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A b s t r a c t  

A finite-state method, based on leftmost longest- 
match replacement, is presented for segmenting 
words into graphemes, and for converting graphemes 
into phonemes. A small set of hand-crafted conver- 
sion rules for Dutch achieves a phoneme accuracy of 
over 93%. The accuracy of the system is further im- 
proved by using transformation-based learning. The 
phoneme accuracy of the best system (using a large 
rule and a 'lazy' variant of Brill's algoritm), trained 
on only 40K words, reaches 99%. 

1 I n t r o d u c t i o n  

Automatic grapheme to phoneme conversion (i.e. 
the conversion of a string of characters into a string 
of phonemes) is essential for applications of text 
to speech synthesis dealing with unrestricted text, 
where the input may contain words which do not 
occur in the system dictionary. Furthermore, a 
transducer for grapheme to phoneme conversion 
can be used to generate candidate replacements in 
a (pronunciation-sensitive) spelling correction sys- 
tem. When given the pronunciation of a misspelled 
word, the inverse of the grapheme to phoneme trans- 
ducer will generate all identically pronounced words. 
Below, we present a method for developing such 
grapheme to phoneme transducers based on a com- 
bination of hand-crafted conversion rules, imple- 
mented using finite state calculus, and automatically 
induced rules. 

The hand-crafted system is defined as a two- 
step procedure: segmentation of the input into a 
sequence of graphemes (i.e. sequences of one or 
more characters typically corresponding to a sin- 
gle phoneme) and conversion of graphemes into (se- 
quences of) phonemes. The composition of the 
transducer which performs segmentation and the 
transducer defined by the conversion rules, is a 
transducer which converts sequences of characters 
into sequences of phonemes. 

Specifying the conversion rules is a difficult task. 
Although segmentation of the input can in princi- 
ple be dispensed with, we found that writing con- 
version rules for segmented input substantially re- 

duces the context-sensitivity and order-dependence 
of such rules. We manually developed a grapheme to 
phoneme transducer for Dutch data obtained from 
CELEX (Baayen et al., 1993) and achieved a word ac- 
curacy of 60.6% and a phoneme accuracy of 93.6%. 

To improve the performance of our system, we 
used transformation-based learning (TBL) (Brill, 
1995). Training data  are obtained by aligning the 
output of the hand-crafted finite state transducer 
with the correct phoneme strings. These data  can 
then be used as input for TBL, provided that  suit- 
able rule templates are available. We performed sev- 
eral experiments, in which the amount of' training 
data, the algorithm (Brill's original formulation and 
'lazy' variants (Samuel et al., 1998)), and the num- 
ber of rule templates varied. The best experiment 
(40K words, using a 'lazy' strategy with a large set 
of rule templates) induces over 2000 transformation 
rules, leading to 92.6% word accuracy and 99.0% 
phoneme accuracy. This result, obtained using a 
relatively small set of training data, compares well 
with that of other systems. 

2 F in i t e  S ta te  Ca lcu lus  
As argued in Kaplan and Kay (1994), Kart tunen 
(1995), Kart tunen e t  al. (1997), and elsewhere, 
many of the rules used in phonology and morphol- 
ogy can be analysed as special cases of regular ex- 
pressions. By extending the language of regular ex- 
pressions with operators which capture the interpre- 
tation of linguistic rule systems, high-level linguis- 
tic descriptions can be compiled into finite state au- 
tomata directly. Furthermore, such automata  can be 
combined with other finite state automata  perform- 
ing low-level tasks such as tokenization or lexical- 
lookup, or more advanced tasks such as shallow pars- 
ing. Composition of the individual components into 
a single transducer may lead to highly efficient pro- 
cessing. 

The system described below was implemented us- 
ing FSA Utilities, 1 a package for implementing and 
manipulating finite state automata,  which provides 
possibilities for defining new regular expression oper- 
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[] 
[R~,..., R,,] 
{R1,... ,Rn} 
R - 

i gno re  (A,B) 
A x B  

identity(A) 

T o U  
m a c r o  (Term, R) 

the empty string 
concatenation 
disjunction 
optionality 
ignore: A interspersed with elements of B 
cross-product: the transducer which maps 
all strings in A to all strings in B. 
identity: the transducer which maps each 
element, in A onto itself. 
composition of the transducers T and U. 
use Term as an abbreviation for R (where Term and R may contain variables). 

Figure 1: A fragment of FSA regular expression syntax. A and B are regular expressions denoting recognizers, 
T and U transducers, and R can be either. 

ators. The part  of FSA's built-in regular expression 
syntax relevant to this paper, is listed in figure 1. 

One particular useful extension of the basic syn- 
tax of regular expressions is the replace-operator. 
Kart tunen (1995) argues that  many phonological 
and morphological rules can be interpreted as rules 
which replace a certain portion of the input string. 
Although several implementations of the replace- 
operator are proposed, the most relevant case for 
our purposes is so-called 'leftmost longest-match' re- 
placement. In case of overlapping rule targets in the 
input, this operator will replace the leftmost target, 
and in cases where a rule target contains a prefix 
which is also a potential target, the longer sequence 
will be replaced. Gerdemann and van Noord (1999) 
implement leftmost longest-match replacement in 
FSA as the operator  

replace(Target, LeftContext,RightContext), 

where Target is a transducer defining the actual re- 
placement, and LeftContext and RightContext are 
regular expressions defining the left- and rightcon- 
text of the rule, respectively. 

An example where leftmost replacement is use- 
ful is hyphenation. Hyphenation of (non-compound) 
words in Dutch amounts to segmenting a word 
into syllables, separated by hyphens. In cases 
where (the written form of) a word can in prin- 
ciple be segmented in several ways (i.e. the se- 
quence a l f a b e t  can be segmented as a l - f a - b e t ,  
a l - f a b - e t ,  a l l - a - b e t ,  or a l f - a b - e t ) ,  the seg- 
mentation which maximizes onsets is in general the 
correct one (i.e. a l - f a - b e t ) .  This property of hy- 
phenation is captured by leftmost replacement: 

mac ro (hyphena te ,  
r e p l a c e ( [ ]  x - ,  s y l l a b l e ,  s y l l a b l e ) ) .  

Leftmost replacement ensures that  hyphens are in- 
troduced 'eagerly', i.e. as early as possible. Given 
a suitable definition of s y l l a b l e ,  this ensures that  

wherever a consonant can be final in a coda or initial 
in the next onset, it is in fact added to the onset. 

The segmentation task discussed below makes cru- 
cial use of longest match. 

3 A f in i te  s t a t e  m e t h o d  for 
g rapheme to phoneme  c o n v e r s i o n  

Grapheme to phoneme conversion is implemented as 
the composition of four transducers: 

m a c r o  (graph2phon,  
s eg m en ta t i o n  7, segment t h e  inpu t  

o mark_begin_end 7, add ' #' 
o c o n v e r s i o n  7. app ly  r u l e s  
o c lean_up ) .  Z remove markers  

An example of conversion including the in- 
termediate steps is given below for the word 
aanknopingspunt (connection-point). 

input: aanknopingspunt 
s: aa-n-k-n-o-p-i-ng-s-p-u-n-t- 
m: #-aa-n-k-n-o-p-i-ng-s-p-u-n-t-# 
co: #-a+N+k-n-o-p-I+N+s-p-}+n-t-# 

cl: aNknopINsp}nt 

The first transducer (segmentation) takes as 
its input a sequence of characters and groups 
these into segments. The second transducer 
(mark_begin_end) adds a marker ( '~ ' )  to the be- 
ginning and end of the sequence of segments. The 
third transducer ( conve r s ion )  performs the actual 
conversion step. It converts each segment into a 
sequence of (zero or more) phonemes. The final 
step (clean_up) removes all markers. The output  
is a list of phonemes in the notation used by CELEX 
(which can be easily translated into the more com- 
mon SAMPA-notation). 

3.1 S e g m e n t a t i o n  

The goal of segmentation is to divide a word into a 
sequence of graphemes, providing a convenient input 
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level of representation for the actual grapheme to 
phoneme conversion rules. 

While there are many letter-combinations which 
are realized as a single phoneme (ch, ng, aa,  bb, 
. .  ), it is only rarely the case that a single letter is 
mapped onto more than one phoneme (x), or that a 
letter receives no pronunciation at all (such as word- 
final n in Dutch, which is elided if it is proceeded by 
a schwa). As the number of cases where multiple 
letters have to be mapped onto a single phoneme 
is relatively high, it is natural to model a letter to 
phoneme system as involving two subtasks: segmen- 
tation and conversion. Segmentation splits an input 
string into graphemes, where each grapheme typ- 
ically, but not necessarily, corresponds to a single 
phoneme. 

Segmentation is defined as: 

mac r o ( segm en ta t i on ,  
r e p l a c e (  

[ i d e n t i t y ( g r a p h e m e s ) ,  
) .  

[] x - ] , [ ] , [ ] )  

The macro graphemes defines the set of graphemes. 
It contains 77 elements, some of which are: 

a, aa, au, ai, aai, e, ee, el, eu, eau, 
eeu, i, ie, lee, ieu, ij, o, oe, oei,.. 

Segmentation attaches the marker ' - '  to each 
grapheme. Segmentation, as it is defined here, 
is not context-sensitive, and thus the second and 
third arguments of replace are simply empty. As 
the set of graphemes contains many elements which 
are substrings of other graphemes (i.e. e is a 
substring of e i ,  eau, etc.), longest-match is es- 
sential: the segmentation of b e i a a r d i e r  (caril- 
lon player) should be b - e i - a a - r - d - i e - r -  and not 
b - e - i - a - a - r - d - i - e - r - .  This effect can be ob- 
tained by making the segment itself part of the tar- 
get of the replace statement. Targets are identi- 
fied using leftmost longest-match, and thus at each 
point in the input, only the longest valid segment is 
marked. 

The set of graphemes contains a number of ele- 
ments which might seem superfluous. The grapheme 
aa±, for instance, translates as aj ,  a sequence which 
could also be derived on the basis of two graphemes 
aa and ±. However, if we leave out the segment 
aa±, segmentation (using leftmost longest match) of 
words such as waaien (to blow) would lead to the 
segmentation w - a a - i e - n ,  which is unnatural, as it 
would require an extra conversion rule for ±e. Us- 
ing the grapheme aa i  allows for two conversion rules 
which always map aa i  to aj  and ±e goes to ±. 

Segmentation as defined above provides the in- 
tuitively correct result in almost all cases, given a 
suitably defined set of graphemes. There are some 

cases which are less natural, but which do not nec- 
essarily lead to errors. The grapheme eu, for in- 
stance, almost always goes to ' l ' ,  but translates 
as ' e , j , } '  in (loan-) words such as museum and 
petroleum. One might argue that a segmentation 
e - u -  is therefore required, but a special conver- 
sion rule which covers these exceptional cases (i.e. 
eu followed by m) can easily be formulated. Simi- 
larly, ng almost always translates as N, but in some 
cases actually represents the two graphemes n -g - ,  
as in a a n e e n g e s l o t e n  (connected), where it should 
be translated as NG. This case is harder to detect, 
and is a potential source of errors. 

3.2 T h e  C o n v e r s i o n  R u l e s  

The g2p operator is designed to facilitate the formu- 
lation of conversion rules for segmented input: 

macro(g2p(Target,LtCont,RtCont), 
replace([Target, - x +] ,  

[ignore(LtCont,{+,-}), {-,+}], 
ignore(RtCont,{+,-}) 

) 
). 

The g2p-operator implements a special pro:pose ver- 
sion of the replace-operator. The replacement of the 
marker '- '  by ' + '  in the target ensures that g2p- 
conversion rules cannot apply in sequence to the 
same grapheme. 2 Second, each target of the g2p- 
operator must be a grapheme (and not some sub- 
string of it). This is a consequence of the fact that 
the final element of the left-context must be a marker 
and the target itself ends in '-'. Finally, the ig- 
nore statements in the left and right context imply 
that the rule contexts can abstract over the potential 
presence of markers. 

An overview of the conversion rules we used for 
Dutch is given in Figure 2. As the rules are ap- 
plied in sequence, exceptional rules can be ordered 
before the regular cases, thus allowing the regular 
cases to be specified with little or no context. The 
special_vowel_rules deal with exceptional trans- 
lations of graphemes such as eu or cases where i or 
i j  goes to '©'. The shor t_vowel_ru les  treat sin- 
gle vowels preceding two consonants, or a word final 
consonant. One problematic case is e, which can 
be translated either as 'E '  or ' ~ ' .  Here, an ap- 
proximation is attempted which specifies tile con- 
text where e goes ' E ' ,  and subsumes the other 
case under the general rule for short vowels. Tile 
spec i a l_consonan t_ ru l e s  address devoicing and a 
few other exceptional cases. The d e f a u l t _ r u l e s  
supply a default mapping for a large number of 

2Note that the input and output alphabet are not disjoint, 
and thus rules applying in sequence to the same part of the 
input are not excluded in principle. 
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graphemes. The target of this rule is a long disjunc- 
tion of grapheme-phoneme mappings. As this rule- 
set applies after all more specific: cases have been 
dealt with, no context restrictions need to be speci- 
fied. 

Depending somewhat on how one counts, the full 
set of conversion rules for Dutch contains approxi- 
mately 80 conversion rules, more than 40 of which 
are default mappings requiring no context. 3 Compi- 
lation of the complete system results in a (minimal, 
deterministic) transducer with 747 states and 20,123 
transitions. 

3.3 Tes t  r e s u l t s  a n d  d i scuss ion  

The accuracy of the hand-crafted system was evM- 
uated by testing it on all of tile words wihtout di- 
acritics in the CELEX lexical database which have a 
phonetic transcription. After several development 
cycles, we achieved a word accuracy of 60.6% and 
a phonenle accuracy (measured as the edit distance 
between the phoneme string produced by the sys- 
tem and the correct string, divided by the number 
of phonemes in the correct string) of 93.6%. 

There have been relatively few at tempts at devel- 
oping grapheme to phoneme conversion systems us- 
ing finite state technology alone. Williams (1994) re- 
ports on a system for Welsh, which uses no less than 
700 rules implemented in a rather restricted environ- 
ment. The rules are also implemented in a two-level 
system, PC-KIMMO, (Antworth, 1990), but this still 
requires over 400 rules. MSbius et al. (1997) report 
on full-fledged text-to-speech system for German, 
containing around 200 rules (which are compiled into 
a weighted finite state transducer) for the grapheme- 
to-phoneme conversion step. These numbers suggest 
that  our implementation (which contains around 80 
rules in total) benefits considerably from the flexibil- 
ity and high-level of abstraction made available by 
finite state calculus. 

One might suspect that  a two-level approach to 
grapheme to phoneme conversion is more appropri- 
ate than the sequential approach used here. Some- 
what surprisingly, however, Williams concludes that  
a sequential approach is preferable. The formulation 
of rules in the latter approach is more intuitive, and 
rule ordering provides a way of dealing with excep- 
tional cases which is not easily available in a two- 
level system. 

While further improvements would definitely have 
been possible at this point, it becomes increasingly 
difficult to do this on the basis of linguistic knowl- 
edge alone. That  is, most of the rules which have 
to be added deal with highly idiosyncratic cases (of- 
ten related to loan-words) which can only be discov- 

3It should  be noted  t h a t  we only considered words which 
do not  con ta in  diacri t ics.  Inc luding  those  is unprob lema t i c  in 
principle,  bu t  would lead to a sl ight  increase of the  n u m b e r  
of rules. 

ered by browsing through the test results of previ- 
ous runs. At this point, switching from a linguistics- 
oriented to a data-oriented methodology, seemed ap- 
propriate. 

4 T r a n s f o r m a t i o n - b a s e d  g r a p h e m e  
t o  p h o n e m e  c o n v e r s i o n  

Brill (1995) demonstrates that  accurate part-of- 
speech tagging can be learned by using a two-step 
process. First, a simple system is used which as- 
signs the most probable tag to each word. The re- 
sults of the system are aligned with the correct tags 
for some corpus of training data. Next, (context- 
sensitive) transformation rules are selected from a 
pool of rule patterns, which replace erroneous tags 
by correct tags. The rule with the largest benefit on 
the training data  (i.e. the rule for which the number 
of corrections minus the number of newly introduced 
mistakes, is the largest) is learned and applied to 
the training data. This process continues until no 
more rules can be found which lead to improvement 
(above a certain threshold). 

Transformation-based learning (TBL) can be ap- 
plied to the present problem as well. 4 In this case, 
the base-line system is the finite state transducer de- 
scribed above, which can be used to produce a set 
of phonemic transcriptions for a word list. Next, 
these results are aligned with the correct transcrip- 
tions. In combination with suitable rule patterns,  
these data  can be used as input for a TBL process. 

4.1 Alignment 
TBL requires aligned data  for training and testing. 
While alignment is mostly trivial for part-of-speech 
tagging, this is not the case for the present task. 
Aligning data  for grapheme-to-phoneme conversion 
amounts to aligning each part  of the input (a se- 
quence of characters) with a part  of the output  (a 
sequence of phonemes). As the length of both se- 
quences is not guaranteed to be equal, it must be 
possible to align more than one character with a 
single phoneme (the usual case) or a single character 
with more than one phoneme (the exceptional case, 
i.e. 'x'). The alignment problem is often solved (Du- 
toit, 1997; Daelemans and van den Bosch, 1996) by 
allowing 'null' symbols in the phoneme string, and 
introducing 'compound' phonemes, such as 'ks' to 
account for exceptional cases where a single charac- 
ter must be aligned with two phonemes. 

As our finite state system already segments the 
input into graphemes, we have adopted a strategy 
where graphemes instead of characters are aligned 
with phoneme strings (see Lawrence and Kaye 
(1986) for a similar approach). The correspondence 

4Hoste  et al. (2000b) compare  T B L  to C5.0 (Quin lan ,  
1993) on a s imilar  task ,  i.e. the  m a p p i n g  of the  p ronunc ia t ion  
of one regional var iant  of D u t c h  into another .  
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macro(conversion, special_vowel_rules o short_vowel_rules 
o special_consonant_rules o default_rules 

macro (special_vowel_rules, 
g 2 p ( [ e , u ]  x [ e , j , } ] ,  [ ] ,  m) 

o g 2 p ( i  x ©, [ ] ,  g) 
o g 2 p ( [ i , j ]  x @, 1, k) 
. . . .  . 

macro ( s h o r t _ v o w e l _ r u l e s ,  
g2p(e  x ' E ' ,  [ ] ,  { [ t , t ] , [ k , k ] , x , . . . } )  
g2p({ a x ' h '  , e x 0, i x ' I '  , o x ' 0 '  

) .  
macro (special_consonant_rules, 

g2p(b  x p,  [ ] ,  { s , t , # } )  
o g2p([d,t ~] x t, [], {s,g,k,j,v,h,z,#}) 
o g2p({ f x v, s x z}, [], {b,d}) 
o g2p(g x 'G', vowel, vowel) 
o g2p(n x 'N', [], {k,q}) 
o g2p(n  x [ ] ,  [ © ] , [ # ] )  
. . . ) .  

macro ( d e f a u l t r u l e s ,  

%% museum 
%% moedig(st) 
%% mogelijkheid 

. 

, u x ' } '  }, [ ] ,  [cons ,  {cons , #}] ) 

g2p({  [ a , a ]  x a ,  [ a , a , i ]  x [ a , j ] ,  [ a ,u ]  x 'M',  [ e , a , u ]  x o . . . . .  , 
[ b ,b ]  x b, [d ,d]  x d . . . . . .  [ c ,h ]  x ' x ' ,  [ s , c , h ]  x I s , x ] ,  [n ,g]  x ' N ' ,  

}, [2, [] ) 
) .  

Figure 2: Conversion Rules 

between graphemes and phonemes is usually one to 
one, but it is no problem to align a grapheme with 
two or more phonemes. Null symbols are only intro- 
duced in the output  if a grapheme, such as word-final 
' n ' ,  is not realized phonologically. 

For TBL, the input actually has to be aligned both 
with the system output  as well as with the correct 
phoneme string. The first task can be solved triv- 
ially: since our finite state system proceeds by first 
segmenting the input into graphemes (sequences of 
characters),  and then transduces each grapheme into 
a sequence of phonemes, we can obtain aligned data 
by simply aligning each grapheme with its con'e- 
sponding phoneme string. The input is segmented 
into graphemes by doing the segmentation step of 
the finite state transducer only. The corresponding 
phoneme strings can be identified by applying the 
conversion transducer to the segmented input, while 
keeping the boundary symbols '- '  and '+ ' .  As a con- 
sequence of the design of the conversion-rules, the 
resulting sequence of separated phonemes sequences 
stands in a one-to-one relationship to the graphemes. 
An example is shown in figure 3, where GR represents 
the grapheme segmented string, and sP the (system) 
phoneme strings produced by the finite state trans- 
ducer. Note that  the final sP cell contains only a 
boundary marker,  indicating that  the grapheme 'n' 
is t ranslated into the null phoneme. 

For the alignment between graphemes (and, idi- 

Word aalbessen (currants) 
GR aa- 1 -  b -  e - s s -  e - n -  

sP a + 1- b -  @ +  s + ~@+ 
cp a 1 b E s @ 

Figure 3: Alignment 

rectly, the system output)  and the correct phoneme 
strings (as found in Celex), we used the 'hand- 
seeded' probabilistic alignment procedure described 
by Black et al. (1998) ~. From the finite state conver- 
sion rules, a set of possible grapheme --+ phoneme se- 
quence mappings can be derived. This allowables-set 
was extended with (exceptional) mappings present 
in the correct data, but not in the haml-crafted sys- 
tem. We computed all possible aligmnents between 
(segmented) words and correct phoneme strings li- 
cenced by the allowables-set. Next, probabilities for 
all allowed mappings were est imated on the basis 
of all possible alignments, and the data  was parsed 
again, now picking the most probable alignment for 
each word. To minimize the number of words that  
could not be aligned, a maximum of one unseen map- 
ping (which was assigned a low probability) was al- 
lowed per word. With this modification, only one 
out of 1000 words on average could not be aligned. '~ 
These words were discarded.The aJigned phoneme 

5Typical cases are loan words (umpires) and letter words 
(i.e. abbreviations) (abe). 
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method training data phonenm word induced CPU time 
(words) accuracy accuracy rules (in minutes) 

Base-line 93.6 60.6 
Brill 20K 98.0 86.1 447 162 
Brill 40K 98.4 88.9 812 858 
lazy(5) 20K 97.6 83.5 337 43 
lazy(5) 40K 98.2 87.0 701 190 
lazy(5) 60K 98.4 88.3 922 397 
lazy(10) 20K 97.7 84.3 368 83 
lazy(10) 40K 98.2 87.5 738 335 
lazy(10) 60K 98.4 88.9 974 711 
lazy(5)+ 20K 98.6 89.8 1225 186 
lazy(5)+ 40K 99.0 92.6 2221 603 

Figure 4: Experimental Results using training data  produced by graph2phon 

string for the example in figure 3 is shown in the 
bot tom line. Note that  the final cell is empty, rep- 
resenting the null phoneme. 

4.2 T h e  e x p e r i m e n t s  

For the experiments with TBL we used the #-TBL-  

package (Lager, 1999). This Prolog implementation 
of TBL is considerably more efficient (up to ten 
times faster) than Brill's original (C) implementa- 
tion. The speed-up results mainly from using Pro- 
log's first-argument indexing to access large quanti- 
ties of data  efficiently. 

We constructed a set of 22 rule templates which 
replace a predicted phoneme with a (corrected) 
phoneme on the basis of the underlying segment, 
and a context consisting either of phoneme strings, 
with a maximum length of two on either side, or 
a context consisting of graphemes, with a maximal 
length of 1 on either side. Using only 20K words 
(which corresponds to almost 180K segments), and 
Brill's algorithm, we achieved a phoneme accuracy 
of 98.0% (see figure 4) on a test set of 20K words of 
unseen data. 6 Going to 40K words resulted in 98.4% 
phoneme accuracy. Note, however, that  in spite of 
the relative efficiency of the implementation, CPU 
time also goes up sharply. 

The heavy computation costs of TBL are due to 
the fact that  for each error in the training data, all 
possible instantiations of the rule templates which 
correct this error are generated, and for each of these 
instantiated rules the score on the whole training set 
has to be computed. Samuel et al. (1998) there- 
fore propose an efficient, 'lazy', alternative, based 
on Monte Carlo sampling of the rules. For each er- 
ror in the training set, only a sample of the rules 
is considered which might correct it. As rules which 
correct a high number of errors have a higher chance 

6The statistics for less t ime consuming experiments were 
obtained by 10-fold cross-validation and for the more expen- 
sive experiments by 5-fold cross-validation. 

of being sampled at some point, higher scoring rules 
are more likely to be generated than lower scoring 
rules, but no exhaustive search is required. We ex- 
perimented with sampling sizes 5 and 10. As CPU 
requirements are more modest, we managed to per- 
form experiments on 60K words in this case, which 
lead to results which are comparable with Brill's al- 
goritm applied to 40K words. 

Apart from being able to work with larger data  
sets, the 'lazy' strategy also has the advantage that  
it can cope with larger sets of rule templates. Brill's 
algorithm slows down quickly when the set of rule 
templates is extended, but  for an algorithm based on 
rule sampling, this effect is much less severe. Thus, 
we also constructed a set of 500 rule templates, con- 
taining transformation rules which allowed up to 
three graphemes or phoneme sequences as left or 
right context, and also allowed for disjunctive con- 
texts (i.e. the context must contain an ' a '  at the 
first or second position to the right). We used this 
rule set in combination with a 'lazy' strategy with 
sampling size 5 (lazy(5)+ in figure 4). This led to a 
further improvement of phoneme accuracy to 99.0%, 
and word accuracy of 92.6%, using only 40K words 
of training material. 

Finally, we investigated what the contribution was 
of using a relatively accurate training set. To this 
end, we constructed an alternative training set, in 
which every segment was associated with its most 
probable phoneme (where frequencies were obtained 
from the aligned CELEX data). As shown in figure 5, 
the initial accuracy for such as system is much lower 
than that  of the hand-crafted system. The exper- 
imental results, for the 'lazy' algorithm with sam- 
pling size 5, show that  the phoneme accuracy for 
training on 20K words is 0.3% less than for the cor- 
responding experiment in figure 4. For 40K words, 
the difference is still 0.2%, which, in both cases, cor- 
responds to a difference in error rate of around 10%. 
As might be expected, the number of induced rules 
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method training data phoneme word induced CPU time 
(words) accuracy accuracy rules (i n minutes) 

Base-line 72.9 10.8 
lazy(5) 20K 97.3 81.6 691 133 
lazy(5) 40K 98.0 86.0 1075 705 

Figure 5: Experimental results using data based on frequency. 

is much higher now, and thus cPu-requirements also 
increase substantially. 

5 C o n c l u d i n g  r e m a r k s  

We have presented a method for grapheme to 
phoneme conversion, which combines a hand-crafted 
finite state transducer with rules induced by a 
transformation-based learning. An advantage of this 
method is that it is able to achieve a high level of 
accuracy using relatively small training sets. Busser 
(1998), for instance, uses a memory-based learning 
strategy to achieve 90.1% word accuracy on the same 
task, but used 90% of the CELEX data (over 300K 
words) as training set and a (character/phoneme) 
window size of 9. Hoste et al. (2000a) achieve a 
word accuracy of 95.7% and a phoneme accuracy of 
99.5% on the same task, using a combination of ma- 
chine learning techniques, as well as additional data 
obtained from a second dictionary. 

Given the result of Roche and Schabes (1997), an 
obvious next step is to compile the induced rules into 
an actual transducer, and to compose this with the 
hand-crafted transducer. It should be noted, how- 
ever, that the number of induced rules is quite large 
in some of the experiments, so that the compilation 
procedure may require some attention. 
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