
PARSING WITH LOGICAL VARIABLES

Timothy W. Finln and Martha Stone Palmer

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104

ABSTRACT

Logic based programming s y s t e m s have en joyed
an i n c r e a s i n g p o p u l a r i t y in a p p l i e d AI work in t he
last few years. One of t h e contributions to
Computational Linguistics made by the Logic
Programming Paradigm has been the Definite Clause
Grammar. In comparing DCG's wlth previous parsing
mechanisms such as ATN's, certain clear advantages
are seen. We feel that the most important of these
advantages are due to the use of Logical Variables
with Unification as the fundamental operation on
them. To illustrate the power of the Logical
Variable, we have implemented an experimental ATN
system which treats ATN registers as Logical
Variables and provides a unification operation over
them. We would llke to simultaneously encourage
the use of the powerful mechanisms available in
DCG's, and demonstrate that some of these
techniques can be captured without reference to a
resolution theorem prover.

[. Introduction

Logic based programming systems have enjoyed
an increasing popularity in applied AI work in the
last few years. One of the contributions to
Computational Linguistics made by the Logic
Programming Paradigm has been the Deflnite Clause
Grammar. An excellent introduction to this
formalism can be found in [Perelra] in which the
authors present the formalism and make a detailed
comparison to Augmented Transition Networks as a
means of both specifying a language and parsing
sentences in a language.

We feel Chat the major strengths offered by
the DCG formalism arise from its use of Logical
variables with Unification as the fundamental
operation on them. These techniques can be
abstracted from the theorem proving paradigm and
adapted to other parsing systems (see [Kay] and
[Bossie]). We have implemented an experimental ATN
system which treats ATN registers as Logic
variables and provides a unification operation over
them.

The DCG formalism provides a powerful
mechanism for parsing based on a context free
grammar. The grammar rule

S -> NP VP

can be seen as the universally quantified logical
statement,

For all x, y, and z :
N'P(x) /\ VP(y) /\ Concatenate(x,y,z) -> S(z).

where "x" and "y" represent sequences of words
which can be concatenated together to produce a
sentence, "S." Prolog, a progra~mulng language
baaed on predicate calculus, allows logical
statements to be input as Horn clauses in the
foilowlng (reversed) form:

s(Z) <- np(X),vp(Y),Concatenate(X,Y,Z).

The resolution theorem prover that
"interprets" the Prolog clauses would take the
oegatlon of S as the goal and try and produce the
null clause. Thus the preceding clause can be
interpreted procedurally as, "To establish goal S,
try and establish subgoals, NP, VP and
Concatenate." DCG's provide syntactic sugar on top
of Prolog so that the arrow can be reversed and the
"Concatenate" predicate can be dispensed with. The
words in the input string are looked at
sequentially each time a "[Word]" predicate is
executed which implicitly tests for concatenation
(see figure [). DCG's allow grammar rules to be
expressed very cleanly, while still allowing
ATN-type augmentation through the addition of
arbitrary tests on the contents of the variables.

Pereira and Warren argue that the DCG
formalism is well suited for specifying a formal
description of a language and also for use with a
parser. In particular, they assert that it is a
significant advance over an ATN approach on both
philosophical and practical grounds. Their chief
claims are that:

[. DCGs provide a common formalism for
theoretlcal work in Computational Linguistics
and for writing efficient natural language
processors.

62

2. The rule based nature of a DCG result %n
systems of greater clarity and modularity.

3. DCG's provide greater freedom in the range of
structures that can be built in the course of
analyzing a constituent. [n particular the DCG
formalism makes it easy to create structures
that do not follow the structure implied by

the rules of a conscltuenc and easy Co create
a structure for a constituent thac depends on
items not yec encountered in the sentence.

Fig. 1 . A DeflniCe Clauee Grammar

s (P) -> rip(X, P l , P) , vp(X, P t) .

The flrsC two points have been discussed in
the past whenever the ATN formalism is compared
with a rule-based grammar (see [PracC] , [Heldorn]
, [Codd] , or [Bates]) . The outcome of such
discussions vary . I t i s safe Co say cha t how one
feels about these points depends quite heavily on
past experience in using the two formalisms.

We f i n d the t h i r d p o i n t co be wel l founded,
however. Ic i s c l e a r chac the DCG d i f f e r s moeC
from p r e v i o u s r u l e - b a a e d p a r s i n g sy s t ems in ice
i n c l u s i o n of Log ica l v a r i a b l e s . These r e s u l t in
g r e a t e r f l e x i b i l i t y in b u i l d i n g s t r u c t u r e s co
r e p r e s e n t c o n s t i t u e n t s t h a t do mot follow the
I n h e r e n t s t r u c t u r e de t e rmined by the r u l e s
themselves. They also allow one co create
structures which refer Co Items chac have not yec
been discovered i n the course of analysing the
sentence.

We have b u i l t an e x p e r i m e n t a l ATN sys t em which
can c r e s t ATN r e g i s t e r s as Log ica l v a r i a b l e s and,
we f e e l , c a p t u r e t he se impor tan t s t r e n g t h s o f f e r e d
by the DCG formalism in the ocherwlse standard ATN
formalism.

The second s e c t i o n g i v e s a more d e t a i l e d
desc tpCton of DCG's and p r e s e n t s a s imple grammar.
In the t h i r d s e c t i o n we show am ATN grammar which
i s " e q u i v a l e n t " to the DCC grammar and d i s c u s s the
source of Its awkwardness. The fourth section chert
presence an ATN formalism extended co include
viewing ATN registers as Logical variables which
are subject to the standard unlficacloa operaclon.
The final section concludes this note and suggests
that logical variables might be fruitfully
i n t roduced i n to ocher p a r s i n g a l g o r i t h m s and
systems.

rip(X, Pl, P) -> dec(X, P2, PI, P),
n(X, P3),
relclauee(X, P3, P2).

rip(X, P, P) -> name(X).

vp(X, P) -> t r anev (X , Y, P l) , np(Y, P l , P) .
vp(X, P) -> t n c r a n s v (X , P) .

r e l c l a u s e (X , PI , (And PI P2)) -> [c h a t] , vp(X, P2).
r e l c l a u a e (X , P, P) -> [],

dec(X, Pl, P2, (ForAll X (-> P! P2))) -> [everyl.
dec(X, P l , P2, (ForSome X (And Pt P2))) -> [a] .

n(X, (man X)) -> [,u.].
n(X, (woun X)) -> [wom~.].
n(X, (dog X)) -> [dog].

name(John) -> [John]
name(mary) -> [mary]
n a m I (f l d o) -> [fido]

transv(X, Y, (loves X Y)) -> [loves].
transv(X, Y, (breaches X Y)) -> [breathesl.

Inc ranev(X, (l o v e s X) -> [l o v e s] .
l n c r a n s v (X , (l i v e s X).-> [l i v e s] .
i nc ranev (X , (b r e a t h e s X) -> [b r e a t h e s] .

2. Definite Clause Grammars

Figure [shows a simple DCG grammar adapted
from [Perelra] . Figure 2 gives a sentence in the
language recognized by thls grammar together wlth
the associated surface syntactic structure and the
semantic structure built by the grammar.

F i E • 2 . A Se n t e nc e , S t r u c t u r e and R e p r e s e n t a t i o n

SENTENCE

"John loves every woman who breathes"

The way in which unification produces the
appropriate bindings for this example ls actually
quite subtle, and requires a detailed analysis of
the parse, as represented by the refutation graph
in Figure 3. For the the refutation graph the
Prolog clauses have been put into claueal normal
form. Some liberties have been taken with the
ordering of the predicates in the interest of
compactness.

In trying to establish the "s(P)" goal, the
"np(X,Pt,P)" is first attempted. The "PI" is an
empty variable that is a "place-holder" for
predicate information chat will come from the verb.
It will "hold" a place in the sentence structure
that will be provided by =he determiner. "P" i s
destined to contain the sentence structure. The

SYNTACTIC STRUCTURE

(S (NP (NAME john))
(VP (TRANSV loves)

(NP (DET every)
(NOUN woman)
(REL (VP (INTRANSV breathes)))))))

SEMANTIC REPRESENTATION

(ForAll XI (=> (And (woman XI) (breathes XI))
(loves john XI)))

63

Pig. 3. Refutation Graph

- . . ~ / ~ \ / -np(X.Pt,e) \ / -vp(X,et)

" vp (X ,P t) \ / ' np (X ,P i ,P) np(X.P,P) V - ~ , . q . . ~ ~ \ / - [j ohn]

"vD(to~~. ,~ .~\ / ' transv(X,Y,Pt) \ / -n ~ _ ~

-np(Y,PL,P),/-transv(John.Y.Pl)~rnn.v(X-Y-love.(X.Y~\/-[Loves]~'~l]
) flovesl [1 -det(X,F2,PL,P)\/ nD(Y loves ~ohn Y) P \ / loveq

ve -n(X'P3)\/relclause(X'P31P2)\/n~

[~[__sry_] \ / -de t (X,Pi ,P2t (Fora lX X (>Pl P2))) -decCY.P2.Loves(iohn.Y).P)\ /
/ -n(Y,P3)\/-relclause(Y,P3,P2)

(P is bound to "Forall Y(=>~ lo~s(john,Y))")
[] "[woman]\/-n(X,{woma~V'relclause(Y,P3,P2)

[woman] "[woman]\/ -relclause(Y.(woman Y).P2~ -vp(X,P2)\/ -[that]\ /
\ r e l ¢ PL .0o)).

(PI is bound to "And-(woman Y) P2")//lause(x'PL'(And

intransv(X.~eathes(X~ -Int~'~nq.(V:P2~

~/ (P2 is bound Co "breathes(Y)")

64

first " n p " clause will be matched, but it will
eventually fall since no determiner is present.
The second "rip" clause will'succeed, having forever
identified the contents o f "Pl" with the contents
of "P, " whatever they may be. Since t h e r e is no
determiner in the first noun phrase, there is no
quantification information. The quantlflcatlonal
structure must be supplied by the verb phrase, so
t h e s t r u c t u r e f o r t he s e n t e n c e will be t h e same as
t he s t r u c t u r e f o r t h e v e r b p h r a s e . The v a r i a b l e
" X " w i l l be bound to " J o h n " .

In t r y i n g co e s t a b l i s h " v p (J o h n , P l) , " t h e
first "wp" clause w(ll succeed, since "loves" is a
transitive verb. It is important no t to get the
variables confused. Within the "vp" clause our
original "Pl" has been renamed "P" and and we have
a new "PI" variable that will be Instantlated to
"(loves John Y)" by the success of the "=canny"
goal. The "Y" I s as y e t undetermined, bu t we can
see that I t will be supplied by the next
" n p (Y , (l o v e s John ¥) , P) " g o a l . I t shows g r e a t
f o r e s i g h t on " t r a n s v ' s " p a r t to p a s s back a
v a r i a b l e in such a way t h a t i t will c o r r e s p o n d to a
v a r i a b l e t h a t ha s a l r e a d y been named. T h i s p a t t e r n
i s r e p e a t e d t h r o u g h o u t t h e grammar, w i t h p o w e r f u l l
r e p u r c u s s l o n s . I t i s even c l e a r e r In t h e s u c c e s s
of the "np(Y,(loves John Y),P)" goal, where the
presence of the determiner "every" causes "P" to be
bound to

(F o r a l l Y (-> PI (l o v e s John Y))

This "P" is of course the "P" mentioned above which
has been waiting for the verb phrase to supply It
with a quantlflcatlonal structure.

As the relative clause for this "up" is
processed, the "PI" embedded in this structure,
(o u r second new PII), is eventually bound t o "(And
(woman Y) (breaches Y))" giving us the full
structure:

(Forall Y (-> (And (woman Y) (breaches Y))
(loves John Y)))

This is whac is returned as the binding to the
first "Pl" in the original "vp(X,Pt)" goal. Since
our "np(X,P[,F)" goal identified "P" wlth "Pl, "
our "s(P)" goal succeeds with the binding of

(Forall Y (=> (And (woman Y) (breathes Y))
(loves John Y)))

for "P" - the final structure built for the
s e n t e n c e .

In following the execution of this grammar i t
becomes clear that very ~trong predictions are made
about which parrs of the parse will be supplying
particular ~ypes of information. Determiners will
provide the quanClElers for the propositional
~tructure of the sentence, the flrsc noun phrase
and the noun phrase following the verb will be the
two participants in ~he predicate implied by the
verb, etc. Obviously this is a simple grammar, but
the power of the logical variables can only be made
use o f t h r o u g h the e n c o d i n g o f these s t r o n g
l i n g u i s t i c a s s u m p t i o n s . DCG's seem to p r o v i d e , a
=echanlsm w e l l q u a l i f i e d f o r e x p r e s s i n g such

assumptions and then executing them. Coming up
with the assumptions in the first place Is, of
c o u r s e , s o m e t h i n g of a m a j o r t a s k In i t s e l f .

3. Comparing DC and ATN Grammars

Figure 4 shows an ATN grammar which is the
"equivalent" of the DCG grammar given in Figure t.
The format used to specify the grammar is the one
described in [flninl] and [finln2] . There are
only two minor ways that this particular formalism
differs from the standard ATN formalism described
in [WoodsY0] or [Bates] . First, the dollar sign
Character (i.a. $) followed by the name of a
register stands for the contents of that register.
Second, the function DEFATN defines a set of arcs,
each of which is represented by a llst whose first
element is the name of the state and whose
remaining elements are the arcs emanating from the
state.

I n a d d i t i o n , t h i s example uses a v e r y s i m p l e
l e x i c a l manager i n wh ich a word has (1) a s e t o f
s y n t a c t i c c a t e g o r i e s t o which It belongs (2) an
optional set of features and (3) an optional root
form for the word. These attributes are associated
with a word ualng the function LEX, which supplies
a p p r o p r i a t e default values f o r unspecified
arguments.

In the standard ATN model, a PUSH arc invokes
a sub-computatlon which takes no arguments and, if
successful, returns a single value. One can
achieve the affect of passing parameters to a
sub-computatlon by giving a register an initial
value via a SENDR register setting action. There
are two methods by which one can achieve the
effect of returning more than one value from a
sub-computatlon. The values to be returned can be
packaged into a llst or the LIFTR register setting
action can be used to directly set values in the
higher level computation. This grammar makes use
of SENDR and LIFTR to pass parameters into and ouC
of ATN computations and thus the actions of the DCC
example.

C o n s i d e r what must happen when l o o k i n g f o r a
noun p h r a s e . The r e p r e s e n t a t i o n f o r a NP w i l l be a
p r e d i c a t e i f t he noun p h r a s e i s i n d e f i n i t e (i . e . "a
man" becomes (man X)) o r a c o n s t a n t I f t he noun
phrase is a name (l.e. "John" becomes John). in
this simple language, a NP is dominated by a either
a sentence (if it is the subject) or by a verb
phrase (if It ts the object). [n either case, the
NP also determines, or must agree with, the overall
s t r u c t u r e used t o r e p r e s e n t the d o m i n a t i n g
constituent. If the NP is a simple name, then Lt
exerts no additional influence on the
representation of its dominator. If the NP is noc
a name, then It is indeflnice and will eventually
result in a quantified expression for the
dominating sentence or verb phrase, in this case
we need to tell the dominating computation what the
predicate, quantifier, connective, and var iable
name must be. I n t h i s ATN grammar, t h i s ts done b?
h a v i n g the NP n e t w o r k r e t u r n a v a l u e t o r e p r e s e n t
the NP predicate and llft values for the
quantifier, connective and variable name.

65

Fig. 4. An Equivalaut ATN G r a ~ a r

¢lOmq~

V

(defatn

(s (push n p t (set r subj *) (to s / s u b J)))

(s / s u b J (push vp t (s e t r vp *)
(s end r subJvar $var) (to s / e n d)))

(s/end (pop (l i s t $quanc $var
(l i s t $connect $aubJ $vp)) $subj)

(pop gYp (null gsubj)))

(np (wrd a t (liftr quant "ForSome)
(llftr connect "And)(co np/det))

(wrd every t (liftr quant "ForAll)
(liftr connect "->)(to np/det))

(c a t name t (s e t r va t *) (to rip/rip)))

(n p / d e t (c a t n t (s e c t var (gensym))
(s e t r n (list * Svar)) (to n p / n)))

(np/n (wrd (who that which) t (to up/n/who))
(Jump np/np t))

(np/np (pop gn C (l i f t r v a r)))

(np/n/who
(push vp t (sendr subJvar gvar)

(ser f n (l i s t "And gn *)) (t o np/np)))

(vp (c a t v t (s e t r v *) (co v p / v)))

(vp/v (push np (get f trans Sv) (sect obJ *)
(seCt objvar Svar) (to vp/vp))

(pop (list gv $subjvar) (gaff lntrans $v)))

(vp/vp (pop (list gquant $objvar

(list $connect $obJ
(list gv $subJvar $objvar))>

$obj)
(pop (flat $v gsubjvar $obJvar) (null $obJ)))~

; (le× <word> <category> <features> <rootform>)

(lex man n)
(lex woman n)
(lax loves v (intrans crans))
(lax breathes v (incrans trans))
(lax lives v (Intrans))
(lex john name)
(lex mary name)
(lex fldo name)

66

Similarly, when we are lookzn8 for a verb
phrase, we must know what token (i.e. variable name
or constant) represents the subject (if the verb
phrase is dominated by a S) or the head noun (if
the verb phrase acts as a relative clause). This
is done by sanding the subJvar register in the
sub-computation the appropriate value via the SENDR
function. The techniques used to quancificatlon
and build an overall sentence structure in chls ATN
grammar are similar co those used in th~ BBN Lunar
Grammar [Woods72] .

This heavy use of SENDR and LIFTR co
communicate between levels in the grammar makes the
ATN grammar cumbersome and difficult to unaerstand.
In the next secton we investigate treating ATN
registers as logic variables and providing a
unification operation on them.

4. Replacing ATN Registers with ATN Variables

Although the previous &TN grammar does the
Job, it is clearly awkward. We can achieve much of
the elegance of the DCG example by treating the ATN
r e g i s t e r s as l o g i c a l v a r i a b l e s and i n c l u d i n g a
unification operation on them. We will call such
registers ATN Variables.

Since our ATN variables must not be tampered
with between unifications, assignment operations
such as SETR, LIFTR and SENDR are precluded. Thus
the only operations on ATN Registers are access and
ualfy. I t is possible to provide operations similar
to the standard SENDR and LIFTR by defining
unification operations which do the unification in
the another environment, but we have not explored
these possibilities.

The scheduler component of the ATN parser has
been modified to be sensitive to the success or
failure of attempted unifications, if a
unification operation on an arc fails, the arc is
blocked and may not be taken.

Figure 5 shows a grammar in the extended ATN
formalism. A symbol preceded by a "$" represents
an ATN Variable and "*" will again stand for ~he
current constituenE. Thus in the state S in the
grammar:

(S (PUSH NP (UNIFY "($SUBJVAR gYP $S) *)
(TO S/SUBJ)))

the parser pushes to the state NP co parse a noun
phrase. If one is found, it will pop back wi~h a
value which will then be unified wi~h the
expression (SSUBJVAR $VF $S). If this unification
is successful, the parser will advance to state
S/SUBJ. If It fails, the arc is blocked causing
the parser to backtrack into the NP network.

Although our grammar succeeds in mimicking the
behavlour of the DCG, there are some open questions
Involvlng the use of unification [n parsing natural
languages. An examination of ~his ATN grammar
shows that we are really using unification as a
method of passing parameters. The full power of
unlficatton ls noc needed In this example since the

Fig . 5. An Equivalent ATN Gra.mar wi th ATN Var i ab l e s

N P

. . . .

(defatn

(s (push np (un i fy " ($subJvar $vp es) *)
(to s/subJ)))

(s /subJ (push vp t (un i fy "$vp *) (tO s / s)))

(s / s (pop es t))

(np (wrd a t (unify
"$np
'(gorSome $var (And epred ehole)))

(to n p / d e t))
(wrd every t (unify

'Sup
" (F o r A l l ever (=> epred Sho le)))

(t o n p / d e t))
(ca t name t (unify 'Sap ' $ho le)

(unify "eYrir *)
(tO np/np)))

(np/det (cat n C (unify "$var (gensym))
(unify "$pred "(* evar))
(t o n p / n)))

(np/n (wrd (who tha t which) t (to np/ulwho))
(Jump rip/rip t))

(up/up (pop (Slat evar "$hole $np) t))

(np/n/who
(push vp t (unify "$subJvar '$var)

(unify "$pred "(And Spred *))
(to up/up)))

(vp (ca t v (getf trans *)
(unify "$v "(* esubjvar $obJvar))
(to v p / v t r a n s))

(cat v (getf [ntrans *)
(unify "$v '(* $subjvar))
(to v p / v p)))

(vp/vtrans (push np t (unify "($objvar ev $vp) *)
(tO vp /vp)))

(vp/vp (pop evp t))

67

grammar does not try to find "most-general
unifiers" for complicated sets of terms. Most of
the time it is simply using unification to bind a
v a r i a b l e to the contents of another variable. The
most sophisticated use involves binding a variable
in a term to another copy of that term which also
has a variable to be bound as in the "a man loves a
woman" example in Figure 6. But even this binding
is a simple one-way application of standard
unification. St is not clear to the authors
whether this is due to the simple nature of the
grammars involved or whether it i s an i nhe ren t
p ro p e r t y of the d l r e c t e d n e e e of n a t u r a l language
p a r s i n g .

A situation where full unification eight be
required would arise when one is looking for a
constituent matching some partial description. For
example, suppose we were working with a syntactic
grammar and wanted to look for a singular noun
phrase. We might do this with the following PUSH
arc:

(PUSH NP T (UNIFY * '(NP (DET eDET)
(NUMBER SINGULAR)
(ADJ $ADJS) ...))

If we follow the usual schedule of interpreting ATN
g r a . - - - r s the unification will not occur until the
NP network has found a noun phrase and popped back
with a value . This would r e q u i r e a fully symmetric
unification operation since there are variables
being bound to values in both arguments. It is also
highly i n e f f i c i e n t since we may know rlghc away
that the noun phrase in the input is not singular.
What we would iike is to be able to do the
unification Just after the push is done, which
would more closely parallel a Prolog-based DCG
parse. Then an attempt to "unify" the number
register with anything other than singular will
fall immedia te ly .

This could be done automatically if we
constrain a network to have only one state which
does a pop and place some additional constraints on
the forms that can be used as values to be popped.
Although we have not explored this idea at any
length, it appears to lead co some interesting
possibilities.

5. Conclusions

We have found the use of l o g i c a l v a r i a b l e s and
u n i f i c a t i o n to be a power fu l technique in pars ing
n a t u r a l language. I t [s one of the main sources of
the strengths of the Definite Clause Grammar
formal ism. In a t tempt ing to capture t h i s
technique fo r an ATN grammar we have come co
several interesting conclusions, First, the
strength of the DCG comes as much from the skillful
encoding of linguistic assumptions about the
eventual outcome of the parse as from the powerful
tools it relies on. Second, the notion of logical
variables (with unification) can be adapted to
parsing systems ouside of the theorem proving
paradigm. We have successfully adapted these
techniques to an ATN parser and are beginning to
embed them in an existing parallel bottom-up parser
[flnln3] . Third, the full power of unlfication may

not be dddessary tO suddessfully u&e ldgidal
variables in natural lanuage parsers.

Fig. 6. Zxatple Pa~Ses with the ATW G~am~

"John loves every woman who breathes"

(ForAll XI (-> (And (woman Xl) (breathes XI))
(loves John Xl)))

"John loves a woman"

(ForSome Xl (And (woman Xl) (loves John XI)))

"a man loves a woman"

(ForSome XI
(And (man X[)

(ForSome X2 (And (woman X2)
(loves Xl X2))))

"every man who lives loves"

(ForAll Xl (-> (And (man XI) (lives XI))
(loves Zi)))

"every man who loves mary loves a woman who
loves john"

(ForAll Xl
('> (And (man XI) (loves XI mary))

(ForSome X2 (And (And (woman X2)
(loves X2 John))

(loves XI X2)))))

"every man who loves a woman who loves every dog
loves every dog"

(ForAll XI
(=> (And (man XI)

(ForSome X2
(And (And (woman X2)

(ForAll X3
(=> (dog X3)

(loves X2 X3))))
(loves Xl X2))))

(ForAll X4
(-> (dog X4) (loves Xl X4)))))

6. References

[. Bates, M., Theory and Practice or %ugmented
Transition Network Grammars, in Natural Language
Communication with Computers, ~ 7 - - " ~ c ~
Springer-Verlag, [978.

2. Bossle, S., "A Tactical Component for Text
Generation: Sentence Generation Using a Functional
Grammar", r e p o r t HS-CIS-[982-26, Computer and
Informatlon Science, University of Pennsylvania,
1982.

3. Codd, E. F., Arnold, R.S., Cad[on, J-M., Chang,
C. L. and Roussopoulos, N., RENDEZVOUS Version 1:
An Experimental Engllsh-Language Query Formulation
System for Casual Users of Relational Data Bases,
Report RJ2144, IBM Research Laboratory, San Jose,
January 1978

4. Coimerauer, A., "Metamor1~hosls Grammars", in L.
Bolt (Ed.), Natural Language Communication with
Computers, Sprlnger-Verlas, I978.

5. Finln, T., An Interpreter and Compiler for
Augmented Transition Networks, Coordinated Science
Laboratory technical report T-48, University of
Illinois, 1977.

6. Finln, T., Parsing with ATN Grammars; to appear
an Leonard Bolt (ed.) Data Base question Answerin~
Systems, Sprlnger-Verlag, Berlin, [982.

7. Fin[n, T. and B. L. Webber, BUP - A Bottom Up
Parser, report MS-CZS-[982-27, Computer and
Information Science, University of Pennsylvania,
[982.

8. ffeidorn, G., Augmented Phrase Structure Grammar,
TINLAP-[, [975.

9. Kay, H., "Functional Grammar", Proceedings of
th__ee Fifth Annual Meeting of the Berkeley Lin~uistic
Sgciety , [979.

[0. Pratt, V. "LINGOL, A Progress Report", IJCAI ~,
1975.

I[. ?ereira, F. and D. Warren, "Definite, Clause
Grammars for Language Analysis - A Survey of the
Formalism and a Comparison with Augmented
Transition Networks"., Artificial Intelligence [3
([980) , 231-278.

[2. Winograd, T. , Language a s ~ Co~nitive Proce~- ,
Addison-Wesley Publishing Co.,Inc,[983, 349-351.

13. Woods, W., Transition Network Grammars ~
Natural Language Analysis, CACM 13:10, 1970.

14. Woods, W. A., R. M. Kaplan and B. L. Webbe
"The Lunar 3ciences Natural Language Informatio:
System: F~nal Report", BBN report 2378, [972.

68

