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A b s t r a c t  

This paper describes AUTOSEM, a robust semantic 
interpretation framework that can operate both at 
parse time and repair time. The evaluation demon- 
strates that AUTOSEM achieves a high level of ro- 
bustness efficiently and without requiring any hand 
coded knowledge dedicated to repair. 

1 I n t r o d u c t i o n  

In order for an approach to robust interpretation 
to be practical it must be efficient, address the ma- 
jor types of disfluencies that plague spontaneously 
produced language input, and be domain indepen- 
dent so thatachieving robustness in a particular do- 
main does not require an additional knowledge en- 
gineering effort. This paper describes AUTOSEM, 
a semantic interpretation framework that possesses 
these three qualities. While previous approaches 
to robust interpretation have offered robust parsers 
paired with separate repair modules~ with separate 
knowledge sources for each, AUTOSEM is a single 
unified framework that can operate both at parse 
time and repair time. AUTOSEM is integrated with 
the LCFLEx robust parser (Ros@ and Lavie, to ap- 
pear; Lavie and Ros@, 2000). Together AUTOSEM 
and LCFLEx constitute the robust understanding 
engine within the CARMEL natural language un- 
derstanding component developed in the context of 
the Atlas intelligent tutoring project (Freedman at 
al., to appear). The evaluation reported here demon- 
strates that AUTOSEM's repair approach operates 
200 times faster than the most similar competing ap- 
proach while producing hypotheses of better quality. 

AUTOSEM provides an interface to allow seman- 
tic interpretation to operate in parallel with syntac- 
tic interpretation at parse time in a lexicon driven 
fashion. Domain specific semantic knowledge is en- 
coded declaratively within a meaning representation 
specification. Semantic constructor functions are 
compiled automatically from this specification and 
then linked into lexical entries as in the Glue Lan- 
guage Semantics approach to interpretation (Dal- 
rymple, 1999). Based on syntactic head/argument  
relationships assigned at parse time, the construc- 

tot functions enforce semantic selectiona] restric- 
tions and assemble meaning representation struc- 
tures by composing the meaning representation asso- 
ciated with the constructor function with the mean- 
ing representation of each of its arguments. 

AUTOSEM first a t tempts to construct analy- 
ses that satisfy both syntactic and semantic well- 
formedness conditions. The LCFLEx parser has the 
ability to efficiently relax syntactic constraints as 
needed and as allowed by its parameterized flexi- 
bility settings. For sentences remaining beyond the 
parser's coverage, AUTOSEM's repair algorithm re- 
lies entirely on semantic knowledge to compose the 
partial analyses produced by the parser. Each se- 
mantic representation built by AUTOSEM's inter- 
pretation framework contains a pointer to the con- 
structor function that built it. Thus, each partial 
analysis can be treated as a constructor function 
with built in knowledge about how the associated 
partial analysis can be combined with other par- 
tial analyses in a semantically meaningful way. Ge- 
netic programming search (Koza, 1992; Koza, 1994) 
is used to efficiently compose the fragments pro- 
duced by the parser. The function definitions com- 
piled from the meaning representation specification 
allow the genetic search to use semantic constraints 
to make effective use of its search space. Thus, AU- 
TOSEM operates efficiently, free of any hand coded 
repair rules or any knowledge specifically dedicated 
to repair unlike other approaches to recovery from 
parser failure (Danieli and Gerbino, 1995; Van No- 
ord, 1997; Kasper et al., 1999). 

2 T h e  M e a n i n g  R e p r e s e n t a t i o n  
S p e c i f i c a t i o n  

At the heart of AUTOSEM is its interpretation 
framework composed of semantic constructor func- 
tions compiled from a meaning representation spec- 
ification. These semantic constructor functions can 
be used at parse time to build up semantic represen- 
tations. These same constructor functions can then 
be used in a repair stage to compose the fragments 
returned by the parser in the cases where the parser 
is not able to obtain a complete analysis for an ex- 
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(:type <*state> 
:isa (<>) 
:instances nil 
:vars (entity time duration polarity) 
:spec ((who <*entity> entity) 

(when <*when> time) 
(how-long <*time-length> duration) 
(negation [+/-] polarity))) 

(:type <*personal-state> 
:isa (<*state>) 
:instances nil 
:vars () 
:spec ((who <*who> entity))) 

(:type <busy> 
:isa (<*personal-state>) 
:instances nil 
:vars (activity) 
:spec ((frame *busy) 

(event <*event> activity))) 

( : t y p e  [+/-] 
: i s a  (<>) 
:instances (+ -) 
:vars nil 
:spec nil) 

Figure 1: S a m p l e  m e a n i n g  r e p r e s e n t a t i o n  
s p e c i f i c a t i o n  e n t r i e s  

t ragrammat ica l  input sentence. 
The meaning representation specification pro- 

vides a venue for expressing domain specific se- 
mantic information declaratively. AUTOSEM pro- 
duces frame-based meaning representation struc- 
tures. Thus, each domain specific meaning repre- 
sentation specification must  define a set of semantic 
types that  together specify the set of frames and 
atomic feature values that  make up the domain spe- 
cific frame-based language, which slots are associ- 
ated with each frame, and what range of frames and 
atomic feature values may fill each of those slots. 

AUTOSEM provides a simple formalism for defin- 
ing meaning representations. Each entry corre- 
sponds to a semantic type and contains five fields: 
: t ype ,  : i s a ,  : i n s t a n c e s ,  : v a r s ,  and : spec .  Some 
sample entries for the appointment  scheduling do- 
main are displayed in Figure 1. Some details are 
omit ted for simplicity. The : t y p e  field simply con- 
talus the name of the type. The : v a r s  field contains 
a list of variables, each corresponding to a semantic 
role. The : spec  field associates a frame and set of 
slots with a type. For each slot, the : spec  field con- 
rains the name of the slot, the most general type re- 
striction on the slot, and a specification of where the 

slot filler comes from. This third piece of information 
can be either a variable name, indicating that  what- 
ever is bound to that  variable is what should fill that  
slot, or a function call to another semantic construc- 
tor function, allowing types to specify constraints at 
more than one level of embedding. Similar to the 
: spec  field, the : i n s t a n c e s  field associates a list of 
atomic values with a type. Inheritance relations are 
defined via the : i s a  field. Types  inherit the values 
of each subsuming type 's  : i n s t a n c e s ,  : v a r s ,  and 
: spec  fields. 

3 S e m a n t i c  I n t e r p r e t a t i o n  a t  P a r s e  
T i m e  

(:type <cancel> 
:isa (<*event>) 
: instances nil 
:vats (agent activity time polarity) 
:spec ((frame *cancel) 

(engagement <*event> activity))) 

Figure 2: M e a n i n g  r e p r e s e n t a t i o n  d e f i n i t i o n  o f  
< c a n c e l >  

(:morph cancel 
:syntax ((cat vlex) (root cancel) 

(vform bare) (irreg-past +) 
(irreg-pastpart +) 
(irreg-prespart +) 
(subcat (*or* intrans np)) 
(semtag cancel1)) 

:semantics (cancel1 <cancel> 
((subject agent) 
(object activity) 
(tempadjunct time) 
(negation polarity)))) 

Figure 3: L e x i c a l  e n t r y  fo r  t h e  v e r b  " c a n c e l "  

As an extension to LCFLEx ' s  LFG-like pseudo- 
unification g r ammar  formalism, AUTOSEM pro- 
vides the i n s e r t - r o l e  function as an interface to 
allow semantic interpretation to operate in parallel 
with syntactic interpretation at parse time. When 
the insert-role function is used to insert a child 
constituent into the slot corresponding to its syntac- 
tic functional role in a parent constituent, the child 
consti tuent 's  semantic representation is passed in to 
the parent consti tuent 's  semantic constructor func- 
tion as in the Glue Language Semantics approach 
to interpretation (Dalrymple, 1999). AUTOSEM's  
lexicon formalism allows semantic constructor func- 
tions to be linked into lexical entries by means of 
the semtag feature. Each semtag feature value cor- 
responds to a semantic constructor function and 
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mappings between syntactic functional roles such 
as s u b j e c t ,  d i r e c t  o b j e c t ,  and i n d i r e c t  object 
and semantic roles such as agen t ,  a c t i v i t y ,  or 
t ime.  See Figures 2 and 3 discussed further be- 
low. Note that  the syntactic features that  appear  
in this example are taken from the COMLEX lex- 
icon (Grishman et al., 1994). In order to provide 
consistent input to the semantic constructor func- 
tious, AUTOSEM assumes a syntactic approach in 
which deep syntactic functional roles are assigned as 
in CARMEL's  syntactic parsing g rammar  evaluated 
in (Freedman et al., to appear).  In this way, for ex- 
ample, the roles assigned within an active sentence 
and its corresponding passive sentence remain the 
same. 

Since the same constructor function is called with 
different arguments a number  of times in order to 
construct an analysis incrementally, an argument  is 
included in every constructor function that  allows 
a "result so far" to be passed in and augmented. 
Its default value, which is used the first t ime the 
constructor function is executed, is the representa- 
tion associated with the corresponding type in the 
absence of any arguments being instantiated. Each 
t ime the constructor function is executed, each of its 
arguments that  are instantiated are first checked to 
be certain that  the structures they are instantiated 
with match all of the type restrictions on all of the 
slots that  are bound to that  argument.  If  they are, 
the instantiated arguments '  structures are inserted 
into the corresponding slots in the "result so far". 
Otherwise the constructor function fails. 

Take as an example the sentence "The meeting I 
had scheduled was canceled by you." as it is pro- 
cessed by AUTOSEM using the CARMEL g rammar  
and lexicon, which is built on top of the COMLEX 
lexicon (Grishman et al., 1994). The g rammar  as- 
signs deep syntactic functional roles to constituents. 
Thus, "you" is the deep subject of "cancel", and 
"the meeting" is the direct object both of "cancel" 
and of "schedule". The detailed subcategorization 
classes associated with verbs, nouns, and adjectives 
in COMLEX make it possible to determine what 
these relationships should be. The meaning repre- 
sentation entry for <cancel> as well as the lexical 
entry for the verb "cancel" are found in Figures 2 
and 3 respectively. Some details are left out for sim- 
plicity. When "the meeting I had scheduled" is ana- 
lyzed as the surface subject of "was canceled", it is 
assigned the deep syntactic role of object since "was 
canceled" is passive. The verb "cancel" has c a n c e l l  
as its semtag value in the lexicon, c a n c e l  1 is defined 
there as being associated with the type <cancel>,  
and the o b j e c t  syntactic role is associated with the 
a c t i v i t y  argument.  Thus, the <cancel> function 
is called with its a c t i v i t y  argument instantiated 
with the meaning of "the meeting I had scheduled". 

Next, when "by you" is attached, "you" is assigned 
the deep syntactic role of subject of "cancel". The 
s u b j e c t  role is associated with the agen t  argument  
in the definition of c a n c e l l .  Thus, <cancel> is 
called a again, this t ime with "you" instantiating 
the agent argument  and the result from the last 
call to <cancel> passed in through the "result so 
far" argument.  

4 Semantic Interpretation for Repair 
While the LCFLEX parser has been demonstrated 
to robustly parse a variety of disfluencies found in 
spontaneously generated language (Ros~ and Lavie, 
to appear),  sentences still remain that  are beyond 
its coverage. Previous research involving the ear- 
lier GLR* parser (Lavie, 1995) and an earlier repair 
module (Rosd, 1997) has demonstrated that  divid- 
ing the task of robust interpretation into two stages, 
namely parsing and repair, provides a better  trade 
off between run t ime and coverage than a t tempt-  
ing to place the entire burden of robustness on the 
parser alone (Ros$, 1997). Thus, when the flexibility 
allowed at parse t ime is not sufficient to construct an 
analysis of an entire sentence for any reason, a frag- 
mentary  analysis is passed into the repair module. 
For each pair of vertices in the chart the best single 
clause level and noun phrase level analysis accord- 
ing to LCFLEx's  statistical disambiguation scores is 
included in the set of f ragmentary analyses passed 
on to the repair stage. An example 1 is displayed in 
Figure 4. Here the sentence "Why don ' t  we make it 
from like eleven to one?" failed to parse. In this case, 
the problem is that  the insertion of "like" causes the 
sentence to be ungrammatical .  When the parser's 
flexibility settings are such that  it is constrained to 
build analyses only for contiguous portions of text, 
such an insertion would prevent the parser from con- 
structing an analysis covering the entire sentence. 
Nevertheless, it is able to construct analyses for a 
number of grammatical  subsets of it. 

Genetic programming search (Koza, 1992; Koza, 
1994) is used to search for different ways to combine 
the fragments. Genetic programming is an oppor- 
tunistic search algorithm used for constructing com- 
puter programs to solve particular problems. Among 
its desirable properties is its ability to search a large 
space efficiently by first sampling widely and shal- 
lowly, and then narrowing in on the regions sur- 
rounding tile most  promising looking points. 

ZThls example was generated with the grammar used in 
the evaluation. See Section 6. The AUTOSEM repair algo- 
rithm can he used with grammars that do not make use of 
AUTOSEM's parse-time interface by using a simple conver- 
sion program that automatically builds a function for each 
partial analysis corresponding to its semantic type. 
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Sentence: Why don't we make it from like eleven to one? 

Functions: 

(<SCHEDULE> NIL T NIL NIL NIL NIL NIL NIL T 
NIL NIL 

:STR ((FRAME *SCHEDULE) (ATTITUDE *LET-S) 
(WHAT ((FRAME *IT)))) 

:COV (6 5 4 3 2 1) 
:SCORE 1.4012985e-45) 

(<SCHEDULE> NIL T NIL NIL NIL T T NIL NIL 
NIL NIL 
:STR ((FRAME *SCHEDULE) 

(WHAT ((FRAME *IT))) (NEGATIVE +) 
(WHO ((FRAME *WE)))) 

:COV (6 5 4 3 2) :SCORE 3.05483e-43) 

(<SCHEDULE> NIL NIL NIL NIL NIL NIL NIL 
NIL T NIL NIL 

:STR ((FRAME *SCHEDULE) (ATTITUDE *LET-S)) 
:COV (5 4 3 2 1) 
:SCORE 1.4012985e-45) 

(<INTERVAL> NIL T T T 
:STR ((END ((FRAME *SIMPLE-TIME) 

(HOUR 1)))  
(START ((FRAME *SIMPLE-TIME) 

(HOUR 11) ) )  
(INCL-EXCL INCLUSIVE) 
(FRAME *INTERVAL)) 

:COV (11 10 9) 
:SCORE 1.2102125e-38) 

(<SCHEDULE> NIL NIL NIL NIL NIL T T NIL NIL 
NIL NIL 

:STR ((FRAME *SCHEDULE) (NEGATIVE +) 
(WHO ((FRAME *WE)))) 

:COV (5 4 3 2) 
:SCORE 2.2584231e-37) 

(<SCHEDULE> NIL T NIL NIL NIL T NIL NIL NIL 
NIL NIL 

:STR ((FRAME *SCHEDULE) (WHAT ((FRAME *IT))) 
(WHO ((FRAME *WE)))) 

:COV (6 5 4) 
:SCORE 1.861576e-27) 

(<PRO> NIL NIL NIL 
:STR ((FRAME *PRO)) 
:COV (II) 
:SCORE 2.2223547e-18) 

(<SIMPLE-TIME> NIL NIL NIL NIL NIL NIL T NIL 
:STR ((FRAME *SIMPLE-TIME) (HOUR 1)) 
:C0V (11) 
:SCORE 2.2223547e-18) 

(<SIMPLE-TIME> NIL NIL NIL NIL NIL NIL 
T NIL 

:STR ((FRAME *SIMPLE-TIME) (HOUR II)) 
:COV (9) 
:SCORE 1.0090891e-22) 

(<IT> 
:STR ((FRAME *IT)) 
:COV (6) 
:SCORE 2.593466e-13) 

Ideal Program: 

(<SCHEDULE> NIL NIL NIL NIL NIL NIL NIL 
(<INTERVAL> NIL NIL NIL NIL 

:STR ((END ((FRAME *SIMPLE-TIME) (HOUR I))) 
(START 
((FRAME *SIMPLE-TIME) (HOUR Ii))) 
(INCL-EXCL INCLUSIVE) 
(FRAME *INTERVAL)) 

:COV (II I0 9) 
:SCORE 1.2102125e-38) 

NIL NIL NIL 
:STR ((FRAME *SCHEDULE) (ATTITUDE *LET-S) 

(WHAT ((FRAME *IT)))) 
:COV (6 5 4 3 2 I) 
:SCORE 1.4012985e-45) 

Interpretation: Let's schedule it for from eleven o'clock till one o'clock 

Figure 4: Repair  example 
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It first takes a list of functions and terminal sym- 
bols and randomly generates a population of pro- 
grams. It then evaluates each program for its "fit- 
hess" according to some predetermined set of crite- 
ria. The most fit programs are then paired up and 
used to produce the next generation by means of a 
crossover operation whereby a pair of subprograms, 
one from each parent program, are swapped. The 
new generation is evaluated for its fitness, and the 
process continues for a preset number  of generations. 

As mentioned earlier, because each semantic rep- 
resentation built by AUTOSEM contains a pointer 
to the constructor function that  built it, each partial 
analysis can itself be treated as a constructor func- 
tion. Thus, the function set made available to the 
genetic programming search for each sentence need- 
ing repair is derived from the set of partial anal- 
yses extracted from the parser 's chart. A number 
of the functions produced for the example are dis- 
played in Figure 4. Some functions have been omit-  
ted for brevity. The functions are displayed as func- 
tion calls, with the name of the function followed 
by its arguments. The name of each function corre- 
sponds to the semantic type from the meaning rep- 
resentation that  corresponds to the associated par- 
tial analysis. Following this is a list of place holders 
corresponding to each argument  position associated 
with the semantic type, as described in Section 2. 
Each place holder is either n i l  if it is an open place 
holder, or 1: if the position has already been filled 
in the corresponding partial analysis. The STR field 
contains the corresponding partial analysis. This is 
the "result so far" parameter  discussed in Section 
3. The C0V field lists the positions in the sentence 
covered by the partial analysis. Note that  in the 
example sentence, the word "don't" covers both po- 
sitions 2 and 3 since the parser expands the con- 
traction before parsing. The SCORE field contains 
the statistical score assigned by the parser 's  statis- 
tical disambiguation procedure described in (Ros~ 
and Lavie, to appear).  

The repair process begins as the genetic program- 
ming algorithm composes the function definitions 
into programs that  assemble the fragments produced 
by the parser. The genetic programming algorithm 
has access to a list of type restrictions that  are placed 
on each argument position by the meaning repre- 
sentation specification. Thus, the algorithm ensures 
that  the programs that  are generated do not vio- 
late any of the meaning representation's type restric- 
tions. 

Once a population of programs is generated ran- 
domly, each program is evaluated for its fitness. A 
simple function implements a preference for pro- 
grams that  cover more of the sentence with fewer 
steps while using the analyses the parser assigned 
the best statistical scores to. A score between 0 and 

1 is first assigned to each program corresponding to 
the percentage of the input sentence it covers. A 
second score between 0 and 1 estimates how com- 
plicated the program is by dividing the number of 
function calls by the length of the sentence and sub- 
tracting this number  from 1. A third score is as- 
signed the average of the statistical scores assigned 
by the parser to the fragments used in the program. 
Using coefficients based on an intuitive assignment of 
relative importance to the three scores, the final fit- 
ness value of each program is 1 - [(.55 * coverageS) + 
(.25 • complexityS) + (.2 • statisticalS)]. 

A typed version of the original crossover algorithm 
described in (Koza, 1992; Koza, 1994) was used to 
ensure that  new programs would not violate any 
type restrictions or include more than one partial 
analysis covering the same span of text. This was 
accomplished by first making for each subprogram a 
list of the subprograms from the alternate program it 
could be inserted into without violating any seman- 
tic constraints. From these two lists it is possible to 
generate a list of all quadruples that  specify a sub- 
program from each parent program to be removed 
and which subprogram from the alternate parent 
program they could be inserted into. From th is  list, 
all quadruples were removed that  would either cause 
a span of text to be covered more than once in a 
resulting program or would require a subprogram 
to be inserted into a subprogram that  would have 
been removed. From the remaining list, a quadruple 
was selected randomly. The corresponding crossover 
operation was then executed and the resulting two 
new programs were returned. While this typed vet- 
sion of crossover is more complex than the original 
crossover operation, it can be executed very rapidly 
in practice because the programs are relatively small 
and the semantic type restrictions ensure than the 
initial lists generated are correspondingly small. 

5 R e l a t e d  Work  

Recent approaches to robust parsing focus on shal- 
low or partial parsing techniques (Van Noord, 1997; 
Worm, 1998; Ait-Mokhtar  and Chanod, 1997; Ab- 
ney, 1996). Rather than a t tempt ing  to construct a 
parse covering an entire ungrammatical  sentence as 
in (Lehman, 1989; Hipp, 1992), these approaches at- 
t empt  to construct analyses for maximal  contiguous 
portions of the input. The weakness of these partial 
parsing approaches is that  part  of the original mean- 
ing of the utterance may be discarded with the por- 
tion(s) of the utterance that  are skipped in order to 
find a parsable subset. Information communicated 
by the relationships between these fragments within 
the original text is lost if these fragments are not 
combined. Thus, these less powerful algorithms es- 
sentially trade effectiveness for efficiency. Their goal 
is to introduce enough flexibility to gain an accept- 
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able level of coverage at an acceptable computational 
expense. 

Some partial parsing approaches have been cou- 
pled with a post-parsing repair stage (Danieli and 
Gerbino, 1995; Ros6 and Waibel, 1994; Ros6, 1997; 
Van Noord, 1997; Kasper et al., 1999) The goal 
behind these two stage approaches is to increase 
the coverage over partial parsing alone at a rea- 
sonable computational cost. Until the introduction 
of AUTOSEM, the ROSE approach, introduced in 
(Ros6, 1997), was unique in that  it achieved this 
goal without either requiring hand coded knowledge 
specifically dedicated to repair or excessive amounts 
of interaction with the user. However, although 
(Ros6, 1997) demonstrates that the two stage ROSE 
approach is significantly faster than at tempting to 
achieve the same quality of results in a single stage 
parsing approach, our evaluation demonstrates that  
it remains computationally intractable, requiring on 
average 67 seconds to repair a single parse on a 330 
MHz Gateway 2000. In contrast, we demonstrate 
that  AUTOSEM is on average 200 times faster, tak- 
ing only .33 seconds on average to repair a single 
parse while achieving results of superior quality. 

6 E v a l u a t i o n  

An experiment was conducted to evaluate AU- 
TOSEM's robustness by comparing the effectiveness 
and efficiency of AUTOSEM's repair approach with 
that of the alternative ROSE approach. The test 
set used for this evaluation contains 750 sentences 
extracted from a corpus of spontaneous scheduling 
dialogues collected in English. For both repair ap- 
proaches we used the meaning representation devel- 
oped for the appointment scheduling domain that  
was used in previous evaluations of the ROSE ap- 
proach (Ros6, 1997). It consists of 260 semantic 
types, each expressing domain specific concepts for 
the appointment scheduling domain such as busy, 
cance l ,  and out-of-~;own. The ROSE meaning rep- 
resentation specification was easily converted to the 
format used in AUTOSEM. Because a pre-existing 
semantic grammar was available that  parsed directly 
onto this meaning representation, that  grammar was 
used in the parsing stage to construct analyses. The 
final meaning representation structures for the first 
300 sentences were then passed to a generation com- 
ponent, and the resulting texts were graded by a 
human judge not involved in developing the research 
reported here. Each result was graded as either Bad, 
Okay, or Perfect, where Perfect indicates that  the re- 
sult was fluent and communicated the idea from the 
original sentence. A grade of Okay indicates that 
the result communicated the correct information, 
but not fluently. Those graded Bad either communi- 
cated incorrect information or were missing part or 
all of the information communicated in the original 

sentence. 

Each sentence was parsed in two different modes. 
In LC w / r e s t a r t s  mode, the parser was allowed to 
construct analyses for contiguous portions of input 
starting at any point in the sentence. In LCFLEx 
mode, the parser was allowed to start  an analysis at 
any point and skip up to three words within the anal- 
ysis. Because the AUTOSEM repair algorithm runs 
significantly faster than the ROSE repair algorithm, 
repair was at tempted after every parse rather than 
only when a parse quality heuristic indicated a need 
as in the ROSE approach (Ros6, 1997). We com- 
pared the results of both AUTOSEM and ROSE in 
conjunction with the LC w / r e s t a r t s  parsing mode. 
The results are displayed in Figures 5 and 7. Be- 
cause the ROSE approach only runs the full repair 
algorithm when its parse quality heuristic indicates 
a need and the parser returns more than one par- 
tial analysis, it only a t tempted repair for 14% of the 
sentences in the corpus. Nevertheless, although the 
AUTOSEM repair algorithm ran for each sentence, 
Figure 5 demonstrates that  processing time for pars- 
ing plus repair in the AUTOSEM condition was dra- 
matically faster on average than with ROSE. Aver- 
age processing t ime for the ROSE algorithm was 200 
times slower than that  for AUTOSEM on sentences 
where both repair algorithms were used. In addition 
to the advantage in terms of speed, the AUTOSEM 
repair approach achieved an acceptable grade (Okay 
or Perfect) on approximately 4% more sentences. 

Parsing in LC w / r e s t a r t s  mode plus repair was 
also compared with parsing in LCFLEx mode with 
skipping up to three words. Again, LC w / r e s t a r t s  
+ AUTOSEM repair achieved a slightly higher 
number of acceptable grades, although LCFLEx 
achieved a slightly higher number of Perfect grades. 
On long sentences (between 15 and 20 words), 
LCFLEx mode required almost three times as much 
time as LC w / r e s t a r t s  mode plus AUTOSEM re- 
pair. This evaluation confirms our previous results 
that  two stage approaches offer a better processing 
time versus robustness trade-off. 

The primary difference between ROSE and AU- 
TOSEM is that  ROSE uses a single repair function, 
MY-C0bIB, to combine any two fragments by referring 
to the meaning representation specification. While 
it is possible to obtain the same set of repair hy- 
potheses with ROSE as with AUTOSEM, the ROSE 
approach insulates the genetic search from the se- 
mantic restrictions imposed by the meaning repre- 
sentation. These restrictions are visible only locally 
within individual applications of the I~Y-COMB func- 
tion. Thus, FIY-COMB must be able to cope with the 
case where the arguments passed in cannot be com- 
bined. Large portions of the programs generated by 
ROSE as repair hypotheses do not end up contribut- 
ing to the resulting structure. The programs gener- 
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Figure 6: Processing Times for Alternative Strategies 

ated by ROSE must  therefore be much larger than in 
AUTOSEM in order to obtain the same results. Fur- 
thermore, the fitness of each repair hypothesis can 
only be computed by executing the program to ob- 
tain a result. The combination of all of these things 
makes the process of fitness evaluation in ROSE far 
more costly than in AUTOSEM. In contrast, AU- 
TOSEM's  constructor function definitions make it 
possible for the genetic search to make use of seman- 
tic restrictions to speed up the process of converging 
on a high quality repair hypothesis. The tremendous 
speed-up offered by the AUTOSEM approach makes 

it practical to apply repair more often and to use a 
larger generation size (50 individuals as opposed to 
32) and a larger number  of generations (5 as opposed 
to 4) for the genetic search. 

7 C u r r e n t  D i r e c t i o n s  

In this paper we described AUTOSEM, a new robust 
semantic interpretation framework. Our evaluation 
demonstrates that  AUTOSEM achieves a greater 
level of robustness 200 times more efficiently than 
the most similar competing approach. 

In AUTOSEM, the mapping  between syntactic 
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Bad Okay Perfect 
LC w/restarts 92 (30.7%) 61 (20.3%) i47 (49.0%) 
LCFL~x 72 (24.0%) 67 (22.3%) 161 (53.7%) 
LC w/restarts + ROSE 75 (25.0%) 68 (22.7%) 157 (52.3%) 
LC w/restarts + AUTOSEM 64 (21.3%) 84 (28.0%) 152 (50.7%) 
LCFLEx + AUTOSEM 64 (21.3%) 78 (26.0%) i58 (52.7%) 

Total Acceptable 
209 (69.3%) 
228 (76.0%) 
225 (75.0%) 
236 (78.7%) 
236 (78.7%) 

Figure 7: I n t e r p r e t a t i o n  qual i ty  wi th  and  w i thou t  repai r  

functional roles and semantic arguments is com- 
pletely determined in the current version. In some 
cases, such as with copular constructions and with 
adjunct prepositional phrases, it would be useful to 
introduce some non-determinism so that, for exam- 
ple, semantic selectional restrictions between the ob- 
ject. of the preposition and the semantic structure 
that the prepositional phrase is attaching to can 
more easily play a role in selecting the appropri- 
ate semantic relationship. Exploring approaches for 
achieving this non-determinism efficiently is one of 
our current objectives. 
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