges labeled Y originating at n~), we perform 
a seek on symbol Y at n2: we create an active 
edge for each production which expands Y, and 
try to extend these edges. In this way we generate 
any and all analyses for Y star t ing at  n2. This 
process of seeks and extends forms the core of the 
parser. We begin by doing a seek for the sentence 
symbol S start ing a node 0. Each inactive edge 
which we finally create for S from node 0 to node 
n corresponds to a parse of the sentence. 

The serial (uniprocessor) procedure 3 uses a 
task queue called an agenda . Whenever a seek is 
required during the process of extending an edge, 
an entry is made on the agenda. When we can 
extend the edge no further, we go to the agenda, 
pick up a seek task, create the corresponding ac- 
tive edge and then try to extend it (possibly giving 
rise to more seeks). This process continues until 
the agenda is empty.  

Our initial parallel implementat ion was 
straightforward: a set of processors all execute the 
main loop of the serial program (get task from 
agenda / create edge / extend edge), all operat- 
ing from a single shared agenda. Thus  the ba- 
sic unit of computat ion being scheduled is a seek, 
along with all the associated edge extensions. If 
there are many different ways of extending an edge 
(using the edges currently in the chart)  this may 
involve substantial  computat ion.  We therefore de- 
veloped a second version of the parser with more- 
fine-grained parallelism, in which each step of ex- 
tending an active edge is treated as a separate task 
which is placed on the agenda. We present some 
comparisons of these two algorithms below. 

There was one complication which arose in 
the parallel implementations: a race condition in 
the application of the " fundamenta l  rule". Sup- 
pose processor P1 is adding an active edge to the 

3written by Jean Mark Gawron. 
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chart  from node nl  to n2 with the label A 
W X . Y Z and, at the same time, processor P2 is 
adding an inactive edge from node n2 to n3 with 
the label Y. Each processor, when it is finished 
adding its edge, will check the chart  for possible 
application of the fundamental  rule involving that  
edge. P1 finds the inactive edge needed to further 
extend the active edge it just  created; similarly, 
P2 finds the active edge which can be extended 
using the inactive edge it just  created. Both pro- 
cessors therefore end up trying to extend the edge 
A ---* W X . Y Z and we create duplicate copies 
of the extended edge A ---* W X Y . Z. This race 
condition can be avoided by assigning a unique 
(monotonically increasing) number  to each edge 
and by applying the fundamental  rule only if the 
edge in the chart  is older (has a smaller number) 
than the edge just  added by the processor. 

As we noted above, the context-free gram- 
mars are augmented by procedural restrictions. 
These restrictions are coded in P R O T E U S  Re- 
striction Language and then compiled into LISP. 
A restriction either succeeds or fails, and in ad- 
dition may assign features to the edge currently 
being built. Restrictions may examine the sub- 
structure through which an edge was built up from 
other edges, and can test for features on these con- 
sti tuent edges. There is no dependence on implicit 
context (e.g., variables set by another  restriction). 
As a result, the restrictions impose no complica- 
tions on the parallel scheduling; they are simply 
invoked as part  of the process of extending an 
edge. 

5. G r a m m a r s  

These algorithms were tested on four grammars:  

1. A "benchmark"  grammar:  

S ~ X X X X X X X X X X X X  

X ~ a l b l c l d l e l f l g l h l i l J  

2. A very small English grammar,  taken from 
(Grishman, 1986) and used for teaching pur- 
poses. It  has 23 nonterminal symbols and 38 
productions. 

3. Gramm ar  #2 ,  with four restrictions added. 

4. The grammar  for the P R OTEUS question- 
answering system, which includes yes-no and 
wh- questions, relative and reduced relative 
clauses. It  has 35 non-terminal symbols and 
77 productions. 

6. M e t h o d  
The programs were run in two ways: on a proto- 
type parallel processor, and in simulated parallel 
mode on a s tandard uniprocessor (the uniproce- 
cessor version of ZLISP provides for relatively effi- 
cient simulation of multiple concurrent processes). 
The runs on our prototype multiprocessor, the 
NYU Ultracomputer ,  were limited by the size of 
the machine to 8 processors. Since we found that  
we could sometimes make effective use of larger 
numbers of processors, most of our data  was col- 
lected on the simulated parallel system. For small 
numbers of processors (1-4) we had good agree- 
ment  (within 10%, usually within 2%) between the 
speed-ups obtained on the Ultracomputer  and un- 
der simulation 4 

7. R e s u l t s  
We consider first the results for the test grammar,  
#1,  analyzing the sentence 

333333333333 

This g rammar  is so simple that  we can readily vi- 
sualize the operation of the parser and predict the 
general shape of the speed-up curve. At each to- 
ken of the sentence, there are 10 productions which 
can expand X, so 10 seek tasks are added to the 
agenda. If 10 processors are available, all 10 tasks 
can be executed in parallel. Additional processors 
produce no further speed-up; having fewer proces- 
sors requires some processors to perform several 
tasks, reducing the speed-up. This general behav- 
ior is borne out by the curve shown in Figure 1. 
Note that  because the successful seek (for the pro- 
duction X --0 j )  leads to the creation of an inactive 
edge for X and extension of the active edge for S, 
and these operations must  be performed serially, 
the maximal parallelism is much less than 10. 

The next two figures compare the effective- 
ness of the two algorithms - the one with coarse- 
grained parallelism (only seeks as separate tasks) 
and the other with finer-grain parallelism (each 
seek and extend as a separate task). The finer- 
grain algorithm is able to make use of more par- 
allelism in situations where an edge can be ex- 
tended in several different ways. On the other 

4For larger numbers  of processors (5-8) the speed-up 
with the Ul t racomputer  was consistently below that  with 
the simulator.  This  was due, we believe, to memory  con- 
tention in the Ultracomputer .  This  contention is a prop- 
erty of the current  bus-based pro to type  and would be 
greatly reduced in a machine using the target,  network- 
based architecture. 
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Figure 1: Speed-up (relative to serial parser) for 
grammar ~1  and sentence jjj.~i~_~j. 
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Figure 2: Speed-up (relative to serial parser) for 
grammar ~2  (small grammar without restrictions) 
on a 3-word sentence for the coarse-grained algo- 
r i thm (1) and the fine-grained algorithm(2). 

hand, it will have more scheduling overhead, since 
each extend operation has to be entered on and 
removed from the agenda. We therefore can ex- 
pect the finer-grained algorithm to do better on 
more complex sentences, for which many different 
extensions of an active edge will be possible. We 
also expect the finer-grained algorithm to do bet- 
ter on grammars with restrictions, since the evalu- 
ation of the restriction substantially increases the 
time required to extend an edge, and so reduces 
in proportion the fraction of time devoted to the 
scheduling overhead. The expectations are con- 
firmed by the results shown in Figures 2 and 3. 

Figure 2, which shows the results using a short 
sentence and grammar ~2  (without restrictions), 
shows that neither algorithm obtains substantial 
speed-up and that  the fine-grained algorithm is 

Figure 3: Speed-up (relative to serial parser) for 
grammar # 3  (small grammar with restrictions) 
on a 14-word sentence for the coarse-grained al- 
gorithm (1) and the fine-grained algorithm(2). 

in fact slightly worse. Figure 3, which shows the 
results using a long sentence and grammar ~3  
(with restrictions), shows that the fine-grained al- 
gorithm is performing much better. 

The remaining three figures show speed-up re- 
sults for the fine-grained algorithm for grammars 
2, 3, and 4. For each figure we show the speed- 

" up for three sentences: a very short sentence (2-3 
words), an intermediate one, and a long sentence 
(14-15 words). In all cases the graphs plot the 
number of processors vs. the true speed-up - the 
speed-up relative to the serial version of the parser. 
The value for 1 processor is therefore below 1, re- 
flecting the overhead in the parallel version for en- 
forcing mutual exclusion in access to shared data  
and for scheduling extend tasks. 

Grammars 2 and 3 are relatively small (38 
productions) and have few constraints, in par- 
ticular on adjunct placement. For short sen- 
tences these grammars therefore yield a chart with 
few edges and little opportunity for parallelism. 
For longer sentences with several adjuncts, on 
the other hand, these grammars produce lots of 
parses and hence offer much greater opportunity 
for parallelism. Grammar 4 is larger (77 produc- 
tions) and provides for a wide variety of sentence 
types (declarative, imperative, wh-question, yes- 
no-question), but also has tighter constraints, in- 
cluding constraints on adjunct placement. The 
number of edges in the chart and the opportu- 
nity for parallelism are therefore fairly large for 
short sentences, but grow more slowly for longer 
sentences than with grammars 2 and 3. 

These differences in grammars are reflected 
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Figure 4: Speed-up (relative to serial parser) for 
grammar ~2 (small grammar without restrictions) 
using the fine-grained algorithm for three sen- 
tences: a 10 word sentence (curve 1), a 3-word 
sentence (curve 2) and a 14-word sentence (curve 
3). 
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Figure 5: Speed-up 'relative to serial parser) for 
grammar ~3 (small grammar with restrictions) 
using the fine-grained algorithm for three sen- 
tences: a 14-word sentence (curve 1), a 5-word 
sentence (curve 2), and a 3-word sentence (curve 
3). 
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Figure 6: Speed-up (relative to serial parser) for 
grammar ~4  (question-answering grammar) us- 
ing the fine-grained algorithm for three sentences: 
a 15-word sentence (curve 1), a 2-word sentence 
(curve 2), and a 8-word sentence (curve 3). 

in the results shown in Figures 4-6. For the 
small grammar without restrictions (grammar 
#2), the scheduling overhead for fine-grain par- 
allelism largely defeats the benefits of parallelism, 
and the overall speed-up is small (Figure 4). For 
the same grammar with restrictions (grammar 
#3), the effect of the scheduling overhead is re- 
duced, a.s we explained above. The speed-up is 
modest for the short sentences, but high (15) for 
the long sentence with 15 parses (Figure 5). For 
the question-answering grammar (grammar ~4), 
the speed-up is fairly consistent for short and long 
sentences (Figure 6). 

8. Discuss ion  
Through relatively small changes to an existing se- 
rial chart parser, we have been able to construct an 
effective parallel parsing procedure for natural lan- 
guage grammars. For our largest grammar (#4), 
we obtained consistent speed-ups in the range ofh- 
7. Grammars for more complex applications, and 
those allowing for ill-formed input, will be consid- 
erably larger and we can expect higher speed-ups. 

One issue which should be re-examined in the 
parallel environment is the effectiveness of top- 
down filtering. This filtering, which is relatively 
inexpensive, blocks the construction of a substan- 
tial number of edges and so is generally beneficial 
in a. serial implementation. In a parallel environ- 
ment, however, the filtering enforces a left-to-right 
sequencing and so reduces the opportunities for 
parallelism. We intend in the near future to try 
a version of our algorithm without top-down ill- 
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tering in order to determine the balance between 
these two effects. 
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