PARSING WITH LOGICAL VARIABLES

Timothy W. Finin and Martha Stone Palmer
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104

ABSTRACT

Logic based programming systems have enjoyed
an increasing popularity in applied AL work in the
last few years. One of the contributions ¢to
Computational Linguistics made by the Logtic
Programming Paradigm has been the Definite Clause
Grammar. In comparing DCG’s with previous parsing
mechanisms such as ATN’s, certain clear advantages
are seen. We feel that the most important of these
advantages are due to the use of Logical Variables
with OUnification as the fundamental operation on

them. To 1illustrate the power of the Logilcal
Variable, we have implemented an experimental ATN
system which treats ATN registers as Logical

Variables and provides a unification operation over

them. We would like to simultaneously encourage
the use of the powerful mechanisms available in
DCG’ s, and demonstrate that some of these

techniques can be captured without reference to a
resolution theorem prover.

l. Introduction

Logic based programming systems have enjoyed
an increasing popularity in applied AL work Ln the

last few years. One of the coatributions ¢to
Computational Linguistics made by the Logic
Programming Paradigm has been the Definite Clause
Grammar. An excellent {ntroduction to this

formalism can be found in [Pereira] 1{n which the
authors present the formalism and make a detailed
comparison to Augmented Transition Networks as a
means of both specifying a language and parsing
sentences in a language.

We feel that the major strengths offered by
the DCGC formalism arise from its use of Logical
variables with Unification as the fundamental
operation on them. These techniques can be
abstracted from the theorem proving paradigm and
adapted to other parsing systems (see [Kay] and
{Bossie]). We have i{mplemented an experimental ATN
system which treats ATN registers as Logic
variables and provides a unification operation over
them.

The DCG formalism provides a powerful
mechanism for parsing based on a context free
grammar. The grammar rule

S => NP VP

can be seen as the universally quantified logical
statement,

62

For all x, y, and z :

NP(x) /\ VP(y) /\ Concatenate(x,y,z) => S(z).

where "x" and "y" represent sequences of words

which can be concatenated together to produce a

sentence, "S." Prolog, a programming language
based on predicate calculus, allows logical
statements to be i{nput as Horn clauses ian the

following (reversed) form:

s(Z) <= np(X),vp(Y),Concatenate(X,¥,Z).

The resolution theoren prover that
"{aterprets” the Prolog clauses would take the
negation of S as the goal and try and produce the
null clause. Thus the preceding clause can be
interpreted procedurally as, '"To establish goal S,
try and establish subgoals, NP, VP and
Concatenate.” DCG’s provide syntactic sugar on top
of Prolog so that the arrow can be reversed and the

"Concatenate” predicate can be dispensed with. The
words {n the {nput string are looked at
sequentially each ctime a "[Word]" predicate (s

executed which implicitly tescs for concatenation
(see figure l1). DCG’s allow grammar rules to be
expressed very cleanly, while still allowing
ATN-type augmentation through cthe addition of
arbitrary tests on the contents of the variables.

Pereira and Warren argue cthat the DCG
formalism {s well suited for specifying a formal
description of a language and also for use with a
parser. In particular, they assert that it is a
significant advance over an ATN approach on both

philosophical and practical grounds. Their chief
claims are that:

1. DCGs provide a common formalism for
theoretical work in Computational Linguistics

and for writing efficient natural language
processors.

The rule based nature of a DCG result
systems of greater clarity and modularity.

in

DCG’s provide greater freedom in the range of
structures that can be built in the course of
analyzing a constituent. In particular the DCGC
formalism makes it easy to create structures
that do aot follow the structure implied by

the rules of a constituent and easy to create
a structure for a constituent that depends on
items not yet encountered in the seantence.

The first two points have been discussed in
the past whenever the ATIN formalism 1is compared
with a rule-based grammar (see [Pract] , [Heidorn]
, [Codd] , or {Bates]). The outcome of such
discussions vary. It i3 safe to say that how one
feels about these points depends quite heavily on
past experience in using the two formalisms.

We find the third point to be well founded,
however. It i{s clear that the DCG differs most
from previous rule-based parsing systems in its
inclusion of Logical variables. These result in

greater flexibility {n building structures to
represent constituents that do not follow the
inherent structure determined by the rules
themselves. They also allow one to create

structures which refer to items that have not yet
been discovered in the course of analysing the
sentence.

We have built an experimental ATN system which
can treat ATN registers as Logical variables and,
we feel, capture thesde important strengths offered
by the DCG formalism in the otherwise standard ATN
formalisam.

The gsecond section gives a more detailed
degsciption of DCG’s and presents a simple grammar.
In the third section we show an ATN grammar which
{s "equivalent” to the DCG grammar and discuss the
source of {ts awkwardness. The fourth section then
presents an ATN formalism extended to i{nclude
viewing ATN registers as Logical variables which
are subject to the standard unification operation.
The final section concludes this note and suggests

that logical variables might be fruitfully
{ntroduced {into other parsing algorithms and
systems.

2. Definite Clause Grammars

Figure | shows a simple DCG grammar adapted
from {Pereira] . Figure 2 gives a sentence in the
language recognized by this grammar together with
the associated surface syntactic structure aand the
semantic structure built by che grammar.

The way {n which unification produces the
appropriate bindings for this example (s actually
quite subtle, and requires a detailed analysis of
the parse, as represented by the refutation graph
in Figure 3. For the the refutation graph the
Prolog clauses have been put into clausal normal
form. Some liberties have been taken with the
ordering of the predicates in the interest of
compactness.

In trying to establish the "s(P)" goal, the
"ap(X,Pt,P)" is first attempted. The "Pl" is an
empty variable that is a ‘"place-holder" for

predicate information that will come from the verb.

[t will "hold"” a place in the sentence structure
that will be provided by the determiner. 'P" is
destined to contailn the sentence structure. The

63

Pig. 1. A Definite Clause Grammar
s(P) => ap(X, Pl, P), vp(X, Pl).
ap(X, Pl, P) => det(X, P2, Pl, P),
n(X, P3),
relclause(X, P3, P2).
np(X, P, P) => name(X).

vp(X, P) => transv(X, Y, Pl),
vp(X, P) => intransv(X, P).

ap(Y, Pl, P).

relclause(X, Pl, (And Pl P2)) -> [that], vp(X, P2).
relclause(X, P, P) => [].

det(X, P1, P2, (ForAll X (=> P! P2))) -> [everyl.
det(X, P1, P2, (ForSome X (And Pl P2))) -> [a].

n(X, (man X)) => [man].
n(X, (woman X)) => [woman].
n(X, (dog X)) => (dog].

name(john) => { john]
name(mary) -> [mary]
nane(fido) ~> [fido]

transv(X, Y, (loves X) -> [loves].
transv(X, Y, (breathes X Y)) -> [breathes].

intransv(X, (loves X) -> {loves].
intransv(X, (lives X) => [lives].
intransv(X, (breathes X) -> [breathes].

Pig. 2. A Sentence, Structare and Representation
SENTENCE
"john loves every woman who breathes"
SYNTACTIC STRUCTURE
(S (NP (NAME john))
(VP (TRANSV loves)
(NP (DET every)
(NOUN woman)
(REL (VP (INTRANSV breathes)))))))
SEMANTIC REPRESENTATION

(Forall X1 (=> (And (woman X1) (breathes X1))
(loves john X1)))

Fig. 3. Refutation Graph

~s(P \/ ~np(X,P1,P) \/ ~vp(X,Pl)

~vp(X,P1)\/"np(X,P1,P) ap(X,P,P) \/ ~ \/ ~[john]

vp(john,P \/~transv(X,Y,P1)\/~np(Y,P1,P) ~{john iohn
~ap(Y,P1,P)\/Ztransv(john \/~{loves] {1

~det(X,P2,P1,P)\/
~a(X,P3)\/relclause(X,P3,P2)\

Thesy | B

[every] ~fevery]\/~det(X,Pl,P2,(Forall X (=>P1 P2 N/
—-Qi\\/// “n(Y,P3)\/"relclause(Y,P3,P2)
(P is bound to "Forall Y(=>_Pl loves(john,Y))'")
(] \\\\(//

~{woman]\/~n(X,(woman X - \/~relclause(Y,P3,P2)

woman}] ~{woman]\/ ":.ah.].au,i.dx..(man_m ~vp(X, PZ)\/ '[chacl\/
\(]) 1 3

(Pl is bound to "And (woman Y) P2")

~intransv(X,P)\/ % i %

(P2 is bound to 'breathes(Y)")

64

firsc "np" clause will be matched, but 1t will
eventually fafl since no determiner 1is present.
The second "np" clause will “succeed, having forever
identified the contents of "Pl" with the contents
of "P, " whatever they may be. Since there 1is no
determiner in the first noun phrase, there i3 no
quantification information. The quantificational
structure wmust be supplied by the verb phrase, so
the structure for the sentence will be the same as
the structure for the verb phrase. The variable
"X" will be bound to “John".

In trying to establish "vp(Johmn,Pl), " the
first "vp" clause wifll succeed, since "loves" is a
transitive verb. It {is important not to get the
variables confused. Within the "vp" clause our
original "P1" has been renamed "P" and and we have

a new "P1" variable that will be {nstantiated to
"(loves John Y)" by the success of the "tranav"
goal. The "Y" is as yet undetermined, but we can
see that it will be supplied by the next
"ap(Y,(loves John Y),P)" goal. It shows great
foresight on “transv’'s" part to pass back a

variable in such a way that it will correspond to a
variable that has already been named. This pattern
is repeated throughout the grammar, with powerfull
crepurcussions. It is even clearer fin the success
of the '"np(Y,(loves John Y),P)" goal, where the
presence of the determiner "every" causes "P" to be
bound to

(Forall Y (=> Pl (loves John Y))

This "P" 13 of course the "P" mentioned above which
has been waiting for the verb phrase to supply it
with a quantificational structure.

As the relative
processed, the "PL"
(our second new Pl1!),
(woman Y) (breathes
structure:

clause for this "np" 1is
embedded 1n this structure,
is eventually bound to "(And
¥))" giving us the full

(Forall Y (=> (And (woman Y) (breathes Y))
(loves John Y)))

This {s what 1s returned as the binding to the
first "P1" in the original "vp{(X,Pl)" goal. Since
our "np(X,Pl,P)" goal identified "P" with "Pl, "
our "s(P)" goal succeeds with the binding of

(Forall Y (=> (And (woman Y) (breathes Y))
(loves John Y)))

for "p" -
sentence.

the final structure built for the

In following the execution of this grammar it
becomes clear that very strong predictions are made
about which parts of the parse will be supplying
particular types of information. Determiners will
provide the quantifiers for the propositional
structure of the sentence, the first noun phrase
and the noun phrase following the verb will he the
two participants in the predicate implied by the
verb, etc. Obviously this i{s a simple grammar, but

the power of the logical variables can only be made
of

use through the encoding of these strong
linguistic assumptions. DCG’s seem to provide a
mechanism well qualified for expressing such

65

Coming up
is, of

assumptions and then executing them.
with the assumptions in the first place
course, something of a major task in itself.
3. Comparing DC and ATN Grammars

Figure 4 shows an ATN grammar which is cthe
"equivalent" of the DCG grammar given in Figure 1.
The format used to specify the grammar {s the one
described in (fianinl}] and (finin2] . There are
only two minor ways that this particular formalism
differs from the standard ATN formalism described
in [Woods70] or [Bates] . Firsc, the dollar sign
character (i.e. §) followed by the name of a
register stands for the contents of that register.
Second, the function DEFATN defines a set of arecs,
each of which is represented by a list whose first
element {s the name of the state and whose
remaining elements are the arcs emanating from the
state.

In addition, this example uses a very simple
lexical manager in which a word has (1) a set of
syntactic categories to which {t belongs (2) an
optional set of features and (3) an optional root
form for the word. These attributes are associated
with a word using the function LEX, which supplies
appropriate default values for unspecified
arguments.

In the standard ATN model, a PUSH arc invokes
a sub~computation which takes no arguments and, if
succegsful, returns a single value. One can
achieve the effect of passing parameters to a
sub-computation by giving a register an 1initial
value via a SENDR register setting action. There
are two methods by which one can achieve the
effect of returning more than one value from a
sub-computation. The values to be returned can be
packaged into a list or the LIFTR register setting
action can be used to directly set values in the
higher level computation. This grammar makes use
of SENDR and LIFTR to pass parameters into and out
of ATN computations and thus the actions of the DCC
example.

Consider what must happen when looking for a
noun phrase. The representation for a NP will be a
predicate 1f the noun phrase is indefinite (i.e. "a
man" becomes (man X)) or a coastant Lf cthe noun
phrase {s a name ({.e. "john" becomes john). I[n
this simple language, a NP is dominated by a either
a gentence (if it is the subject) or by a verb
phrase (if it is the object). 1I[n either case, the
NP also determines, or must agree with, the overall
structure used to represent the dominating
constituent. If the NP is a simple name, then it
exerts no additional influence on the
repregsentation of {ts dominator. If the NP is not
a name, then {t {s {ndefinite and will eventually
resulct in a quantified expression for the
dominating sentence or verb phrase. In this case
we need to tell the dominating computation what the
predicate, quantifier, connective, and variable
name must be. In this ATN grammar, this is done by
having the NP network return a value to represent
the NP predicate and life values for the
quantifier, connective and variable name.

Fig. 4. An Equivalent ATN Grammar

N VP
Laosl Aslew

ame,

738 (woe) >

e QS——;;/N\
2 0 e e
! w l\c;. N\ V S

-

y (Aﬁeﬁqﬁaﬂg
@S ey gy
Ll VPR

(defatn
(s (push np t (setr subj *) (to s/subj)))

(s/subj (push vp t (setr vp *)
(sendr subjvar $var) (to s/end)))

(s/end (pop (list $Squant $var
(list $connect $subj $vp)) $subj)
(pop $vp (null $subj)))

(np (wrd a t (1iftr quant ‘ForSome)
(lifer connect ‘And)(to np/det))
(wrd every t (liftr quant ‘ForAll)
(liftr connect ‘=>)(to np/det))
(cat name t (setr var *) (to np/np)))

(np/det (cat n t (setr var (gensym))
(secr n (list * 3$var)) (to ap/n)))

(np/n (wrd (who that which) t (to ap/a/who))
(jump np/np t))

(np/np (pop $n t (liftr var)))

(ap/n/who
(push vp t (sendr subjvar $var)
(setr n (list “And $n *)) (to ap/anp)))

(vp (cat v t (setr v *) (to vp/v)))

(vp/v (push np (getf trans S$v) (setr obj *)
(setr objvar $var) (to vp/vp))
(pop (list $v Ssubjvar) (getf intrans $v)))

(vp/vp (pop (list $quant Sobjvar
(list Sconnect $obj
(1ist $v $subjvar Sobjvar)))
Sobj)

(pop (list Sv Ssubjvar Sobjvar) (null Saobj)))}

i (lex <word> <category> <features> <rootform))

(lex man n)

(lex woman n)

(lex loves v (intrans trans))
(lex breathes v (intrans trans))
(lex lives v (intrans))

(lex john name)

(lex mary name)

(lex fido name)

Similarly, when we are looking for a verd
phrase, we must know what token (i.e. variable name
ot constant) represents the subject (if the verb
phrase is dominated by a S) or the head noun (if
the verb phrase acts as a relative clause). This
is done by sending the subjvar register in the
sub-computation the appropriate value via the SENDR
function. The techniques used to quantification
and build an overall sentence structure in this ATN
grammar are similar to those used in the BBN Lunar
Grammar [Woods72] .

This heavy use of SENDR and LIFTR to
communicate between levels in the grammar makes the
ATN grammar cumbersome and difficult to unaerstand.
In the next secton we 1investigate treating ATN
registers as logic variables and providing a
unification operation on them.

4. Replacing ATN Registers with ATN Variables

Although the previous ATN grammar does the
job, it is clearly awkward. We can achieve much of
the elegance of the DCG example by treating the ATN
registers as logical variables and including a
unification operation on them. We will call such
registers ATN Variables.

Since our ATN variables must not be tampered
with between unifications, assignment operations
such as SETR, LIFTR and SENDR are precluded. Thus
the only operations on ATN Registers are access and
unify. It is possible to provide operactions similar
to the standard SENDR and LIFTR by defining
unification operations which do the unification in
the another environment, but we have not explored
these possibilities.

The scheduler component of the ATN parser has
been modified to be sensitive to the success or
failure of attempted unifications,. 184 a
unification operation on an arc fails, the arc is
blocked and may not be taken.

Figure 5 shows a grammar in the extended ATN
formalism. A symbol preceded by a "$" represents
an ATN Variable and "*" will again stand for the
curtent constituent. Thus {in the state S in the
grammar:

(S (PUSH NP (UNIFY ‘(SSUBJVAR $VP $S) *)
(TOo S/SUBJ)))

the parser pushes to the state NP to parse a noun
phrase. If one 1s found, it will pop back with a
value which will then be wuniffed with cthe
expression (SSUBJVAR $VP $S). If this unification
is successful, the parser will advance to state
S/SUBJ. If it fails, the arc is blocked causing
the parser to backtrack into the NP network.

Although our grammar succeeds in mimicking the
behaviour of the DCG, there are some open questions
Ilnvolving the use of unification in parsing natural
languages. An examination of this ATN grammar
shows that we are really using unification as a
method of passing parameters. The full power of
unification 138 not needed in this example since the

Fig. 5. An Equivalent ATN Grammar with ATN Variables

= s s

/Ahﬂulna

@f

S,
(Vﬁvﬂmﬂs
—_— o

(defatn

(s (push np (unify *
(to s/subj)))

($subjvar $vp $s) *)

(s/éubj (push vp t (unify ‘Svp *) (to s/s)))
(s/s (pop $s t))

(np (wrd a t (unify
‘$np
"(ForSome $var (And $pred $hole)))
(to np/det))
(wed every ¢t (unify
‘$ap
“(ForAll $var (=> Spred Shole)))
(to np/det))
(cat name t (unify ‘$np ‘S$hole)
(unify “Svar *)
(to np/np)))

(np/det (cat n t (unify ‘Svar (gensym))
(unify ‘$pred ‘(* $var))
(to np/n)))

(np/n (wrd (who that which) t (to np/n/who))
(jump np/np t))
(np/np (pop (list $var ‘Shole $ap) ¢))
(np/n/who
(push vp t (unify ‘$subjvar ’$var)
(unify “Spred ‘(And Spred *))
(to ap/np)))

(vp (cat v (getf ctrans *)
(unify “Sv "(* $subjvar Sobjvar))
(to vp/vtrans))
(cat v (getf intrans *)
(unify “$v “(* Ssubjvar))
(to vp/vp)))

(vp/vtrans (push np t (unify ‘($objvar $v Svp) *)
(to vp/vp)))

(vp/vp (pop $vp t))

67

grammar does not try to find ‘'most~general
unifiers” for complicated sets of terms. Most of
the time it is simply using unification to bind a
variable to the contents of another variable. The
most sophisticated use involves binding a variable
in a term to another copy of that term which also
has a variable to be bound as in the "a man loves a
woman" example in Figure 6. But even this binding
is a simple one-way application of standard
unificaction. It {8 not clear to the authors
whether this {3 due to the -simple nature of the
grammars involved or whether it is an Lnherent
property of the diractedness of natural language
parsing.

A situation where full unification amight be
required would arise when one is 1looking for a
constituent matching some partial description. For
example, suppose we were working with a syntactic
grammar and wanted to look for a singular noun
phrase. We might do this with the following PUSH
are:

(PUSH NP T (UNIFY * °(NP (DET $DET)
(NUMBER SINGULAR)
(ADJ $ADJS) ...))
ves)

If we follow the usual schedule of iacerpreting ATN
grammars the unification will not occur until the
NP network has found a noun phrase and popped back
with a value. This would require a fully symmetric
unification operation since there are variables
being bound to values {n both arguments. Tt is also
highly {inefficient since we may know right away
thac the noun phrase in the input is not singular.
What we would like {s to be able to do the
unification just after the push 1is done, which
would more closely parallel a Prolog-based DCG
parse. Then an attempt to "unify"” the aumber
register with anything other than singular will
fail immediately.

This could be done automatically 1if we
constrain a network to have only one state which
does a pop and place some additional constraints on
the forms that can be used as values to be popped.
Although we have not explored this idea at any
length, it appears to lead to some interesting
possibilities.

5. Conclusions

We have found the use of Llogical variables and
unification to be a powerful technique in parsing
natural language. It {3 one of the main sources of

the gtrengths of the Definite Clause GCrammar
formalism. In attempting to capture cthis
technique for an ATN grammar we have come to
several 1interesting conclusions. First, the
strength of the DCG comes as amuch from the skillful
encoding of linguistic assumptions about the

eventual outcome of the parse as from the powerful
tools it relies on. Second, the notion of logical
variables (with unification) can be adapted to
parsing systems ouside of the theorem proving
paradigm. We have successfully adapted these
techniques to an ATN parser and are beginning to
embed them in an existing parallel bottom=up parser
[£inin3] . Third, the full power of unification may

""" use logical

"john loves every woman who breathes"

(ForAll X1 (=> (And (woman X!) (breathes X1))
(loves john X1)))

"john loves a woman"

(ForSome X1 (And (woman X1) (loves john X1)))

"a man loves a woman"

(ForSome X1
(And (man X1)
(ForSome X2 (And (woman X2)
(loves X! X2))))

"every man who lives loves"

(Forall X1 (=> (And (man X1) (lives X1))
(loves X1)))

"every man who loves mary loves a woman who
loves john"

(ForAll X1
(=> (And (man X1) (loves Xi mary))
(ForSome X2 (And (And (woman X2)
(loves X2 John))
(loves X1 X2)))))

"every man who loves a woman who loves every dog
loves every dog"

(ForAll Xl
(=> (And (man X1)
(ForSome X2
(And (And (woman X2)
(ForAll X3
(=> (dog X3)
(loves X2 X3))))
(loves X1 X2))))
(ForAll X4
(=> (dog X4) (loves X1 X4)))))

68

6. References

1. Bates, M., Theory and Practice or Augmented
Trangsition Network Grammars, in Natural

Language
Communication with Computers, LT Bole zﬁa.?,

Springer-Verlag, 1978.

S., "A Tactical Component for Text
Generation: Sentence Generation Using a Functional
Grammar", report MS~CIS-1982~26, Computer and
Information Science, University of Peunsylvania,
1982.

2. Bossie,

3. Codd, E. F., Arnold, R.S., Cadiou, J~M., Chang,
C. L. and Roussopoulos, N., RENDEZVOUS Version l:
An Experimental English-Language Query Formulation
System for Casual Users of Relacional Data Bases,
Report RJ2144, IBM Research Laboratory, San Jose,
January 1978

4. Colmerauer, A., "Metamorphosis Grammars", in L.
Bole (Ed.), Natural Language Communication with
Computers, Springer-Verlag, 1978.

5. Finin, T., An Interpreter
Augmented Transition Networks,
Laboratory technical
Illinois, 1977.

and Compiler for
Coordinated Science
report T-48, University of

6. Finin, T., Parsing with ATN Grammars; to appear
in Leonard Bolc (ed.) Data Base Question Answering
Systems, Springer-Verlag, Berlin, 1982.

7. Finin, T. and B. L. Webber, BUP - A Bottom Up
Parser, report MS-CIS-1982~-27, Computer and
Information Science, University of Pennsylvania,
1982.

8. Heidorn, G., Augmented Phrase Structure Grammar,
TINLAP-1, 1975.

9. Kay, M., "Functional Grammar", Proceedings of

the Fifch Annual Meeting of the Berkeley LinguistIZ

P

Society, 1979.

10. Pract, V. "LINGOL, A Progress Report", I[JCAL s,
1975.

11. Pereira, F. and D. Warren,
Grammars for Language Analysis -
Formalism and a Comparison
Transition Networks".,
(1980), 231~278.

"Definite : Clause
A Survey of the
with Augmented
Artificial Intelligence 13

12. Winograd, T., Language as a Cognitive Proces-,
Addison-Wesley Publishing Co.,Inc,1983, 349-351.

13. Woods, W., Transition Network Crammars ¢
Natural Language Analysis, CACM 13:10, 1970.

l4. Woods, W. A., R. M. Kaplan and B. L. Webbe
"The Lunar 3clences Natural Language Informatio:
System: Final Report'", BBN report 2378, 1972.

