A New Algorithm for the Alignment of Phonetic Sequences

Grzegorz Kondrak
Department of Computer Science
University of Toronto
Toronto, Ontario, Canada M5S 3G4
kondrak @cs.toronto.edu

Abstract

Alignment of phonetic sequences is a necessary
step in many applications in computational phonol-
ogy. After discussing various approaches to pho-
netic alignment, I present a new algorithm that com-
bines a number of techniques developed for se-
quence comparison with a scoring scheme for com-
puting phonetic similarity on the basis of multival-
ued features. The algorithm performs better on cog-
nate alignment, in terms of accuracy and efficiency,
than other algorithms reported in the literature.

1 Introduction

Identification of the corresponding segments in se-
quences of phones is a necessary step in many appli-
cations in both diachronic and synchronic phonol-
ogy. Usually we are interested in aligning sequences
that represent forms that are related in some way:
a pair of cognates, or the underlying and the sur-
face forms of a word, or the intended and the ac-
tual pronunciations of a word. Alignment of pho-
netic sequences presupposes transcription of sounds
into discrete phonetic segments, and so differs from
matching of utterances in speech recognition. On
the other hand, it has much in common with the
alignment of proteins and DNA sequences. Many
methods developed for molecular biology can be
adapted to perform accurate phonetic alignment.
Alignment algorithms usually contain two main
components: a metric for measuring distance be-
tween phones, and a procedure for finding the op-
timal alignment. The former is often calculated on
the basis of phonological features that encode cer-
tain properties of phones. An obvious candidate for
the latter is a well-known dynamic programming
(DP) algorithm for string alignment (Wagner and
Fischer, 1974), although other algorithms can used
as well. The task of finding the optimal alignment is
closely linked to the task of calculating the distance
between two sequences. The basic DP algorithm

288

accomplishes both tasks. Depending on the appli-
cation, either of the results, or both, can be used.

Within the last few years, several different ap-
proaches to phonetic alignment have been reported.
Covington (1996) used depth-first search and a spe-
cial distance function to align words for histori-
cal comparison. In a follow-up paper (Covington,
1998), he extended the algorithm to align words
from more than two languages. Somers (1998) pro-
posed a special algorithm for aligning children’s ar-
ticulation data with the adult model. Gildea and Ju-
rafsky (1996) applied the DP algorithm to pre-align
input and output phonetic strings in order to im-
prove the performance of their transducer induction
system. Nerbonne and Heeringa (1997) employed a
similar procedure to compute relative distance be-
tween words from various Dutch dialects. Some
characteristics of these implementations are juxta-
posed in Table 1.

In this paper, I present a new algorithm for the
alignment of cognates. It combines various tech-
niques developed for sequence comparison with an
appropriate scoring scheme for computing phonetic
similarity on the basis of multivalued features. The
new algorithm performs better, in terms of accuracy
and efficiency, than comparable algorithms reported
by Covington (1996) and Somers (1999). Although
the main focus of this paper is diachronic phonol-
ogy, the techniques proposed here can also be ap-
plied in other contexts where it is necessary to align
phonetic sequences.

2 Comparing Phones

To align phonetic sequences, we first need a func-
tion for calculating the distance between individual
phones. The numerical value assigned by the func-
tion to a pair of segments is referred to as the cost,
or penalty, of substitution. The function is often ex-
tended to cover pairs consisting of a segment and
the null character, which correspond to the opera-



Algorithm Calculation | Calculation Dynamic Phonological
of alignment | of distance | programming features
Covington (1996) explicit implicit no no
Somers (1998) explicit no no multivalued
Nerbonne and Heeringa (1997) implicit explicit yes binary
Gildea and Jurafsky (1996) explicit implicit yes binary

Table 1: Comparison of alignment algorithms.

tions of insertion and deletion (also called indels).
A distance function that satisfies the following ax-
ioms is called a metric:

1. Va,b:d(a,b) > 0 (nonnegative property)
2. Va,b:d(a,b) =0 < a = b (zero property)
3. Va,b:d(a,b) = d(b,a) (symmetry)

4. Ya,b,c:d(a,b) +d(b,c) > d(a,c) (triangle in-
equality)

2.1 Covington’s Distance Function vs.
Feature-Based Metrics

Covington (1996), for his cognate alignment algo-
rithm, constructed a special distance function. It
was developed by trial and error on a test set of 82
cognate pairs from various related languages. The
distance function is very simple; it uses no phono-
logical features and distinguishes only three types
of segments: consonants, vowels, and glides. Many
important characteristics of sounds, such as place
or manner of articulation, are ignored. For example,
both yacht and will are treated identically as a glide-
vowel-consonant sequence. The function’s values
for substitutions are listed in the “penalty” column
in Table 2. The penalty for an indel is 40 if it is pre-
ceded by another indel, and 50 otherwise. Coving-
ton (1998) acknowledges that his distance function
is “just a stand-in for a more sophisticated, perhaps
feature-based, system”.!

Both Gildea and Jurafsky (1996) and Nerbonne
and Heeringa (1997) use distance functions based
on binary features. Such functions have the ability
to distinguish a large number of different phones.
The underlying assumption is that the number of bi-
nary features by which two given sounds differ is

ICovington’s distance function is not a metric. The zero
property is not satisfied because the function’s value for two
identical vowels is greater than zero. Also, the triangle in-
equality does not hold in all cases; for example: p(e,i) = 30
and p(i,y) = 10, but p(e,y) = 100, where p(x,y) is the penalty
for aligning [x] with [y].

289

a good indication of their proximity. Phonetic seg-
ments are represented by binary vectors in which
every entry stands for a single articulatory feature.
The penalty for a substitution is defined as the Ham-
ming distance between two feature vectors. The
penalty for indels is established more or less arbi-
trarily.? A distance function defined in such a way
satisfies all metric axioms.

It is interesting to compare the values of Cov-
ington’s distance function with the average Ham-
ming distances produced by a feature-based met-
ric. Since neither Gildea and Jurafsky (1996) nor
Nerbonne and Heeringa (1997) present their fea-
ture vectors in sufficient detail to perform the cal-
culations, I adopted a fairly standard set of 17 bi-
nary features from Hartman (1981).3 The average
feature distances between pairs of segments corre-
sponding to every clause in Covington’s distance
function are given in Table 2, next to Covington’s
“penalties”. By definition, the Hamming distance
between identical segments is zero. The distance
between the segments covered by clause #3 is also
constant and equal to one (the feature in question
being [long] or [syllabic]). The remaining average
feature distances were calculated using a set of most
frequent phonemes represented by 25 letters of the
Latin alphabet (all but g). In order to facilitate com-
parison, the rightmost column of Table 2 contains
the average distances interpolated between the min-
imum and the maximum value of Covington’s dis-
tance function. The very high correlation (0.998)
between Covington’s penalties and the average dis-
tances demonstrates that feature-based phonology
provides a theoretical basis for Covington’s manu-
ally constructed distance function.

ZNerbonne and Heeringa (1997) fix the penalty for indels as
half the average of the values of all substitutions. Gildea and
Jurafsky (1996) set it at one fourth of the maximum substitution
cost.

3In order to handle all the phones in Covington’s data set,
two features were added: [tense] and [spread glottis].



Clause in Covington’s Covington’s | Average | Interpolated
distance function penalty Hamming average
distance distance

1 | “identical consonants or glides”™ 0 0.0 0.0

2 | “identical vowels” 5 0.0 0.0

3 | “vowel length difference only” 10 1.0 124

4 | “non-identical vowels” 30 2.2 27.3

5 | “non-identical consonants” 60 4.81 58.1

6 | “no similarity” 100 8.29 100.0

Table 2: The clause-by-clause comparison of Covington’s distance function (column 3) and a feature-based

distance function (columns 4 and 5).

2.2 Binary vs. Multivalued Features

Although binary features are elegant and widely
used, they might not be optimal for phonetic align-
ment. Their primary motivation is to classify
phonological oppositions rather than to reflect the
phonetic characteristics of sounds. In a strictly bi-
nary system, sounds that are similar often differ in a
disproportionately large number of features. It can
be argued that allowing features to have several pos-
sible values results in a more natural and phoneti-
cally adequate system. For example, there are many
possible places of articulation, which form a near-
continuum ranging from [labial] to [glottal].

Ladefoged (1995) devised a phonetically-based
multivalued feature system. This system has been
adapted by Connolly (1997) and implemented by
Somers (1998). It contains about 20 features with
values between 0 and 1. Some of them can take
as many as ten different values (e.g. [place]),
while others are basically binary oppositions (e.g.
[nasal]). Table 3 contains examples of multivalued
features.

The main problem with both Somers’s and Con-
nolly’s approaches is that they do not differenti-
ate the weights, or saliences, that express the rel-
ative importance of individual features. For ex-
ample, they assign the same salience to the fea-
ture [place] as to the feature [aspiration], which
results in a smaller distance between [p] and [k]
than between [p] and [p"]. I found that in order
to avoid such incongruous outcomes, the salience
values need to be carefully differentiated; specifi-
cally, the features [place] and [manner] should be
assigned significantly higher saliences than other
features (the actual values used in my algorithm are
given in Table 4). Nerbonne and Heeringa (1997)
experimented with weighting each feature by infor-
mation gain but found it had an adverse effect on

290

the quality of the alignments. The question of how
to derive salience values in a principled manner is
still open.

2.3 Similarity vs. Distance

Although all four algorithms listed in Table 1 mea-
sure relatedness between phones by means of a dis-
tance function, such an approach does not seem to
be the best for dealing with phonetic units. The fact
that Covington’s distance function is not a metric is
not an accidental oversight; rather, it reflects certain
inherent characteristics of phones. Since vowels are
in general more volatile than consonants, the pref-
erence for matching identical consonants over iden-
tical vowels is justified. This insight cannot be ex-
pressed by a metric, which, by definition, assigns a
zero distance to all identical pairs of segments. Nor
is it certain that the triangle inequality should hold
for phonetic segments. A phone that has two dif-
ferent places of articulation, such as labio-velar [w],
can be close to two phones that are distant from each
other, such as labial [b] and velar {g].

In my algorithm, below, I employ an alternative
approach to comparing segments, which is based on
the notion of similarity. A similarity scoring scheme
assigns large positive scores to pairs of related seg-
ments; large negative scores to pairs of dissimilar
segments; and small negative scores to indels. The
optimal alignment is the one that maximizes the
overall score. Under the similarity approach, the
score obtained by two identical segments does not
have to be constant. Another important advantage of
the similarity approach is the possibility of perform-
ing local alignment of phonetic sequences, which is
discussed in the following section.

3 Tree Search vs. Dynamic Programming

Once an appropriate function for measuring simi-
larity between pairs of segments has been designed,



Feature | Phonological Numerical
name term value
Place [bilabial] 1.0
[labiodental] 0.95
[dental] 0.9
[alveolar] 0.85
[retroflex] 0.8
[palato-alveolar] 0.75
[palatal] 0.7
[velar] 0.6
[uvular] 0.5
[pharyngeal] 0.3
[glottal] 0.1
Manner | [stop] 1.0
[affricate] 0.9
[fricative] 0.8
[approximant] 0.6
[high vowel] 04
[mid vowel] 0.2
[low vowel] 0.0
High [high] 1.0
[mid] 0.5
[low] 0.0
Back [front] 1.0
[central] 0.5
(back] 0.0

Table 3: Multivalued features and their values.

we need an algorithm for finding the optimal align-
ment of phonetic sequences. While the DP algo-
rithm, which operates in quadratic time, seems to
be optimal for the task, both Somers and Covington
opt for exhaustive search strategies. In my opinion,
this is unwarranted.

Somers’s algorithm is unusual because the se-
lected alignment is not necessarily the one that
minimizes the sum of distances between individ-
ual segments. Instead, it recursively selects the
most similar segments, or “anchor points”, in the
sequences being compared. Such an approach has
a serious flaw. Suppose that the sequences to be
aligned are tewos and divut. Even though the corre-
sponding segments are slightly different, the align-
ment is straightforward. However, an algorithm that
looks for the best matching segments first, will er-
roneously align the two ¢’s. Because of its recursive
nature, the algorithm has no chance of recovering
from such an error.*

4The criticism applies regardless of the method of choosing
the best matching segments (see also Section 5).

291

Syllabic 5 || Place 40
Voice 10 || Nasal 10
Lateral 10 || Aspirated 5
High 5 || Back 5
Manner 50 || Retroflex 10
Long 1 || Round 5

Table 4: Features used in ALINE and their salience
settings.

Covington, who uses a straightforward depth-first
search to find the optimal alignment, provides the
following arguments for eschewing the DP algo-
rithm.

First, the strings being aligned are rel-
atively short, so the efficiency of dy-
namic programming on long strings is not
needed. Second, dynamic programming
normally gives only one alignment for
each pair of strings, but comparative re-
construction may need the n best alter-
natives, or all that meet some criterion.
Third, the tree search algorithm lends it-
self to modification for special handling
of metathesis or assimilation.> (Coving-
ton, 1996)

The efficiency of the algorithm might not be rel-
evant in the simple case of comparing two words,
but if the algorithm is to be of practical use, it will
have to operate on large bilingual wordlists. More-
over, combining the alignment algorithm with some
sort of strategy for identifying cognates on the basis
of phonetic similarity is likely to require comparing
thousands of words against one another. Having a
polynomially bound algorithm in the core of such a
system is crucial. In any case, since the DP algo-
rithm involves neither significantly larger overhead
nor greater programming effort, there is no reason
to avoid using it even for relatively small data sets.

The DP algorithm is also sufficiently flexible to
accommodate most of the required extensions with-
out compromising its polynomial complexity. A
simple modification will produce all alignments that
are within € of the optimal distance (Myers, 1995).
By applying methods from the operations research
literature (Fox, 1973), the algorithm can be adapted
to deliver the n best solutions. Moreover, the basic
set of editing operations (substitutions and indels)

5Covington does not elaborate on the nature of the modifi-
cations.



can be extended to include both transpositions of ad-
jacent segments (metathesis) (Lowrance and Wag-
ner, 1975) and compressions and expansions (Oom-
men, 1995). Other extensions of the DP algorithm
that are applicable to the problem of phonetic align-
ment include affine gap scores and local compari-
son.

The motivation for generalized gap scores arises
from the fact that in diachronic phonology not only
individual segments but also entire morphemes and
syllables are sometimes deleted. In order to take
this fact into account, the penalty for a gap can be
calculated as a function of its length, rather than as
a simple sum of individual deletions. One solution
is to use an affine function of the form gap(x) =
r+sx, where r is the penalty for the introduction of a
gap, and s is the penalty for each symbol in the gap.
Gotoh (1982) describes a method for incorporating
affine gap scores into the DP alignment algorithm.
Incidentally, Covington’s penalties for indels can be
expressed by an affine gap function with r = 10 and
s =40.

Local comparison (Smith and Waterman, 1981)
is made possible by using both positive and neg-
ative similarity scores. In local, as opposed to
global, comparison, only similar subsequences are
matched, rather than entire sequences. This often
has the beneficial effect of separating inflectional
and derivational affixes from the roots. Such affixes
tend to make finding the proper alignment more dif-
ficult. It would be unreasonable to expect affixes
to be stripped before applying the algorithm to the
data, because one of the very reasons to use an au-
tomatic aligner is to avoid analyzing every word in-
dividually.

4 The algorithm

Many of the ideas discussed in previous sections
have been incorporated into the new algorithm for
the alignment of phonetic sequences (ALINE). Sim-
ilarity rather than distance is used to determine a
set of best local alignments that fall within € of
the optimal alignment.® The set of operations con-
tains insertions/deletions, substitutions, and expan-
sions/compressions. Multivalued features are em-
ployed to calculate similarity of phonetic segments.
Affine gaps were found to make little difference
when local comparison is used and they were subse-

5Global and semiglobal comparison can also be used. In
a semiglobal comparison, the leading and trailing indels are
assigned a score of zero.

292

algorithm Alignment
input: phonetic sequences x and y
output: alignment of x and y
define S(i, j) = —eowheni < Oorj < 0

fori « Oto x| do
S3, 0«0
forj « Oto|y| do
S(0,j) « 0
fori+ 1 to |x| do
forj < 1to|y|do
S(, j) + max(
SG—1, j) + Ostip(xi),
SG, j—1) + Osip(y;)>
S(i—1, j—1) + G (i, 1),
S(i—1, j=2) + Cexp(Xi, ¥ j-1¥5)
g§i—2,j—1) + Cexp(Xi-1Xi,¥j)s

T« (1 — 8) X max;, j S(i,j)

fori« 1to|x|do
for j « 1to |y| do
if S, j) > T then
Retrieve(i, j, 0)

Figure 1: The algorithm for computing the align-
ment of two phonetic sequences.

quently removed from ALINE.” The algorithm has
been implemented in C++ and will be made avail-
able in the near future.

Figure 1 contains the main components of the
algorithm. First, the DP approach is applied to
compute the similarity matrix S using the ¢ scor-
ing functions. The optimal score is the maximum
entry in the whole matrix. A recursive procedure
Retrieve (Figure 2) is called on every matrix en-
try that exceeds the threshold score T. The align-
ments are retrieved by traversing the matrix until a
zero entry is encountered. The scoring functions for
indels, substitutions and expansions are defined in
Figure 3. Cuip, Coup, and Ceyp are the maximum
scores for indels, substitutions, and expansions, re-
spectively. C,,; determines the relative weight of
consonants and vowels. The default values are Cy;p
= -10, Caup = 35, Cexp = 45 and C,,; = 10. The diff
function returns the difference between segments p
and g for a given feature f. Set Ry contains fea-
tures relevant for comparing two vowels: Syllabic,
Nasal, Retroflex, High, Back, Round, and Long. Set

TThey may be necessary, however, when dealing with lan-
guages that are rich in infixes.



procedure Retrieve(i, j, s )

if S(i, j) = 0 then
print(Out)
print(*“alignment score is s”)
else

if S(i—1, j—1) + o (xi,y;) + s > T then
push(Out, “align x; with y;”)
Retrieve(i—1, j—1, s + Gup(xi, y}))
pop(Out)

if S@i, j—1) + Owip(y;) + s > T then
push(Out, “align null with y;”)
Retrieve(i, j—1, s + Guip(y;))
pop(Out)

if S(i—1, j=2) + Oexp(xi,yj—1yj) + s > T then
push(Out, “align x; with y;_1y;”)
Retrieve(i—1, j—2, s + Cuxp(xi, yj-1y}))
pop(Out)

if SG—1,j) + G_\-k,'p(x,') + s > T then
push(Out, “align x; with null”)
Retrieve(i—1, j, s + Ogip(x;))
pop(Out)

if SG—2, j—1) + Cuxp(yj, xi1x:) + s > T then
push(Out, “align x;x;_; withy;”)
Retrieve(i—2, j—1, s + Guxp(yj, Xi—1%;))
pop(Out)

Figure 2: The procedure for retrieving alignments
from the similarity matrix.

Rc contains features for comparing other segments:
Syllabic, Manner, Voice, Nasal, Retroflex, Lateral,
Aspirated, and Place. When dealing with double-
articulation consonantal segments, only the nearest
places of articulation are used. For a more detailed
description of the algorithm see (Kondrak, 1999).
ALINE represents phonetic segments as vectors
of feature values. Table 4 shows the features that
are currently used by ALINE. Feature values are
encoded as floating-point numbers in the range
[0.0,1.0]. The numerical values of four principal
features are listed in Table 3. The numbers are
based on the measurements performed by Lade-
foged (1995). The remaining features have exactly
two possible values, 0.0 and 1.0. A special fea-
ture ‘Double’, which has the same values as ‘Place’,
indicates the second place of articulation. Thanks
to its continuous nature, the system of features and
their values can easily be adjusted and augmented.

5 Evaluation

The best alignments are obtained when local com-
parison is used. For example, when aligning En-

293

Osxip(P) = Caip

Osub(P,9) = Car—8(p,q)—V(p)-V(q)

Cexp - 8(17’ ql) - 8(P) QZ) -
V(p) —max(V(q1),V(q2))

o-exp(p’qqu) =

where
_ 0 if p is a consonant
Vip) = { C,w otherwise
(p.q) = Z diff(p, q, f) x salience(f)
fer
where
R = Rc if p or g is a consonant
- Ry otherwise

Figure 3: Scoring functions.

glish grass with Latin gramen, it is important to
match only the first three segments in each word;
the remaining segments are unrelated. ALINE obvi-
ously does not know the particular etymologies, but
it can make a guess because [s] and [m] are not very
similar phonetically. Only local alignment is able to
distinguish between the essential and non-essential
correspondences in this case (Table 5).

The operations of compression and expansion
prove to be very useful in the case of complex cor-
respondences. For example, in the alignment of
Latin factum with Spanish hecho, the affricate [{f]
should be linked with boeth (k] and [t] rather than
with just one of them, because it originates from the
merger of the two consonants. Note that taking a se-

g r - - & s

g r i m e

|l & r = s |

I g r a m | een
I g r = | s

Il & r a | men

Table 5: Three alignments of English grass and
Latin gramen obtained with global, semiglobal, and
local comparison. The double bars delimit the
aligned subsequences.



Covington’s alignments

three : trés 6 r i vy

t € s
blow : flare b 1 - - 0

f 1 a r e
full : pléenus f - - - u

p I & n u
fish : piscis f - - - 1

p 1 s k 1
I:ego - - a y

e g o -
tooth : dentis - - -t u

d e n t i

ALINE’s alignments
oo r iy |
ot oro& | s
w I b 1 o || w
- N £ 1 a || re
1 | f w 1
s I p - 1 || énus
§ | £ i Il
s Il p i s || kis
|l ay |l
I e |l go
w | t uw 6 |
- s den || t 1 s |

Table 6: Examples of alignments of English and Latin cognates.

quence of substitution and deletion as compression
is unsatisfactory because it cannot be distinguished
from an actual sequence of substitution and dele-
tion. ALINE posits this operation particularly fre-
quently in cases of diphthongization of vowels (see
the alignments in Table 6).

Covington’s data set of 82 cognates provides a
convenient test for the algorithm. His English/Latin
set is particularly interesting, because these two
languages are not closely related. Some of the
alignments produced by Covington’s algorithm and
ALINE are shown in Table 6. ALINE accurately
discards inflectional affixes in piscis and flare. In
fish/piscis, Covington’s aligner produces four alter-
native alignments, while ALINE selects the cor-
rect one. Both algorithms are technically wrong
on tooth/dentis, but this is hardly an error consid-
ering that only the information contained in the
phonetic string is available to the aligners. On
Covington’s Spanish/French data, ALINE does not
make any mistakes. Unlike Covington’s aligner,
it properly aligns [1] in arbol with the second [r]
in arbre. On his English/German data, it selects
the correct alignment in those cases where Coving-
ton’s aligner produces two alternatives. In the fi-
nal, mixed set, ALINE makes a single mistake in
daughter/thugater, in which it posits a dropped pre-
fix rather than a syncopated syllable; in all other
cases, it is right on target. Overall, ALINE clearly

294

performs better than Covington’s aligner.

Somers (1999) tests one version of his algo-
rithm, CAT, on the same set of cognates. CAT em-
ploys binary, rather than multivalued, features. An-
other important characteristic is that it pre-aligns
the stressed segments in both sequences. Since
CAT distinguishes between individual consonants,
in some cases it produces more accurate alignments
than Covington’s aligner. However, because of its
pre-alignment strategy, it is guaranteed to produce
wrong alignments in all cases when the stress has
moved in one of the cognates. For example, in
the Spanish/French pair cabeza/cap, it aligns [p]
with [0] rather than [b] and fails to align the two
{a]’s. The problem is even more acute for closely
related languages that have different stress rules.?
In contrast, ALINE does not even consider stress,
which, in the context of diachronic phonology, is
too volatile to depend on. Except for the single case
of daughter/thugatér, ALINE produces better align-
ments than Somers’s algorithm.

6 Future Directions

The goal of my current research is to combine the
new alignment algorithm with a cognate identifica-
tion procedure. The alignment of cognates is possi-

8For example, stress regularly falls on the initial syllable
in Czech and on the penuitimate syllable in Polish, while in
Russian it can fall anywhere in the word.



ble only after the pairs of words that are suspected
of being cognate have been identified. Identification
of cognates is, however, an even more difficult task
than the alignment itself. Moreover, it is hardly fea-
sible without some kind of pre-alignment between
candidate lexemes. A high alignment score of two
words should indicate whether they are related. An
integrated cognate identification algorithm would
take as input unordered wordlists from two or more
related languages, and produce a list of aligned cog-
nate pairs as output. Such an algorithm would be a
step towards developing a fully automated language
reconstruction system.

Acknowledgments

I would like to thank Graeme Hirst, Elan Dresher,
Steven Bird, and Carole Bracco for their comments.
This research was supported by Natural Sciences
and Engineering Research Council of Canada.

References

John H. Connolly. 1997. Quantifying target-
realization differences. Clinical Linguistics &
Phonetics, 11:267-298.

Michael A. Covington. 1996. An algorithm to align
words for historical comparison. Computational
Linguistics, 22(4):481-496.

Michael A. Covington. 1998. Alignment of mul-
tiple languages for historical comparison. In
Proceedings of COLING-ACL’98: 36th Annual
Meeting of the Association for Computational
Linguistics and 17th International Conference on
Computational Linguistics, pages 275-280.

Bennett L. Fox. 1973. Calculating the Kth short-
est paths. INFOR -~ Canadian Journal of Op-
erational Research and Information Processing,
11(1):66-70.

Daniel Gildea and Daniel Jurafsky. 1996. Learning
bias and phonological-rule induction. Computa-
tional Linguistics, 22(4):497-530.

Osamu Gotoh. 1982. An improved algorithm
for matching biological sequences. Journal of
Molecular Biology, 162:705-708.

Steven Lee Hartman. 1981. A universal alphabet
for experiments in comparative phonology. Com-
puters and the Humanities, 15:75-82.

Grzegorz Kondrak. 1999. Alignment of pho-
netic sequences. Technical Report CSRG-
402, University of Toronto. Available from
ftp.cs.toronto.edu/csri-technical-reports.

Joseph B. Kruskal. 1983. An overview of sequence
comparison. In David Sankoff and Joseph B.

295

Kruskal, editors, Time warps, string edits, and
macromolecules: the theory and practice of se-
quence comparison, pages 1-44. Reading, Mass.:
Addison-Wesley.

Peter Ladefoged. 1995. A Course in Phonetics.
New York: Harcourt Brace Jovanovich.

Roy Lowrance and Robert A. Wagner. 1975. An
extension of the string-to-string correction prob-
lem. Journal of the Association for Computing
Machinery, 22:177-183.

Eugene W. Myers. 1995. Seeing conserved signals.
In Eric S. Lander and Michael S. Waterman, edi-
tors, Calculating the Secrets of Life, pages 56-89.
Washington, D.C.: National Academy Press.

John Nerbonne and Wilbert Heeringa. 1997.
Measuring dialect distance phonetically. In
Proceedings of the Third Meeting of the ACL
Special Interest Group in Computational
Phonology (SIGPHON-97). Available at
http://www.cogsci.ed.ac.uk/sigphon/.

B. John Oommen. 1995. String alignment with
substitution, insertion, deletion, squashing; and
expansion operations. Information Sciences,
83:89-107.

T. F. Smith and Michael S. Waterman. 1981. Iden-
tification of common molecular sequences. Jour-
nal of Molecular Biology, 147:195-197.

Harold L. Somers. 1998. Similarity metrics for
aligning children’s articulation data. In Proceed-
ings of COLING-ACL’98: 36th Annual Meeting
of the Association for Computational Linguistics
and 17th International Conference on Computa-
tional Linguistics, pages 1227-1231.

Harold L. Somers. 1999. Aligning phonetic
segments for children’s articulation assessment.
Computational Linguistics, 25(2):267-275.

Robert A. Wagner and Michael J. Fischer. 1974.
The string-to-string correction problem. Jour-
nal of the Association for Computing Machinery,
21(1):168-173.



