HOW TO DRIVE A DATABASE FRONT END USING GENERAL SEMANTIC INFORMATION

B.K. Bcguraev and K. Sparck Jones

Computer Laberatory, University of Cambridge
Corn Exchange Street, Cambridge CB2 3QG, England

ABSTRACT

This paper describes a front end for natural
language access to databases making extensive use of

general, {.e. domain-independent, semantic
information for question interpretation. In the
interests of portability, initial syntactic and

semantic processing of a question is carried out
without any reference to the database domain, and

domain-dependent operations are confined to
subsequent, comparatively straightforward,
processing of the initial interpretation. The

different modules of the front end are described, and
the system's performance i3 illustrated by examples.

I INTRODUCTION

Following the development of various front ends
for natural language access to databases, it is now
generally agreed that such a front end must utilise
at least three different kinds of knowledge to
accomplish its task: linguistic kmowledge, knowledge
of the domain of discourse, and knowledge of the
organisational structure of the database. Thus
broadly speaking, a user request to the database goes
through three conceptually different forms: the
output of linguistic analysis of the question, its
representation in terms of the domain's conceptual
schema, and {ts interpretation in the database
access language. Early natural language front ends
usually did not have a clearcut separation between
the different stages of the process: for example
LUNAR (Woods 1972) merged the domain model and the
database mecdel 1into one, and systems such as the
early incarnation of LADDER (Hendrix et al 1978) and
PLANES (Waltz 1978) made heavy use of semantic
grammars with their domain-dependent 1lexicons
cembining linguistic kncwledge with domain knowledge
and so merging the first two stages. None of these

systems, mcreover, made any significant use of
general, as cpposed to domain-specific, semantic
infermation.

In an attempt to achieve portability from one
database tc another, mcst current systems adhere toc a
general framework (Konolige 1979), which makes a
clear distinction between the different prccessing
phases and distinguishes the domain-dependent frcm
the domain-independent parts cf the front end, and

also domain operations from database management
cperations. However semantic processing is still
This work is supported by the U.K. Science and

Engineering Research Council,

81

essentially driven by domain-dependent semantics.
Linguistic processing is therefore primarily
syntactic parsing, and relating general linguistic
to specific domain knowledge within the framework of
a medular front end takes the form of applying
domain~dependent semantic processing to the output
of the syntactic parser, This may be done in a
simple-minded way as in PHLIQA1 (Bronnenberg et al
1979) and TQA (Damerau 1980), or by providing hooks
in the syntactic representation (domain-independent
calls to semantic operators which will evaluate
differently in different ccntexts), as in DIALOGIC
(Grosz et al 1982). In either case the usual unhappy
consequence of separating syntactic and semantic
processing, namely the hassle of manipulating
alternative syntactic trees, follows. Furthermore,
changing domains implies changing the definitions of
the semantic operators, which are procedural in
nature, while it may be preferable to Kkeep the
domain-dependent parts of the frocnt end in
declarative form, as i{s indeed done in (Warren and
Pereira 1981).

Thus in systems of this by now conventional type,
the 'portability' achieved by confining the necessary
domain-dependent semantic processing to well-
defined mecdules {s purchased at the heavy price cf
limiting the early linguistic processing to syntax,
and, perhaps, some very glcbal and undiscriminating
semantics (see for example the sceping algerithm cf
(Grosz et al 1982)).

II SPECIFIC APPROACH

OQur objective is to do better than this by making
mcre use c¢f pewerful, but still ncn-domain-dependent
semantics in the frcnt-end 1linguistic analysis.
Doing this should have two advantages: restraining
syntax, and providing a gocd platform for dcmain-
dependent semantic processing. However, the cverall
architecture of the front end still follcws the
Konolige model in maintaining a clearcut separatiocn
between the different kinds of knowledge to be
utilised, keeping the bulk of the domain-dependent
knowledge in declarative form, and attempting to
minimise the ccnsequences of changes in the front
end environment, whether of domain e¢r database mcdel,
to promcte smooth transfers cf the frent end frem
one back end database management system to ancther.

We believe that there {3 a lot of mileage to be
gct from non-task-specific semantic analysis of user
requests, because their resulting rich, explicit, and
ncrmalised meaning representaticns are a gced

starting point for subsequent task-specific
operations, and specifically, are better than either
syntax trees, or the actual input text of e.g. the
PLANES approach, Furthermecre, since the domain world
is (in some sense) a subset cf the real world, it is
possible to interpret descriptions of it using the
same semantic apparatus and representation language
as is used by the natural language analyser, which
should allow easy and reliable linking of the
natural language input words, domain world objects
and relationships and data language terms and
expressions. Since the connections between these do
not appear hard-wired in the lexieccn, but are
established on the basis of matching rich semantic
patterns, no changes at all should be required in the
lexicon as the application moves frem one domain or
database to another, only expansions to allow for the
semantic definitions of new words relevant to the
new application,

The approach leads to an overall frent end
structure as follows:

: English question :

ANALYSIS

- V 1

| Analyser i
i (uses linguistic knowledge) i

v
: meaning representation :
v 2
} Extractor i
i (uses logico-linguistic knowledge) |

|

: logic representaticn :

TRANSLATION

- 3 :
Translator
(uses domain world knowledge)

¢ Query representation :

i
i Convertor . |
i (uses database crganisation '
i ncwledge) ;

v
: search representation :

Each prccess in the diagram above cperates cn the
output of the previous one. Processes 1 and 2
ccnstitute the analysis phase, and processes 3 and 4
- the translation phase. Such a system has
essentially been ccnstructed, and is under active
test; a detailed acccunt cf 1its components and
operaticns fcllows.

For the purposes of illustraticn we shall use

questions addressed te the Suppliers and Parts
relational database cf (Date 1977). This has three
relaticns with the following structure:

Supplier(Snc, Sname, Status, Scity), Part(Pno, Pname,
Colcur, Weight, Pecity), and Shipments(Snc, Pnc,
Quantity).

82

III ANALYSIS

A. The Analyser

The natural language analyser has been described
in detail elsewhere (Boguraev 1979), (Boguraev and
Sparck Jones 1982), and only a brief summary will be
presented here. It has been designed as a general
purpose, domain- and task-independent language
processcr, driven by a fairly extensive
linguisticall y-motivated grammar and controlled in
its operation by variegated application e¢f a rich
and powerful semantic apparatus. Syntactically-

controlled ccnstituent identification is ccupled
with the judgemental applicaticn ¢f semantic
specialists; following the evaluaticn of the

semantic plausibility of the constituent at hand,
the currently active processor either aborts the
analysis path cr constructs a meaning representation
for the textual unit (noun phrase, ccmplementiser,
embedded clause, etc.) for incorporation inte any
larger semantic ccnstruct. The philesophy behind the
analyser is that syntactically-driven analysis
(which is 3 major prerequisite for domain- and/cr
task-independence) is made efficient by frequent and
timely calls to semantic specialists, which both
centrol blind syntactie backtracking and construct
meaning representations for input text without geing
thrcugh the potentially costly enumeration of
intermediate syntactic trees. The analyser can
therefore cperate smccthly in envircaments which are
syntactically or lexically highly ambiguous.

To achieve its cbjectives the program pursues a
passive parsing strategy based on semantic pattern
matching of the kind proposed by (Wilks 1975). Thus
the semantic specialists work with a range cf

patterns referring to narrcwer or broader word
classes, all defined using general semantic
primitives and ultimately depending on formulae

which use the primitives to characterise individual
word senses, However the application cf patterns in
the search feor input text meaning is mcre
effectively centrelled by syntax in this system than
in Wilks'.

The particular advantages of the apprecach in the
database application ccntext are the powerful and
flexible means of representing linguistic and world
knowledge provided by the semantic primitives, and
the ease with which 'traps for the unexpected' can be
precedurally enccded. The latter means that the
system can readily deal with the kinds c¢f preblems
generated by unconstrained natural language text
which prevcke untoward 'ripple' effects when large
semantic grammars are mcdified. The semantic
primitive foundaticn for the analyser provides a
gced base fer the whole frent end, since the
ccmprehensive inventory cf primitives <can be
explcited to characterise becth natural language and

data language terms and expressions, and e
reccncile the user's view of the database domain with
the actual administrative organisaticn c¢f the
database.

For present purposes, the form and ccntent cf the
cutputs of the natural language analyser are mcre
impertant than the means by which they are derived
(fer these see Boguraev and Sparck Jcnes 1982). The

meaning representations output by the analyser are
dependency structures with clusters of case-labelled
components centred around main verb or noun
elements. Apart from the structure of the dependency
tree itself, and grcup identifying markers like 'tns'
and 'modality', the substantive informaticn in the
meaning representation is provided by the case
labels, which are drawn from a large set cf semantic
relation primitives forming part of the overall
inventory of primitives, and by the semantic
category primitive characterisations of lexically-
derived items.

The formulae characterising word senses may be
quite rich. The fairly straightforward
characterisation of ‘'supplier?’, representing one
sense of "supplier” is

(Supplier ...

(supplier1
({(%ent obje) give) (subj %org)) ...),

meaning approximately that some sort of organisaticn
(which may reduce to an individual) gives entities,
The meaning representation for the whole sentence
"Suppliers live in cities™ (with the formulae for
individual units abbreviated, for space reasons, to
their head primitives) is

(clause
' u“ﬁé sent ¢ lier1 an)))
agent (n (su er1 ... man
§P!T§E!tion gn %gityz ... Spread)))))),

where @agent and @location are case labels. "The
parts are coloured red™ will be analysed as

(clause
(v
(be2 ... be
(Qea ent
—rﬁ—rParM ... thin
@@number many))))

(@@state
(st (colourt ... sigm)
(val (red1 ... sense))))}))),

and "Who supplies green parts?" will give rise to
the structure:

(clause ... (type question)

v(supply1 oo Bive
(Geagent (n (query (dummy))))
(@@ch

e (clause v agent))
(clause
(v
be2 ... be
(@@agent
art1 ... thing)))
(Oestate (st (cclour?

(
g{see sense))))))).

sign)

As these examples show, the
representations combine expressive power with
structural simplicity. Further, the power c¢f the
semantic categery primitives used tc identify text
message patterns means that it 1is possible to
achieve far mcre semantic analysis cf a question, far
earlier in the frcnt end processing, than can be
achieved with frcnt ends ccnferming tc the Konclige
mcdel. The effectiveness cf the analyser as a general
natural-~language prccessing device has been
demcnstrated by its 3successful applicaticn to a

anal yser's

83

range of natural language processing tasks. There is,
however, a price to pay, in the database ccntext, for
its generality. Natural language makes ccmmcn use of
vague concepts ("have", "do"), almcst ccntent.empty
markers ("be", "of"), and cpaque constructicns such
as compound nouns., Clearly, frcnt ends where domain-
specific information can provide leverage in
interpreting these input text items have advantages,
and it is not clear how a principled solution to the
problems they present can be achieved within the
framewerk of a general-purpose analyser of the kind
described. To provide a domain-specific
interpretation of, for example, ccmpounds like
"supplier city", an interface would have to be
provided characterising domain knowledge in the
semantic terms familiar to the parser, and
guaranteeing the provision of explicit structural
characterisations of the text ccnstituent which
would be available for further explcitation by the
parser,

To aveld invcking domain kncwledge in this way in
analysis we have been obliged to accept questicn
interpretations which are inccmplete in limited
respects, That is, we push the crdinary semantic
analysis procedures as far as they will gc, accepting
that they may leave 'dummy’ markers in the dependency
structure and ccmpound ncminals with ambiguous
member words and nc explicit extracted structure.

B. The Extractor

While the meaning representations constructed by
the natural language analyser are general and
informative encugh to be able to support different
tasks in different applicaticns feor different
domains, they are not necessarily the best fcrm cf
representation for question answering, and
specifically for addressing a coded database. After
the initial determination cof questicn meaning,
therefore, the question 1is subjected tc task-
criented, though not yet domain- and database-
oriented, processing. Imposing demain world and
database crganisaticn restricticns on the questicn
at this stage would be premature, since it cculd
ccmplicate or even inhibit peossible later {nference
operaticns, The idea cf precviding a system ccmponent
addressing a general linguistic task, withcut
thrcwing away any detailed infcrmation nct in fact
needed fcr scme specific instance c¢f that task, like
natural language distinctions between quantifiers
ignered by the database system, is also an attractive
cne.,

The extracter thus emphasises the fact that the
input text is a questicn, but carries the detailed
semantic infcrmation prcvided by the analyser
ferward fer exploitaticn ip the translaticn phase cf
the prccessing.

A geced way to achieve a questicn fermulaticn
abstracted frcm the lcw-level crganisaticn cf the
database is tc interpret the user's input as a fermal
query. Hewever cur extractcr, unlike the equivaient
prccessors described by (Wocds 1972), (Warren and
Pereira 1981) and (Grcsz et al 1982), does nct make
any use c¢f domain-dependent infcrmaticn, but
censtructs a lcgic expressicn whcse variable ranges
and predicate relaticnships are defined in terms cf

the general semantic primitives used for
censtructing the input question meaning
representaticn. The 1lcgic representation of the

question which is cutput by the extractcr highlights
the search aspects cf the input, formalising them sc
that the subsequent prccesses which will eventually
generate the search specificaticn for the database
mapagement sSystem can lccate and fecus on them
easily; at the same time, the semantic richness cf
the criginal meaning representaticn is maintained to
facilitate the later domain-criented translation
cperations,

The syntax c¢f the logic representation closely
follows that defined by (Wocds 1978):

(For <quantifier> <(variable> / <range>

: <restricticns cn variable>

-~ <prepesiticn>),
where each cf the restricticns, or the propesition,
can themselves be quantified expressions. The
rationale for such quantified expressions as media
for questicns addressed tcwards an abstract database
has been discussed by Woods. As we accept this, we
have develcped a transformation prccedure which
takes the meaning representation cf an input
question and ccnstructs a ccrrespending legic
representation in the fcrm just described. Thus fer
the questicn "Who supplies green parts?" analysed in
Section A, we cbtain

(For Every $Var1 / query
: (For Every $Var2 / part}
(ecleur1 g$vVar2 greenl)
- (supply1 §Var1 Var2))

- (Display $var1)),
where the lexically-derived items indicating the
ranges of the quantified variables ('query’, 'part1'),
the relaticnships between the variables (‘'supply!*)
and the predicates and predicate values (‘ecclcur?’,
‘greeni') in fact carry alcng with them their
semantic fcrmulae: these are cmitted here, and in the
rest cf the paper, to save space.

The extractor is geared to seek, in the analyser's
dependency structures, the simple prcpesiticns
(atcmic predications) which make up the lcgic
representaticn. Follcwing the philescphy cf the
semantic thecry underlying the analyser design,
these simple prcpositicns are identified with the
basic messages, i.e. semantic patterns, which drive
the parser and are expressed in the meaning
representations it prcduces as verb and ncun grcup
clusters cf case-related elements. In crder to
'unpack' these, the extractcr lccks feor the sources
cf atomic predicates as 'SVO' triples, identifiable
by a verb (cr ncun) and its case rcle fillers, which
can be extracted quite naturally in a
straightfcrward way frcm the dependency structure.

Depending bcth cn the semantic characterisaticn
cf the verb and its case arguments, and cn the
semantic ccntext as defined by the dependency tree,
the triples are categcrised as belcnging to cne cf
twe types: [($0bj $Link $0bjl, or [$0bj $Pcss $Prepl,
where the $0bj, $Link, or $Prcp items are further
characterised in semantic terms. It is clear that the
'basic messages' that the extractcr seeks tc identify
as a preliminary step tc ccnstructing the lcgie
representaticn define either primitive
relaticnships between cbjects, cr prcperties cf

84

thcse same cbjects. Thus the meaning representaticn
for "part suppliers" will be unpicked as a 'dummy’
relaticnship between "suppliers" and "parts", i.e. as

[$0bj1(supplier1) $Link?i1(dummy) $0bj2(parti)],
while "green parts" will be interpreted as

{s0bj2(part 1) $Pcss(be2) $Proplcclecurizgreent)].
Larger ccnstructs can be similarly deccmpcsed: thus
"Where do the status 32 red parts suppliers live?"
will be brcken down into the follcwing set cf
triples: .

{$0bj1(supplier1) $Link1(live1) sotyj%(query)]

& [$0bjl(supglier1) $Link2(d\.mm¥) $0bj2(part1)]
& [Obgl(supp ier1) $Pcssti(be2) $Prcpi status:gzg]
& (s0bj2(part1) $Pcss2(be2) $Prcp2(cclcurizredi)].
It must be emphasised that while there are parallels
between these structures and thcse cof the entity-
attribute apprcach to data mcdelling, the ferms cf
triple were chcsen withcut any reference %o
databases. As ncted earlier, they naturally reflect
the form eof the 'atomic prepositicns', i.e. basic
messages, used as semantic patterns by the natural
language anal yser,

For ccmpleteness, the triples underlying the
earlier question "Whe supplies green parts?" are

{$0bj1(query=identity)

$Link1(su|?§ly1) $0bj2(part1)]

& [$0b%2(part
Poss1(be2) $Prepi(ccleourizgreeni)]

The sets cf interccnnected triples are derived
frcm the meaning representaticns by a fairly simple
recursive prccedure, The next stage <c¢f8 the
extracticn prccess restructures the triples tree
intoc a skeleten quantified structure, the lcgic
representation, tc¢ be passed fcrward tc the
translater generating the formal query
representaticn. Whenever mcre explicit infermaticn
regarding the interpretaticn c¢f the input as a
questicn can be extracted frcm the meaning
representaticn, this is incecrpcrated intc the legic
representaticn. Thus the prccessing includes
identification and sccping cf quantifiers follcwing
the apprecach adopted by Weeds, and establishing the

aspect, mcdality and focus cf the questicn. Like
anycne else, we do nct claim tc previde a
ccmprehensive treatment cf natural language
quantifiers, and indeed in practice have nct
implemented prccesses fer all the quantifiers
handled by LUNAR.

The lcgic representaticn defines the Ilcgical

centent and structure cf the infcrmaticn the user is

seeking. It may, as ncted, be inccmplete at pcints
where domain reference 1is required, e.g. in the
interpretaticn cf ccmpound ncuns; but it carries

aleng, tc the translatcr, the very large amcunt cf
semantic infcrmaticn previded by the case labels and
fcrmulae cf the meaning representaticn, which sheuld
be adequate tc pinpcint the items scught by the user
and tc describe them in terms suited tc the database
management system, 3¢ they may be accessed and
retrieved.

IV TRANSLATION

A. The translator

In the process of transferming the semantic
centent of the user's questicn into a low-level
search representaticn geared to the administrative
structure of the target database, it is necessary to
reccncile the user's view of the world with the
domain mcdel. Before even attempting to construect,
say, a relaticnal algebra expression to be
i{nterpreted by the back-end database management
system, we must try tec interpret the semantic ccntent
of the logic representation with reference toc the
segment cr variant of the real world mcdelled by the
database,

An obvicus possibility here s to proceed
directly frcm the variables and predications of the
legic representaticn te their database counterparts.
For example,

(supplyl (give)

geat!1/33pplier1 (man) $Var2/part1 (thing))
can be mapped directly onto a relation Shipments in
the Suppliers and Parts database. The mapping could
be established by reference to the lexicon and to a

schedule cof equivalences between logical and
database structures.
This approach suffers, however, from severe

problems: the most important is that end users do not
necessarily constrain their natural language to a
highly limited vccabulary. Even in the simple
ccntext cf the Suppliers and Parts database, it is
possible to refer to "firms", "gocds", "buyers",
"sellers®, "provisions®, "customers", etc. In fact, it
was precisely in order to bring variants under a
ccmmen dencminator that semantic grammars were
employed. We, in ccntrast, have a more powerful,
because more flexible, semantic apparatus at our
disposal, capable cf drawing out the similarities
between "firms®", "sellers®, and "suppliers", as
cpposed to taking them as read. Thus a general
semantic pattern which will match the dicticnary
definitions cf all cf these words is ({(%ent cbje)
give) (subj *®org)). Furthermcre, if instead of
attempting to define any sort cof direct mapping
between the natural language terms and expressions
cf the user and ccrrespcnding dcmain terms and
expressicns, we ccncentrate cn finding the ccmmen
links between them, we can see that even though the
demain and, in turn, database terms and expressions
may nct mean exactly the same as their natural
language relatives cr sources, we shculd be able to
detect cverlaps in their semantic characterisations.
It is unlikely that the same ¢r similar words will be
used in beth natural and data languages if their
meanings have ncthing in ccmmen, even if they are nct
identical, so characterising each using the same
repertoire cf semantic primitives shculd serve tc

establish the 1links between the twc. Thus, fer
example, cne sense cf the natural language word
"leccaticn” will have the formula (this (where
spread)) and the data language werd "&eity®

referring tc the domain cbject &city will have the
fecrmula (((man folk) wrap) (where spread)), which
can be ccnnected by the ccmmen ccnstituent (where
spread).

85

One distinctive feature cf our frcant end design,
the use of general semantics for initial question
interpretation, i{s thus connected with ancther: the
mcre stringent requirements imposed cn natural
language to data language translaticn by the initial
unconstrained question interpretaticn can be met by
expleiting the resources for language meaning
representation initially utilised for the natural
language question interpretation. We define the
domain world mcdelled by the database using the same
semantic apparatus as the cne used by the natural
language frcont end processor, and invcke a flexible
and sophisticated semantic pattern matcher tc
establish the connecticn between the semantic
centent of the user question (which is carried over
in the locgic representation) and related ccncepts in
the domain world. Taking the next step from a domain
world concept or relationship between domain world
cbjects to their direct mcdel in the administrative
structure of the database is then relatively easy.

Since the domain world is essentially a clcsed
world restricted in sets if not in their members, it
is posaible to describe it in terms of a limited set
of ccncepts and relationships: we have possible
preperties of objects and potential relationships
between them. We can talk about &suppliers and &parts
and the important relationship between them, namely
that &suppliers &supply &parts. We can alsc specify
that &suppliers &live in &cities, &parts can be
&numbered, and so on,

We can thus utilise, either explicitly cr
implicitly, a description of the dcmain world which
cculd be represented by dependency structures like
those used for natural language. The important point
about these is the way they express the semantic
ccntent of whole statements abcut the demain, rather
than the way they label individual domain-referring
terms as, e.g. "&supplier” or "&part", It is then easy
to see how the logic representaticn for the questicn
"What are the numbers of the status 30 suppliers?",
namel y

(For B bl 3135 (RBBR T i 5
can be unpacked Dby semantic pattern
rcutines to establish the ccnnecticn between
"supplieri® and "&suppliern, "number ™ and
"&number”, and so con. In the same way the lcgic
representaticns fer "Frcm where does Blake cperate?"
and "Where are screws found?" can be analysed fcr
semantic centent which will establish that m"Blake"
is a &supplier, "cperate" in the ccntext c¢f the
database dcmain means &supply, and "where" is a query
marker acting fcr &city frem which the &supplier
Blake &supplies (as cppcsed tc street ccrner, bucket
shop, cr crafts market); similarly, "screw" is an
instance c¢f &part and the c¢nly lccaticnal
infermaticn assoclated with &parts in the database
in questicn is the &city where they are stcred. All
this beccmes clear simply by matching the underlying
semantic primitive definiticns ¢f the natural
language and domain world words, in their
prepesiticnal ccntexts.

t):?tuu $Vart 30)

matching

The translator is alsc the medule where demain
reference is breught in te cemplete the
interpretaticn cf the input questicn where this
cannct be fully interpreted by the analyser alcne.

The semantic pattern-matching potential c¢f the
translation mcdule can be explcited to determine the
nature of the unresolved domain-specific
predicaticns (beth 'dummy' relaticnships and those
implicit in ccmpound ncminals), and vacuously
defined cbjects ('query' variables). Thus the
fragment of logical ferm fer "... Londen suppliers cf
parts ..", namely

(For <quant> $Vari1/supplier?
: (AND

(For <guanc> $Var2/8arc1
- (uumg $Var1 sVar2))
(For <quant> $var3/Londen

- (dummy $Var1 $Var3i)))

is brcken down intc the cocrrespending demain
predications

(&supply $Vari(&supplier) $Var2(&part))
and

(&live $Var1(&supplier) $Var3i(&eity)),
while translating the lcgic representation for the
example question "Who supplies green parts?" gives
the query representation

(For Every $Var1/&supplier
: (For Every $Var2/&part

:i&ec cur $Var reeng
- (&supply 3Varl $Var2))
- (Display s$var1)).
Apart frcm the fact that semantic pattern

matching seems to ccpe quite successfully with
unex pected inputs ('unexpected' in the sense that in
the alternative apprecach nc mapping function would
have been defined fcr them, thus implying a failure
tc parse and/cr interpret the input questicn),
having a general natural language analyser at our
dispcsal cffers an additicnal benus: the deseription
c¢f the dcmain world in terms cf semantic primitives
and primitive patterns can be generated largely
autcmatically, 3since the domain werld can be
described in natural language (assuming, of ccurse,
an apprcpriate lexicen of domain world werds and
definiticns) and the descripticns simply analysed as
utterances, prcducing a set cf semantic structures
which can subsequently be prccessed to cbtain a
repertcire cf domain-relevant forms to be explcited
fcr the matching prccedures.

8. The Ccnvertor

Having identified the domain . terms and
expressions, we have a high-level database
equivalent c¢f the criginal English questicn. A

substantial amcunt cf prccessing has pinpcinted the
questicn fccus, has eliminated pctential
ambiguities, has resolved dcmain-dependent language
ecnstructicns, and has previded fillers fer 'dummy’
cr 'query' items, Further, the system has established
that "lenden" s a &city, fcer example, cr that
"Clark" is a specific instance cf &supplier. The
prccessing ncw has tc make the final tranmsiticn tc
the specific ferm in which questions are addressed
tc the actual database management system. The
semantic patterns cn which the translatcr relies,
fer example defining a demain werd "&supplier" as
(((%*ent obje) give) (subj ®%org)), while adequate
encugh tc deduce that Clark i{s a &supplier, are nct

86

informative encugh toc suggest how &suppliers
mcdelled in the actual database.

are

Again, the cbvious apprcach tc adopt here is the

mapping cne, sc that, fcr instance, we have:
&supplier ==2> relaticn Supplier
Clark -

=2)
tuple cf relaticn Sugplier
such that Sname=z"Clark"

But this apprcach suffers frcem the same limitaticns
as direct mapping frem logic representaticen tec
search representaticn; and a mcre flexible apprcach
using the way the database mcdels the dcmain werld
has been adopted.

In the previous section we discussed how the
translator uses an inventory of semantic patterns tc
establish the ccnnecticn between natural language

and domain world words. This inventery is nct,
however, a flat structure with nc internal
crganisaticn. On the «ccntrary, the semantic

information abcut the domain world is crganised in
such a way that it can naturally be asscciated with
the administrative structure cf the target database.
For example in a relational database, a relaticn with
tuples cver domains represents prcperties of, cr
relationships between, the cbjects in the demain
werld, The ¢bjects, properties and relaticnships are
described by the semantic apparatus used fer the
translater, and as they alsc underlie, at nct tcc
great remcve, the database structure, the demain

world ccncepts cr predicaticns cf the query
representaticn act as pointers intoc the data
structures cf the database administrative
crganisation,

Fer example, given the relaticn Supplier cver the
domains Sname, Snc, Status and Scity, the semantic
patterns which describe the facts that in the domain
world &suppliers &have &status, &numbers, &names and
&live in &cities are crcsslinked, in the sense that
they have the superstructure cf the database
relation _S_UM impcsed cver them. We can thus use
them to avcid explicit mapping between query data
references and template relaticnal structures fcr
the database. Frem the initial meaning
representation for the questicn fragment ".., Clark,
whe has status 30 ,." thrcugh to the query
representaticn, the semantic pattern matching has
established that Clark is an instance cf &supplier,
that the relaticnship between the generic &supplier
and the specific instance cf &supplier (i.e. Clark)
is that cf &name, and that the query is fccussed cn
his &status (whcse value i3 supplied explicitly).
New frem the position c¢f the query predicaticn
(&status &supplier 30) in the characterisaticn cf
the relaticn Supplier, the system will be able tc

deduce that the way the target database
administrative structure mcdels the questicn's
semantic centent is as a relaticn derived frem

Supglier with "Clark™ and "30" as values in the

cclumns Sname and Status respectively.

The ccnverter thus emplcys declarative kncwledge
abcut the database crganisaticn and the
cecrrespondence between this and the demain werld
structure tc derive a generalised relaticnal algebra
expressicn which is an interpretaticn cf the fermal

query in the context of the relational database
mcdel of the domain. We have chosen to gear the
cenvertor towards a generalised relational algebra
expression, because beth 1its simple underlying
definiticn and the generality of its data structures
within the relaticnal mcdel allcw easy generation of
final low-level search representations fcr different
specific database access systems.

To derive the generalised relational algebra form
of the question frcm the query representatiocn, the
convertor uses its knowledge of the way domain
cbjects and predicaticns are mcdelled in the
database to establish a primary or derivable
relation for each of the quantified variables of the
query representation. These ccnstituents of the
algebra expression are then ccmbined, with an
appropriate sequence of relaticnmal operaters, to
obtain the complete expression.

The basic premise cf the ccnvertor is that every
quantified variable in the formal representation can
be asscciated with some primary cr computable
relation in the target database; restrictions cn the
quantified variables specify how, with that relation
as a starting point, further relational algebra
ccmputations can be performed to medel the
restricted variable; the process is recursive, and as
the query representation is scanned by the
convertor, variables and their associated relational
algebra expressions are bound by an fenvironment-

type' mechanism which provides all the necessary
information to 'evaluate' the propositicns of the
query. Thus ccnversion is evaluating a predicate
expression in the —context of 1its semantic
interpretaticn in the domain world and the
envircnment of the database - mcdels for its
variables,

For example, given the query representation

fragment for the phrase "... all London suppliers who
supply red parts ...", namely

(For(-AEvery $Var1/&supplier
*""(For The sVar3/Lcndon - (&live gVart $var3))

(For Every $vVar2/& ¢ (&cclcur $Var2 red)

- (&supply $Var SVarZ))) cee
$vart will initially be becund to the primary
relaticn Supplier, which will be subsequently

restricted to those tuples where Scity is equal to
"London”, Similarly, $Var2 will be associated with a
partial relation derived frem Part, for which the
value cf Colcur is "red", Evaluating the prcpositicn
(&supply $Var1 $Var2), whcse dcmain relationship is
mcdelled in the database by Shipments, will in the
enpvircnment cf $Var1l and $Var2 yield the relational
expressicn

(jein

Eselect Supplier where Scity equals "Lendon")
Jjein Shipmen
(select Part where Colcur equals "red"))).

At this peint, the infcrmaticn that the user wants
has been described in terms cf the target relational
database: names cf files, fields and cclumns. The
search descripticn has, however, still tc be given
the specific fcrm required by the back-end database
management system. This is achieved by a fairly
straightferward applicaticn cf standard ccmpiling

87

techniques, and does not deserve detailed discussicn
here, At present we can generate search
specifications in three different relational search
languages. Thus the final form in the lccal search
language Salt of the example question "Who supplies
green parts?" is

list (Part Colour-"green"
(Supplier ¥ Shipments))

V IMPLEMENTATION

All of the mcdules have been implemented (in
LISP). The ccnvertor 1s at present restricted tc
relational databases, and we would like tc extend it
to cther mcdels. The system has so far been tested cn
Suppliers and Parts, which is a tcy database frcm the
point of view of scale and ccmplexity, but which is
rich encugh to allow questicns presenting challenges
to the general semantics approach tc question
interpretaticn, Te i{llustrate the performance c¢f the
frent end, we show below the query representaticns
and final search representations fcr scme questicns
addressed to this database. Woerk is currently in
progress to apply the front end to a different
(relational) database containing planning
informaticn: this simulates IBM's TQA database
(Damerau 1980), Most of the work in this is likely tc
come in writing the lexical entries needed for the
new vccabulary. Longer term developments include
validating each step of the translaticn by
generating back into English, and extending the
front end, and specifically the translater, with an
inference engine.

Clearly, in the longer term, database frcnt ends
will have to Dbe provided with an inference
capability. As Konolige points cut, in attempting tc
insulate users, with their particular and varied
views of the domain cf disccurse, frcm the actual
administrative crganisation cf the database, it may
be necessary t¢ de¢ an arbitrary amcunt cf
inferencing exploiting domain informaticn tc ccnnect

the user's questicn with the database. An cbvicus
prcblem with frent ends nct clearly separating
different prccessing stages is that it may be

difficult to handle inference in a ccherent and
centrelled way. Insofar as inference is primarily
domain~based, it seems natural in a mcdular frcnt end
to provide an inference capability as an extensicn
cf the translator. This shculd serve bcth tc lccalise
inference cperations and tc facilitate them because
they can work cn the partially-prccessed input
questicn, Hcwever the inference engine requires an
explicit and well.crganised dcmain mcdel, and
specifically one which is rather mcre ccmprehensive
than current data mecdels, or than the rather infcrmal
cenceptual schema we have wused tc drive the
translater.

We hope toc begin werk cn previding an inference
capability in the near future, but it has tc be
reccgnised that even fcr the restricted task cf
database access, it may prcve impcssible tc cenfine
inference cperations tc a single mcdule: dcing sc
would imply, for example, that ccmpcund ncuns will
generally only be partly interpreted in the analysis
and extracticn phases. 3Starting with inference
limited tc the translaticn medule is therefcre

primarily a research strategy for tackling the

inference prcblem.

® Green parts are supplied by which suppliers?
+ query representaticn:

(Fer Every $Var1/&sugplier
:(For Every $Var2/&part : (&colour $Var2 green)
=(&supply $Var1 $var2))
-(Display svar1t))

+ search representation in Quel:

Ql-vari is Part

Ql-var2 is Sugplier

Ql-var3 is Shipments

into Terminal (Ql-var2,Sname)
where §01-var1.Pnc z Ql-var .Pncg

Range cf
Range cf
Range cf
Retrieve

and Ql-var2.Sno = Ql-var3.Snc
and Ql-vari1.Colcur = "green")

* Frcm where does Blake operate?
+ query representaticn:

(For The $Var2/&citi'
:(For The $Vari1/Blake - (&live $Vari1 $vVar2))
-(Display $var2))

+ search representation in Quel:

Range cf (Ql-vart) is (Sugplier)
Retrieve intoc Terminal (Ql-vari.Scity)
where (Ql-vari.Sname = "Blake")

®* What is the status of the Paris part suppliers
who supply blue parts?

+ Query representation:
(For Every g$Vari/&supplier
s (AND

Fer Some 3$Var2/&part - (&suppl‘ll($Var1 svVar2))
For The $Var3/Paris - (&live $Var1 $var3))
Fer Every $Varid/&part

:(&ccleur $Vard blue)
-(&sup lg $Vari $vard)))
-(Display (kstatus gvar1)))

+ search representation in Quel:

Range cf Ql-var] is Part

Range cf Ql-var2 is Supplier

Range cf Ql-var3 is Shipments

Retrieve inte Terminal (Ql-var2,Status)
where EQl-vaH.Pnc z Ql-var .Pncg
and Ql-var2.3nc = Ql-var3.3nc

and (Ql-var2.Seity = "Paris")
and (Ql-vari.Celcur = "blue")
VI CONCLUSION
The prcject results sc far suggest that
develcping a natural language frcnt end tc databases
based c¢n a general semantic analyser which

cecnstructs rich and explicit meaning representations
cffers distinct advantages in at least twc respects:
it makes all subsequent prccessing cleaner than
wculd be the case with a representaticn dcminated by
cenventicnal 3syntax, and enhances portability by
enccuraging the declarative descripticn cf demain-
specific kncwledge. ‘

68

VII REFERENCES

Boguraev, B.K. "Autcmatic rescluticn cf linguistic
ambiguities”, Technical Report Ne.11, Cemputer
Laberatory, University cf Cambridge, 1979.

Beguraev, B.K. and Sparck Jones, K. ™A natural
language anal yser for database access",
Informaticn Technclcgy: Research and Development,
1, 23-39, 1982.

Bronnenberg, W.J.H.J. et al, "The question answering
system PHLIQA1", in Natural language questicn
answering systems (Ed. Bolc), Lendon: Macmillanm,
1979.

Damerau, F.d. "The transfermational questicn
answering (TQA) system: descripticn, cperating
experience, and implications®™, Report RC8287, IBM
Themas J. Watscen Research Center, Ycrktcwn
Heights, N.Y., 1980.

Date, C.J. An intrcduction to database systems,

Reading, Mass.: Addison-Wesley, 1977.

Gresz, B, et al. "DIALOGIC: a ccre natural-language
processing system", in Proceedings cf the Ninth

Internaticnal Conference cn Cocmputaticnal
Linguistics, Prague, 1982.

Hendrix, D.G. et al. "Developing a natural language
interface tc ccmplex data", ACM Transacticns cn
Database Systems, 3, 105-147, 1978.

Konolige K. "A framewerk for a pcrtable natural-
language 1interface te large data bases",
Technical Note 197, Artificial 1Intelligence

Center, SRI Internaticnal, 1979.

Waltz, D. "An English language questicn answering
system for a large relaticnal database”,
Communicaticns cf the ACM, 21, 526-539, 1978.

Warren, D.H.D. and Pereira, F.C.N. "An efficient easily
adaptable system for interpreting natural
language queries”, Research Paper 155, Department
cf Artificial Intelligence, University c¢f
Edinburgh, 1981,

Wilks, Y. "An intelligent analyser and understander
cf English", Communicaticns cf the ACM, 18, 26u-
274, 1975.

Wecds, W.A. "The lunar sciences natural language
infcrmaticn system", Final Report, Bolt, Beranek
and Newman Inc,, Cambridge, Mass., 1972.

Wocds, W.A. "Semantics and quantificaticn in natural
language question answering", Advances in
Ccmputers, 17, 1-87, 1978.

