IMPROVED PORTABILITY AND PARSING THROUGH
INTERACTIVE ACQUISITION OF SEMANTIC INFORMATION!

Frangois-Michel Lang and Lynette Hirschman

Paoli Research Center, UNISYS
P. O. Box 517, Paoli, PA 19301

ABSTRACT

This paper presents SPQR (Selectional Pat-
tern Queries and Responses), a module of the
PUNDIT text-processing system designed to facili-
tate the acquisition of domain-specific semantic
information, and to improve the accuracy and
efficiency of the parser. SPQR operates by
interactively and incrementally collecting informa-
tion about the semantic acceptability of certain
lexical co-occurrence patterns (e.g., subject-verb-
object) found in partially constructed parses. The
module has proved to be a valuable tool for port-
ing PUNDIT to new domains and acquiring essen-
tial semantic information about the domains.
Preliminary results also indicate that SPQR
causes a threefold reduction in the number of
parses found, and about a 40% reduction in total
parsing time.

1. INTRODUCTION

A major concern in designing a natural-
language system is portability: It is advantageous
to design a system in such a way that it can be
ported to new domains with a minimum of effort.
The level of effort required for such a port is con-
siderably simplified if the system features a high
degree of modularity. For example, if the
domain-independent and domain-specific com-
ponents of a system are clearly factored, only the
domain-specific knowledge bases need be changed
when porting to a new domain. Even if a system
demonstrates such separation, however, the prob-
lem remains of acqguiring this domain-specific

tThis work has been supported in part by DARPA under
contract N00014-85-C-0012, administered by the Office of Na-
val Research, and in part by National Science Foundation
contract DCR-85-02205, as well as by Independent R&D fund-
ing from System Development Corporation, now part of Unisys
Corporation.

49

knowledge.

One obvious benefit of acquiring domain-
specific semantic information is rejecting parses
generated by the syntactic component which are
semantically anomalous. Using domain knowledge
to rule out semantically anomalous parses is espe-
cially important when parsing with large, broad-
coverage grammars such as ours: Our Prolog
implementation of Restriction Grammar
[Hirschman1982,Hirschman1985] includes about
100 grammar rules and 75 restrictions, and is
based on Sager’s Linguistic String Grammar
[Sager1981]. It also includes a full treatment of
sentential fragments and telegraphic message
style. As a result of this extended coverage, many
sentences receive numerous syntactic analyses. A
majority of these analyses, however, are incorrect
because they violate some semantic constraint.

Let us take as an example the sentence High
lube oil temperature believed contributor to
unit failure. Two of the parses for this sentence
could be paraphrased as:

(1)
(2)

The high lube oil temperature believed the
contributor to the unit failure.

The high lube oil temperature was believed
to be a contributor to the unit failure.

but our knowledge of the domain (and common
sense) tells us that the first parse is wrong, since
temperatures cannot hold beliefs.

It is only because of this semantic informa-
tion that we know that parse (2) is correct, and
that parse (1) is not, since we cannot rule out
parse (1) on syntactic grounds alone. In fact, our
grammar generates the incorrect parse before the
correct one, since it produces full assertion parses
before fragment parses.
ponent has access to

If the syntactic com-
semantic knowledge,

however, many incorrect parses such as (1) will
never be generated.

How then can we collect the necessary
semantic information about a domain? One tradi-
tional approach involves analysing a corpus of
texts by hand, or perhaps even simply relying on
one’s intuitive knowledge of the domain in order
to gather information about what relations can
hold among domain entities. Several obvious
drawbacks to these approaches are that they are
time-consuming, error-prone, and incomplete. A
more robust approach would be to use (semi-)
automated tools designed to collect such informa-
tion by cataloguing selectional patterns found in
correct parses of sentences.

However, our reasoning appears circular:
The desired domain-specific information can only
be obtained from analyses of correctly parsed sen-
tences, but our goal is to restrict the parser to
these correct analyses precisely by using this
domain knowledge. In the example above, we
need the semantic knowledge to rule out the first
parse; but it is only by knowing that this parse is
semantically anomalous that we can obtain the
selectional information about the domain.

One way to avoid this circularity is to
bootstrap into a state of increasingly complete
domain knowledge. We have implemented in
SPQR such a bootstrapping process by incremen-
tally collecting and storing domain-specific data
gathered through interaction with the user. The
data are in the form of selectional constraints
expressed as allowable and unallowable syntactic
co-occurrence patterns. All the data collected
while parsing a set of sentences can then be used
to help guide the parser to correct analyses and to
decrease the search space traversed during future
parsing. As the system’s semantic knowledge
becomes increasingly rich, we can expect it to
demonstrate some measure of learning, since it will
produce fewer incorrect analyses and present fewer
queries to the user about the validity of syntactic
patterns.

A number of systems have been developed to
assist the wuser in acquiring domain-specific
knowledge, including TELI [Ballard1986], TEAM
[Gross1983], KLAUS [Hendrix1980], ASK [Thomp-
son1983] and [Thompson1985], TQA [Dam-
eraul985] and IRACQ [Moser1984,Ayusol1987].
Related work has also been reported in [Tom-
ita1984), as well as in [Grishman1988] and
[Hirschman1986a]. The work described here differs

50

from these previous efforts in several ways:!

. Since PUNDIT is not a natural-language
interface or a database front end, but rather
a full text-processing system, sentences
analysed by PUNDIT are taken from cor-
puses of naturally-occurring texts. The
semantic information gathered is therefore
empirically or statistically based, and not
derived from sentences generated by a user.

° The elicitation of information from the user
follows a highly structured, data-driven
approach, yielding results which should be
more reproducible and consistent among
users.

. Many systems have a clearly defined
knowledge-acquisition phase which must be
completed before the system can be
effectively used or tested. We have chosen
instead to adopt a paradigm of incremental
knowledge acquisition.

Our incremental approach is based on the
assumption that gathering complete knowledge
about domain is an unattainable ideal, especially
for a system which performs in-depth analysis of
texts written in technical sublanguages: Even if
one could somehow be assured of acquiring all con-
ceivable knowledge about a domain, the system’s
omniscience would be transient, since the technical
fields themselves are constantly changing, and
thus require modifications to one’s knowledge base.
An incremental acquisition method therefore
allows us to start from an essentially empty
knowledge base. Each sentence parsed can add
inforr.ation about the domain, and the system
thereby effectively bootstraps itself until its
knowledge about the selectional patterns in a

‘domain approaches completeness.

In this paper we present SPQR, the com-

ponent of the PUNDIT? text-understanding system
which is designed to acquire domain-specific selec-
tional information [Langl1987]. We present in Sec-
tion 2 the methodology we have adopted to collect
and use selectional patterns, and then give in Sec-
tion 3 some examples of the operation of our

1See [Ballard1986] for a detailed and informative com-
parison of TELI, TEAM, IRACQ, TQA, and ASK.

SPUNDIT (Prolog UNDerstands Integrated Text) is im-
plemented in Quintus Prolog, and has been described in
[Hirschman1985| and [Hirschman1986b] (syntax), [Palmer1986|
(semantics), [Dah11988] (discourse), and [Passonneaul986] (tem-
poral analysis).

module. We conclude by presenting some experi-
mental results and discussing some future plans to
extend the module.

SPQR has been used in analysing texts in
three domains: casualty reports (CASREPs) deal-
ing with mechanical failures of starting atr
compressors (SACs are a component of a ship’s
engine), queries to a Navy ships database, and
Navy sighting messages (RAINFORM:s).

2. METHODOLOGY

The essential feature of our parser which
facilitates the collecting of syntactic patterns is
the INTERMEDIATE SYNTACTIC REPRESENTATION
(ISR) produced by the syntactic analyser. The
ISR is the result of regularizing the surface syntac-
tic structure into a canonical form of operators
and arguments. Since there are only a limited
number of structures which can appear in an ISR,
we have been able to write a program to analyse
the ISR and examine the syntactic patterns as
they are generated.

[past,repair,
[tpos(the),
[nvar([engineer,singular,_1)11,
[tpos(the),
[nvar([sac,singular,_]1)1,
adj([pastpart,break])]]

Figure 1: ISR for the sentence
The enginecer repaired the broken sac

A brief note about the implementation: Since
the ISR is represented as a Prolog list, the pro-
gram which analyses it was written as a definite-
clause grammar and has the flavor of a small
parser. As a sample ISR, we present in Figure 1
the regularized representation of the obvious parse
for the sentence The engineer repaired the bro-
ken sac (pretty-printed for clarity). At the top
level, the ISR consists of the main verb (preceded
by its tense operators), followed by its subject and
object. The ISR of a noun phrase contains first
the determiner (labelled TPOS), then the head
noun, (the label NVAR stands for “noun or vari-
ant”), and finally any nominal modifiers. Note
that part of the regularisation performed by the
ISR is morphological, since the actual lexical items
appearing in the ISR are represented by their root

51

forms. Hence broken in the input sentence is reg-
ularized to break in the ISR, and repasred in the
input sentence appears in the ISR simply as
repair.

SPQR is invoked by two restrictions which
are called after the BNF grammar has assembled
a complete NP (and constructed the ISR for that
NP), and after it has assembled a complete sen-
tence (and constructed its ISR). The program
operates by presenting to the user a syntactic pat-
tern (either a head-modifier pattern or a
predicate-argument pattern) found in the ISR, and
querying him/her about the acceptability of that
pattern.

For each of the basic types of patterns which
the program currently generates, the chart in
Table 1 shows that pattern’s components, an
example of that pattern, and a sentence in which
the pattern occurs. When presented with a syn-
tactic pattern such as those in the chart in Table
1, the user can respond to the query in one of two
ways, depending on the semantic compatibility of
the predicate and arguments (e.g., in the case of
an SVO pattern) or of the head and modifiers (e.g.,
for an ADJ pattern) contained in the pattern. If
the pattern describes a relationship that can be
said to hold among domain entities (i.e., if the
pattern occurs in the sublanguage), the wuser
accepts the pattern, thereby classifying it as good.
The analysis of the ISR and the parsing of the
sentence are then allowed to continue. If, how-
ever, the pattern describes a relationship among
domain entities that is not consistent with the
user’s domain knowledge or with his/her prag-
matic knowledge (i.e., if the pattern cannot or
does not occur in the sublanguage) the user rejects
it, thereby classifying it as bad, and signalling an
incorrect parse. This response causes the restric-
tion which checks selection to fail, and as a result,
the parse under construction is immediately failed,
and the parser backtracks.

As the user classifies these co-occurrence pat-
terns into good patterns and bad patterns, they
are stored in a pattern database which is con-
sulted before any query to the user is made. Thus,
once a pattern has been classified as good or bad,
the user is not asked to classify it again. If a pat-
tern previously classified as bad by the user is
encountered in the course of analyzing the ISR,
SPQR consults the database, recognises that the
pattern is bad, and automatically fails the parse
being assembled. Similarly, if a pattern previously

TABLE 1: Selectional Patterns

PATTERN
(1) SVO

COMPONENTS

subject, main verb, object
INSPECTION of lube oil filter REVEALED metal PARTICLES.

EXAMPLE

inspection reveal particle

(2) ADJ

adjective, head*

Trowbleshooting revealed NORMAL sac Iube oil PRESSURE.

normal pressure

(3) ADV head, adverb

Sac air pressure DECREASED RAPIDLY to 5.74 psi.

decrease rapidly

(4) CONJ

conjunct , conjunction, conjunct,

Troubleshooting revealed normal PRESSURE AND TEMPERATURE.

pressure and temperature

(5) NOUN-NOUN
VALVE PARTS ezcessively corroded.

noun modifier, head

valve part

(8) PREP head, prep, object

DISENGAGED immediately AFTER ALARM.

disengage after alarm

(7) PREDN

noun, predicate nominal
Alarm CAPABILITY is a NECESSITY.

capability necessity

*We use “head” throughout the chart to denote the head of a construction in which a modifier
appears. The head can simply be thought of as that word which the modifier modifies.

recorded as good is encountered, SPQR will recog-
nise that the pattern is good simply by consulting
the database, and allow the parsing to proceed.

The selectional mechanism as described so
far deals only with lexical patterns (i.e., patterns
involving specific lexical items appearing in the
lexicon). However, we have implemented a
method of generalising these patterns by using
information taken from the domain isa
(genera.lization/specializa.tion) hierarchy to con-
struct semantic class patterns from the lexical
patterns. After deciding whether a given pattern
is good or bad, the user is asked if the relation
described by the pattern can be generalized. In
presenting this second query, SPQR shows the user
all the super-concepts of each word appearing in
the pattern, and asks for the most general super-
concept(s), if any, for which the relation holds.

Let us take as an example the noun-noun
pattern generated by the compound nominal osl
presssre. While parsing a sentence containing

52

this expression, the user would accept the noun-
noun pattern [oil, presswre]. The program will
then show the user in hierarchically ascending
order all the generalizations for oil (fluid,
physical_object, and root_concept), and all the
generalisations for presssre (scalar_guantity,
object_property, abstract_objeet, and again
root_concept). The user can then identify which
of those super-concepts of oil and pressure can
form a semantically acceptable compound nomi-
nal. In this case, the correct generalization would
be [flwid, scalar_guantity], because

. The fluids in the domain are oil, air, and
water; the scalar quantities are pressure and
temperature; and it is consistent with the
domain to speak of the pressure and the
temperature of oil, air, and water.

) We cannot generalize higher than fluid since
it would be semantically anomalous to speak
of “physical_object pressure” for every
physical_object in the domain (e.g., one

would not speak of eonneeting_pin pres-
sure or gearboz pressure).

. We cannot generalize higher than pressure
since shape is also an object_property, and
it would be infelicitous to speak of oil
shape.

As with the lexical-level patterns, the user’s
generalizations are stored for reference in evaluat-
ing patterns generated by other sentences. The
obvious advantage of storing not just lexical pat-
terns but also semantic patterns is the broader
coverage of the latter: Knowing that the semantic
class pattern [fluid, presswre] is semantically
acceptable provides much more information than
knowing only that the lexical pattern [osl, pres-
sure| is good.

3. SOME (SIMPLIFIED) EXAMPLES

As we mentioned earlier, multiple syntactic
analyses which can only be disambiguated by
using semantic information abound in our corpuses
because of the telegraphic and fragmentary nature
of our texts. This ambiguity has two principal
causes:

(1) A sentence which parses correctly as a frag-
ment can often be parsed as a full assertion

as well.

(2) Determiners are often omitted from our sen-
tences, thus making it difficult to establish

NP boundaries.

Since such syntactically degenerate sentences
will generally contain fewer syntactic markers
than full, non-telegraphic English sentences, they
are characterited by correspondingly greater
ambiguity. We now present an example of the use
of selection to rule out a semantically anomalous
assertion parse in favor of a correct fragment
reading.’ Consider the sentence Loss of second
installed sac. In the correct analysis, the sen-
tence is parsed is a noun string fragment; however,
another reading is available in which the sentence
is analyzed as a full assertion, with loss of second
as the subject, installed as main verb, and sac as
direct object. A paraphrase of this parse might be
The loss of a second installed the sac. But this
analysis is semantically completely anomalous for
several reasons, but most notably because it

Mn this simplified explanation, we present only the svo
pattern. In actual parsing of this sentence, however, addition-
al patterns would be generated from the NP level.

53

makes no sense to say that the loss of a second
can cause a sac (or anything else) to be installed.
Since our parser tries assertion parses before frag-
ment parses, the incorrect reading of this sentence
is produced first. In generating the assertion
parse, the parser encounters the SVO pattern [loss,
install, sac], and queries the user as follows:
<SVO> pattern : loss install sac

This query asks if a loss can install a sac in this
domain, or if a domain expert would ever speak of
a loss installing a sac. Since it is nonsensical to
speak of a loss installing a sac, the correct
response to SPQR’s query in this case is to reject
the pattern, causing the assertion parse to fail
after the module elicits the appropriate generali-
sations of the pattern.

In order to generalize the pattern, the user is
shown all the the super-ordinates of loss and sae,
and asked to generalize the anomalous SVO pat-
tern [loss, install, sac]. The super-concepts of
loss are fatlure, problem, event, abstract_object,
and root_concept. The super-concepts of sac are
unit, mechanical _device, system_component,
physical_object, and rooi_concept. Since noth-
ing that is an abstract object can install anything
at all, the correct generalization would be
(abstract_object, install, root_concept]. Since
the user’s response to the original prompt labelled
the pattern as bad, the assertion parse under con-
struction then fails, and the parser backtracks.

An especially convoluted example of
assertion-fragment ambiguity is found in the sen-
tence Ezperienced frequent losses of pressure
following cluteh engage command. In the
correct reading (which is again a fragment), the
subject is elided, the main verb is ezperienced,
and the direct object is the frequeni losses of
presswre (in this parse, following eluteh engage
command functions as a sentence adjunct, with
clutch engage command as a compound nominal).
However, in another reading generated by our
parser, the subject is experienced frequent losses
of pressure following cluteh, the main verb is
engage, and command is the direct object. This
reading would fail selection at the svO level (if not
sooner) because the SVO pattern {loss, engage,

TABLE 2: Statistical Summary of 31 Sentences

PARSING INFORMATION WITH SPQR | W/OUT SPQR |
of sentences receiving

a correct parse 31 29

of sentences receiving

a correct FIRST parse 30 17

of sentences receiving

more than one parse 8 22
average # of parses found

per sentence 1.45 4.66
average correct parse number® 1.10 2.45
average search focus

to reach correct parse 19.80 24.48
average search focus

in generating all parses 38.67 51.74
average time taken (seconds)

to reach correct parse! 35.92 56.18
average time taken (seconds)

in generating all parses' 81.63 125.94

SEARCH FOCUS RATIO TO CORRECT PARSE = 0.80

(with SPQR / without SPQR)

SEARCH FOCUS RATIO TO ALL PARSES = 0.75
(with SPQR / without SPQR)

TIMING RATIO TO CORRECT PARSE = 0.64

TIMING RATIO TO COMPLETION = 0.85

NEW CORRECT PARSES FOUND USING SPQR = 2

NEW CORRECT FIRST PARSES FOUND USING SPQR = 13

*That is, which parse, on the average, was the correct one.

{SPQR has not yet been optimized.

command| is anomalous for two reasons: The sub-
ject of engage cannot be an abstract concept such
as loss, and the object of engage must be a
machine part.

4. EXPERIMENTAL RESULTS

The experimental results we present here are
based on a sample of 31 sentences from one of our

54

CASREP corpuses, each of which was parsed with
and without invoking SPQR. We compare results
obtained without using the selectional module to
results obtained with the parser set to query the
user about selectional patterns (starting from an
empty pattern database). The chart in Table 2
summariges the results for the 31 sentences.

One of the statistics presented in Table 2 is
the SEARCH FOCUS, which is a measure of the
efficiency of the parser in either reaching the
correct parse of a sentence, or generating all possi-
ble parses. It is equal to the ratio of the number of
nodes attached to the parse tree in the course of
parsing (and possibly detached upon backtrack-

ing),* to the number of nodes in the completed,
correct parse tree. Thus a search focus of 1.0 in
reaching the correct parse would indicate that for
every (branching) grammar rule tried, the first
option was the correct one, or, in other words,
that the parser had never backtracked.

The first line of the Table 2 chart deserves
some explanation. One might wonder how a
mechanism designed in part to rule out parses
can actually produce a correct analysis for a sen-
tence where none had been available without the
module. The explanation is the COMMITTED DIS-
JUNCTION mechanism we have implemented in our
parser in order to reduce the (often spurious)
ambiguity caused by allowing both full sentential
and fragmentary readings. This pruning of the
search space is most apparent when the parser is
turned loose and set to generate all possible
parses, as it was when we gathered the statistics
summarized above. Recall that our parser tries
full assertion parses before fragment parses. The
effect of the COMMITTED DISJUNCTION mechanism
is to commit the parser to produce only assertion
parses (and no fragment parses) if an assertion
parse is found. Fragment parses are tried only if
no assertion parse is available. Thus no fragment
reading will ever be generated for a sentence
which can be analyzed as both an assertion and a
fragment. This has proved to be the correct
behavior in a majority of the texts we have
analysed. However, a fragment which can also be
analysed as an assertion will never receive a
correct parse unless all assertion parses can be
blocked using selection. Thus it is possible for
selection to make available a correct syntactic
analysis where none would be available without
selection.

6. FUTURE PLANS

Our ultimate goal is to integrate SPQR with
the domain model and the semantic component
that maps syntactic constituents into predicates

‘Another way to interpret this figure is that it
represents the number of grammar rules tried.

and associated thematic roles. At present, these
components are developed independently. Our
aim is to link these components in order to main-
tain consistency and facilitate updating the sys-
tem. For example, if semantic rules exist to fill
thematic roles of a given predicate, we should be
able to derive a set of “surface’” selectional pat-
terns consistent with the underlying semantics.
Similarly, given a set of selectional patterns, we
should be able to suggest a (set of) semantic
rule(s) consistent with the observed selection. In
addition, if a word encountered in parsing is not
represented in the domain model, it should be pos-
sible to suggest where the word should fit in the
model, based on similarity to previously observed
patterns. If, for example, in the CASREP domain,
we encounter a sentence such as The widget
broke, but widgets do not appear in our domain
model, the system would check for any patterns of
the form [X, break]; if it finds such a pattern, e.g.,
[machine_part, break], the system can then sug-
gest that widget be classified as a machine part in
the domain model. If the user concurs, widget
would then automatically be entered into the
model.

In addition to the above work, which is
already underway, we plan to improve the user
interface, to measure the rate at which selectional
patterns are acquired, and to investigate the use
of selectional patterns in developing a weighting
algorithm based on frequency of occurrence in the
domain.

8.1. The User Interface

In the current implementation, the questions
which the program asks the user are phrased in
terms of grammatical categories, and are thus
tailored to users who know what is meant by such
terms as “SV0O” and ‘“noun-noun compounds’”. As
a result, only linguists can be reasonably expected
to make sense of the questions and provide mean-
ingful answers. Our intended users, however, are
not linguists, but rather domain experts who will
know what can and cannot be said in the sub-
language, but who cannot be expected to reason in
terms of grammatical categories. Deciding how to
phrase questions designed to elicit the desired
information is a difficult problem. Our first
attempt will be to paraphrase the pattern. E.g.,
for the SVO pattern [loss, install, sac], the query
to the user would be something like “Can a loss
install a sac?”.

We are also examining what kind of
knowledge the user must draw upon in order to
answer the system’s questions. Users’ answers are
usually based on a combination of commonsense
knowledge (e.g., losses cannot install things) and
domain-specific information. In certain cases,
however, the user can be called upon to make fine
linguistic distinctions. For example, in the sen-
tence Sac disengaged immediately after alarm,
does the adverb smmediately modify the verb
disengaged, or the prepositional phrase after
alarm? Most users, and even trained linguists
familiar with the domain, find it difficult to pro-
vide definitive answers to such questions, because
there is often no definitively correct answer. In
this case, the adverbial attachment would seem to
be genuinely ambiguous. It would be helpful to
recognise patterns which a user cannot be reason-
ably expected to pass judgment on, and not gen-
erate queries about these, perhaps allowing them
to succeed by default.

5.2. Measuring the System’s Learning

As more sentences are parsed and more pat-
terns are classified, we can expect the system to
grow “smarter” in the sense that it will ask the
user increasingly fewer questions. Eventually, the
system should reach a state of reasonably com-
plete domain knowledge, at which time few
unknown patterns would be encountered, and the
user would almost never be queried. We do not
know how many sentences SPQR would have to
examine before attaining such a plateau, but an
estimate would be in the range of 500 to 1000
[Grishman1986]. We plan to measure the decrease
in the frequency of queries to the user as a func-
tion of the number of sentences parsed and the
number of patterns collected in order to evaluate
the system’s learning. This will enable us to
determine the feasibility of using this technique to
bootstrap into a new domain.

5.3. Preference-Based Parsing

A long-term goal is to implement a parsing
algorithm based on preference rather than on the
current success/failure paradigm. This would
allow the system to use statistical information on
the frequency of observed patterns as one factor in
weighting. Frequently occurring patterns would
be assigned greater weight than unknown pat-
terns, and bad patterns would detract from the
overall weighting. This would allow the system to

56

make intelligent ‘“‘guesses” about parsing without
constantly querying the user.

ACKNOWLEDGMENTS

We would like to thank Marcia Linebarger
for her helpful comments and insightful sugges-
tions.

REFERENCES

[Ayuso1987]

Damaris M. Ayuso, Varda Shaked, and
Ralph M. Weischedel, An Environment
for Acquiring Semantic Information. In
Proceedings of the 25th Annual Meet-
ing of the Association for Computa-
tional Linguistics, Stanford, Califor-
nia, July 1987, pp. 32-40.

[Ballard1986]

Bruce W. Ballard and Douglas E. Stum-
berger, Semantic Acquisition in TELI:
A Transportable, User-Customized Na-
tural Language Processor. In Proceed-
ings of the 24{th Annsual Meeting of
the Association for Computational
Linguistics, New York, NY, July 1986,
PP- 20-29.

[Dahl1986]
Deborah A. Dahl, Focusing and Refer-
ence Resolution in PUNDIT.In
Proceedings of the Fifth National
Conference on Artificial Intelligence,
Philadelphia, PA, 1986, pp. 1083-1088.

[Dameraul985]
Fred J. Damerau, Problems and Some
Solutions in Customization of Natural
Language Database Front Enus. ACM
Transactions on Office Information
Systems 8(2), April 1985, pp. 165-184.

[Grishman1988]
Ralph Grishman, Lynette Hirschman,
and Ngo Thanh Nhan, Discovery Pro-
cedures for Sublanguage Selectional
Patterns: Initial
Experiments. Computational Linguis-
tics 12(3), 1986, pp. 205-215.

[Grosz1983]
Barbara J. Gross, TEAM: A Transport-
able Natural-Language Interface
System. In Proceedings of the Confer-
ence on Applied Natural Language
Processing, Santa Monica, CA, Febru-
ary 1983, pp. 39-45.

[Hendrix1980)
Gary G. Hendrix, Mediating the Views
of Databases and Database Users. In
Proceedings of the Workshop on Data
Abstraction, Databases, and Concep-
teal Modelling, Pingree Park, CO,
June 1980, pp. 131-132.

[Hirschman1982]

Lynette Hirschman and Karl Puder,
Restriction Grammar in Prolog. In
Proceedings of the First International
Logic Programming Conference, M.
Van Caneghem (ed.), Association pour la
Diffusion et le Developpement de Prolog,
Marseille, 1982, pp. 85-90,

[Hirschman1985]
Lynette Hirschman and Karl Puder,
Restriction = Grammar: A Prolog
Implementation. In Logic Program-
ming and its Applications, D.H.D.
Warren and M. VanCaneghem (ed.),
1985.

[Hirschman1986a]
Lynette Hirschman, Discovering Sub-
language Structures. In Sublanguage:
Description and Processing, R. Kit-
tredge and R. Grishman (ed.), Lawrence
Erlbaum Assoc., Hillsdale, NJ, 1986.

[Hirschman1986b]
Lynette Hirschman, Conjunction in
Meta-Restriction Grammar. Journal of
Logic Programming 4, 1988, pp. 299-
328.

[Lang1987]
Frangois-Michel Lang, A User’s Guide to
the Selection Module, Logic-Based Sys-
tems Technical Memo No. 88, Paoli
Research Center, Unisys, Paoli, PA, Oc-
tober, 1987,

57

[Moser1984]
M. G. Moser, Domain Dependent Seman-
tic Acquisition. In Proceedings of the
First Conference on Artifieial Intells-
gence Applications, IEEE Computer
Society, Denver, CO, December, 1984,

pp. 13-18.

[Palmer1986]
Martha S. Palmer, Deborah A. Dahl,
Rebecca J. [Passonneau] Schiffman,

Lynette Hirschman, Marcia Linebarger,
and John Dowding, Recovering Implicit
Information. In Proceedings of the
24th Annsal Meeting of the Associa-
tion for Computational Linguistics,
Columbia University, New York, August
1986.

[Passonneau1986]
Rebecca J. Passonneau, A Computation-
al Model of the Semantics of Tense and
Aspect, Logic-Based Systems Technical
Memo No. 43, Paoli Research Center,
Unisys, Paoli, PA, November, 1988.

[Sager1981]
Naomi Sager, Natural Langvage Infor-

mation Processing: A Computer
Grammar of [English and Its
Applications. Addison-Wesley, Reading,
Mass., 1981.

[Thompson1983]

Bosena H. Thompson and Frederick B.
Thompson, Introducing ASK, A Simple
Knowledgeable System.In Proceedings
of the Conference on Applied Natural
Language Processing, Santa Monica,
CA, February 1983, pp. 17-24.

[Thompson1985]
Bozena H. Thompson and Frederick B.
Thompson, ASK is Transportable in
Half a Doszen Ways. ACM Transac-
tions on Office Information Sys-
tems 8(2), April 1985, pp. 185-203.

[Tomita1984]
Masaru Tomita, Disambiguating Gram-
matically Ambiguous Sentences by
Asking. In Proceedings of the 22nd
Annsal Meeting of the Associaiion
for Computational Linguistics, Stan-
ford, CA, July 1984, pp. 476-480.

