
Tagging Sentence Boundaries

A n d r e i M i k h e e v
X a n a l y s Inc . a n d T h e U n i v e r s i t y o f E d i n b u r g h

2 B u c c l e u c h P l a c e , E d i n b u r g h E H 8 9 L W , U K
m i k h e e v O h a r l e q u i n , c o . u k

A b s t r a c t

In this paper we tackle sentence boundary disam-
biguation through a part-of-speech (POS) tagging
framework. We describe necessary changes in text
tokenization and the implementat ion of a POS tag-
ger and provide results of an evaluation of this sys-
tem on two corpora. We also describe an exten-
sion of the traditional POS tagging by combining
it with the document-centered approach to proper
name identification and abbreviation handling. This
made the resulting system robust to domain and
topic shifts.

1 I n t r o d u c t i o n

Sentence boundary disambiguation (SBD) is an im-
portant aspect in developing virtually any practi-
cal text processing application - syntactic parsing,
Information Extraction, Machine Translation, Text
Alignment, Document Summarization, etc. Seg-
menting text into sentences in most cases is a sim-
ple m a t t e r - a period, an exclamation mark or a
question mark usually signal a sentence boundary.
However, there are cases when a period denotes a
decimal point or is a part of an abbreviation and
thus it does not signal a sentence break. Further-
more, an abbreviation itself can be the last token
in a sentence, in which case its period acts at the
same time as part of this abbreviation and as the
end-of-sentence indicator (fullstop).

The first large class of sentence boundary disam-
biguators uses manually built rules which are usually
encoded in terms of regular expression grammars
supplemented with lists of abbreviations, common
words, proper names, etc. For instance, the Alem-
bic workbench (Aberdeen et al., 1995) contains a
sentence splitting module which employs over 100
regular-expression rules written in Flex. To put to-
gether a few rules which do a job is fast and easy, but
to develop a good rule-based system is quite a labour
consuming enterprise. Another potential shortcom-
ing is that such systems are usually closely tailored
to a particular corpus and are not easily portable
across domains.

Automatically trainable software is generally seen

as a way of producing systems quickly re-trainable
for a new corpus, domain or even for another lan-
guage. Thus, the second class of SBD systems em-
ploys machine learning techniques such as decision
tree classifiers (Riley, 1989), maximum entropy mod-
eling (MAXTERMINATOR) (Reynar and Ratna-
parkhi, 1997), neural networks (SATZ) (Palmer and
Hearst , 1997), etc.. Machine learning systems treat
the SBD task as a classification problem, using fea-
tures such as word spelling, capitalization, suffix,
word class, etc., found in the local context of poten-
t im sentence breaking punctuation. There is, how-
ever, one catch - all machine learning approaches to
the SBD task known to us require labeled examples
for training. This implies an investment in the an-
notat ion phase.

There are two corpora normally used for evalua-
tion and development in a number of text process-
ing tasks and in the SBD task in particular: the
Brown Corpus and the Wall Street Journal (WSJ)
corpus - both par t of the Penn Treebank (Mar-
cus, Marcinkiewicz, and Santorini, 1993). Words
in both these corpora are annota ted with part-of-
speech (POS) information and the text is split into
documents, paragraphs and sentences. This gives
all necessary information for the development of
an SBD system and its evaluation. State-of-the-
art machine-learning and rule-based SBD systems
achieve the error rate of about 0.8-1.5% measured
on the Brown Corpus and the WSJ. The best per-
formance on the WSJ was achieved by a combination
of the SATZ system with the Alembic system - 0.5%
error rate. The best performance on the Brown Cor-
pus, 0.2% error rate, was reported by (Riley, 1989),
who trained a decision tree classifier on a 25 million
word corpus.

1.1 W o r d - b a s e d vs . S y n t a c t i c M e t h o d s

The first source of ambiguity in end-of-sentence
marking is introduced by abbreviations: if we know
tha t the word which precedes a period is n o t an ab-
breviation, then almost certainly this period denotes
a sentence break. However, if this word is an ab-
breviation, then it is not tha t easy to make a clear
decision. The second major source of information

2 6 4

for approaching the SBD task comes from the word
which follows the period or other sentence splitting
punctuation. In general, when the following word
is punctuation, number or a lowercased word - the
abbreviation is not sentence terminal. When the fol-
lowing word is capitalized the situation is less clear.
If this word is a capitalized common word - this sig-
nals start of another sentence, but if this word is a
proper name and the previous word is an abbrevia-
tion, then the situation is truly ambiguous.

Most of the existing SBD systems are word-based.
They employ only lexical information (word capital-
ization, spelling, suffix, etc.) to predict whether a
capitalized word-token which follows a period is a
proper name or is a common word. Usually this is
implemented by applying the lexical lookup method
where a word is assigned its category according to
which word-list it belongs to. This, however, is
clearly an oversimplification. For instance, the word
"Black" is a frequent surname and at the same time
it is a frequent common word, thus the lexical infor-
mation is not very reliable in this case. But by em-
ploying local context one can more robustly predict
that in the context "Black described.." this word
acts as a proper name and in the context "Black
umbrella.." this word acts as a common word.

It is almost impossible to robustly estimate con-
texts larger than single focal word using word-based
methods - even bigrams of words are too sparse. For
instance, there are more than 50,000 distinct words
in the Brown Corpus, thus there are 250`0o0 poten-
tial word bigrams, but only a tiny fraction of them
can be observed in the corpus. This is why words
are often grouped into semantic classes. This, how-
ever, requires large manual effort, is not scalable and
still covers only a fraction of the lexica. Syntactic
context is much easier to est imate because the num-
ber of syntactic categories is much smaller than the
number of distinct words.

A standard way to identify syntactic categories for
word-tokens is part-of-speech (POS) tagging. There
syntactic categories are represented as POS tags e.g.
N N S - plural noun, VBD - verb past form, J JR - com-
parative adjective, etc. There exist several tag-sets
which are currently in use - some of them reflect
only the major syntactic information such as part-
of-speech, number, tense, etc., whereas others reflect
more refined information such as verb subcategoriza-
tion, distinction between mass and plural nouns, etc.

Depending on the level of detail one tag-set can
incorporate a few dozen tags where another can in-
corporate a few hundred, but still such tags will be
considerably less sparse than individual words. For
instance, there are only about 40 POS tags in the
Penn Treebank tag-set, therefore there are only 240
potential POS bigrams. Of course, not every word
combination and POS tag combination is possible,

but these numbers give a rough estimation of the
magnitude of required data for observing necessary
contexts for words and POS tags. This is why the
"lexical lookup" method is the major source of in-
formation for word-based methods.

The "lexical lookup" method for deciding whether
a capitalized word in a position where capitalization
is expected (e.g. after a fullstop) is a proper name or
a common word gives about an 87o error rate on the
Brown Corpus. We developed and trained a POS
tagger which reduced this error more than by h a l f -
achieving just above a 3% error rate. On the WSJ
corpus the POS tagging advantage was even greater:
our tagger reduced the error rate from 1570 of the
lexical lookup approach to 5%. This suggests that
the error rate of a sentence splitter can be reduced
proportionally by using the POS tagging method-
ology to predict whether a capitalized word after a
period is a proper name or a common word.

1.2 T h e S A T Z S y s t e m

(Palmer and Hearst, 1997) described an approach
which recognized the potential of the local syntac-
tic context for the SBD problem. Their, system,
SATZ, used POS information for words in the lo-
cal context of potential sentence splitting punctu-
ation. However, what is interesting is that they
found difficulty in applying a standard POS tag-
ging framework for determining POS information
for the words: "However, requiring a single part-of-
speech assignment for each word introduces a pro-
cessing circularity: because most part-of-speech tag-
gers require predetermined sentence boundaries, the
boundary disambiguation must be done before tag-
ging. But if the disambiguations done before tag-
ging, no part-of-speech assignments are available for
the boundary determination system".

Instead, they applied a simplified method. The
SATZ system mapped Penn Treebank POS tags into
a set of 18 generic POS categories such as noun, ar-
ticle, verb, proper noun, preposition, etc. Each word
was replaced with a set of these generic categories
that it can take on. Such sets of generic syntac-
tic categories for three tokens before and three to-
kens after the period constituted a context which
was then fed into two kinds of classifiers (decision
trees and neural networks) to make the predictions.

This system demonstrated reasonable accm'acy
(1.0% error rate on the WSJ corpus) and also ex-
hibited robustness and portabili ty when applied to
other domains and languages. However, the N-
grams of syntactic category sets have two important
disadvantages in comparison to the traditional POS
tagging which is usually largely based (directly or
indirectly) on the N-grams of POS tags. First, syn-
tactic category sets are much sparser than syntactic
categories (POS tags) and, thus, require more data
for training. Second, in the N-grams-only method

2 6 5

. . . <W

. . . <W

. . . <W

C='RB' A='N'>soon</W><W C='.'>.</W> <W A='Y' C='NNP'>Mr</W><W C='A'>.</W>...

C='VBD'>said</W> <W C='NNP' A='Y'>Mr</W><W C='A'>.</W> <W C='NNP'>Brown</W>.,,

C=','>,</W> <W C='NNP' A='Y'>Tex</W><W C='*'>.</W> <W C='DT'>The</W>...

Figure h Example of tokenization and markup. Text is tokenized into tokens represented as XML elements
with attributes: A='Y' - abbreviation, A=' N'- not abbreviation, C - part-of-speech tag at tr ibute, C= ' . '
fullstop, C='A' - par t of abbreviation, C = ' * ' - a fullstop and part of abbreviat ion at the same time.

no influence from the words outside the N-grams can
be traced, thus, one has to adopt N-grams of suffi-
cient length which in its turn leads either to sparse
contexts or otherwise to sub-optimal discrimination.
The SATZ system adopted N-grams of length six.
In contrast to this, POS taggers can capture influ-
ence of the words beyond an immediate N-gram and,
thus, usually operate with N-grams of length two (bi-
grams) or three (three-grams). Furthermore, in the
POS tagging field there exist s tandard methods to
cope with N-gram sparseness and unknown words.
Also there have been developed methods for unsu-
pervised training for some classes of POS taggers.

1.3 T h i s P a p e r

In this paper we report on the integration of the
sentence boundary disambiguation functionality into
the POS tagging framework. We show tha t Sentence
splitting can be handled during POS tagging and the
above mentioned "circularity" can be tackled by us-
ing a non-traditional tokenization and markup con-
ventions for the periods. We also investigate reduc-
ing the importance of pre-existing abbreviation lists
and describe guessing strategies for unknown abbre-
viations.

2 N e w H a n d l i n g o f P e r i o d s

In the traditional Treebank schema, abbreviations
are tokenized together with their trailing periods
and, thus, stand-alone periods unambiguously sig-
nal end-of-sentence. For handling the SBD task we
suggest tokenizing periods separately from their ab-
breviations and treat ing a period as an ambiguous
token which can be marked as a fullstop (' . '), part-
of-abbreviation (' A') or both (' * ') . An example of
such markup is displayed on Figure 1. Such markup
allows us to t reat the period similarly to all other
words in the text: a word can potentially take on
one of a several POS tags and the job of a tagger is
to resolve this ambiguity.

In our experiments we used the Brown Corpus and
the Wall Street Journal corpus both taken from the
Penn Treebank (Marcus, Marcinkiewicz, and San-
torini, 1993). We converted both these corpora from
the original format to our XML format (as displayed
on Figure 1), split the final periods from the abbrevi-
ations and assigned them with C= ' A ' and C= ' * ' tags

according to whether or not the abbreviation was the
last token in a sentence. There were also quite a few
infelicities in the original tokenization and tagging
of the Brown Corpus which we corrected by hand.

Using such markup it is straightforward to train
a POS tagger which also disambiguates sentence
boundaries. There is, however, one difference in the
implementat ion of such tagger. Normally, a POS
tagger operates on a text-span which forms a sen-
tence and this requires performing the SBD before
tagging. However, we see no good reason why such a
text-span should necessarily be a sentence, because
almost all the taggers do not a t t empt to parse a sen-
tence and operate only in the local window of two
to three tokens.

The only reason why the taggers traditionally op-
erate on the sentence level is because there exists a
technical issue of handling long text spans. Sentence
length of 30-40 tokens seems to be a reasonable limit
and, thus, having sentences pre-chunked before tag-
ging simplifies life. This issue, however, can be also
addressed by breaking the text into short text-spans
at positions where the previous tagging history does
not affect current decisions. For instance, a bigram
tagger operates within a window of two tokens, and
thus a sequence of word-tokens can be terminated
at an unambiguous word because this unambiguous
word token will be the only history used in tagging
of the next token. A tr igram tagger operates within
a window of three tokens, and thus a sequence of
word-tokens can be terminated when two unambigu-
ous words follow each other.

3 T a g g i n g E x p e r i m e n t

Using the modified t reebank we trained a tr i-gram
POS tagger (Mikheev, 1997) based on a combination
of Hidden Markov Models (HMM) and Maximum
Entropy (ME) technologies. Words were clustered
into ambiguity classes (Kupiec, 1992) according to
sets of POS tags they can take on. This is a stan-
dard technique tha t was also adopted by the SATZ
system 1. The tagger predictions were based on the
ambiguity class of the current word together with

1The SATZ system operated with a reduced set of 18
generic categories instead of 40 POS tags of the Penn Tree-
bank tag-set.

266

Table 1: POS Tagging on sentence splitting punctuation and ambiguously capitalized words

Tagger Feature Set Error on Sentence Punct.

Upper Bound
POS Tagger
POS Tagger Enhanced

Brown Corpus
0.01
0.25%
0.20%

WSJ Corpus
0.13
O.39%
0.31%

POS Tagger /No abbr. list 0.98% 1.95%
POS Tagger E n h a n c e d / N o abbr. list 0.65% 1.39%

Error on Words in Mandatory Pos.
Brown Corpus

3.15%
1.87%

WSJ Corpu s

4.72%
3.22%

3.19% 5.29%
1.91% 3.28%

the POS trigrams: hypothesized current POS tag
and partially disambiguated POS tags of two previ-
ous word-tokens. We also collected a list of abbrevi-
ations as explained later in this paper and used the
information about whether a word is an abbrevia-
tion, ordinary word or potential abbreviation (i.e. a
word which could not be robustly classified in the
first two categories). This tagger employed Maxi-
mum Entropy models for tag transition and emission
estimates and Viterbi algorithm (Viterbi, 1967) for
the optimal path search.

Using the forward-backward algorithm (Baum,
1972) we trained our tagger in the unsupervised
mode i.e. without using the annotation available
in the Brown Corpus and the WSJ. For evaluation
purposes we trained our tagger on the Brown Cor-
pus and applied it to the WSJ corpus and vice versa.
We preferred this method to ten-fold cross-validation
because this allowed us to produce only two tagging
models instead of twenty and also this allowed us to
test the tagger in harsher conditions when it is ap-
plied to texts which are very distant from the ones
it was trained on.

In this research we concentrated on measuring the
performance only on two categories of word-tokens:
on periods and other sentence-ending punctuation
and on word-tokens in mandatory positions. Manda-
tory positions are positions which might require a
word to be capitalized e.g. after a period, quotes,
brackets, in all-capitalized titles, etc. At the evalua-
tion we considered proper nouns (NNP), plural proper
nouns (NNPS) and proper adjectives 2 (JJP) to signal
a proper name, all all other categories were consid-
ered to signal a common word or punctuation. We
also did not consider as an error the mismatch be-
tween "." and "*" categories because both of them
signal that a period denotes the end of sentence and
the difference between them is only whether this pe-
riod follows an abbreviation or a regular word.

In all our experiments we treated embedded sen-
tence boundaries in the same way as normal sentence
boundaries. The embedded sentence boundary oc-
curs when there is a sentence inside a sentence. This

2These are adjectives like "American" which are always
written capitalized. We identified and marked them in the
WSJ and Brown Corpus,

can be a quoted direct speech sub-sentence inside a
sentence, this can be a sub-sentence embedded in
brackets, etc. We considered closing punctuation of
such sentences equal to closing punctuation of ordi-
nary sentences.

There are two types of error the tagger can make
when disambiguating sentence boundaries. The first
one comes from errors made by the tagger in identi-
fying proper names and abbreviations. The second
one comes from the limitation of the POS tagging
approach to the SBD task. This is when an abbrevi-
ation is followed by a proper name: POS information
normally is not sufficient to disambiguate such cases
and the tagger opted to resolve all such cases as "not
sentence boundary". There are about 5-7% of such
cases in the Brown Corpus and the WSJ and the
majority of them, indeed, do not signal a sentence
boundary.

We can estimate the upper bound for our ap-
proach by pretending that the tagger was able to
identify all abbreviations and proper names with
perfect accuracy. We can sinmlate this by using the
information available in the treebank. It turned out
that the tagger marked all the cases when an ab-
breviation is followed by a proper name, punctua-
tion, non-capitalized word or a number as "not sen-
tence boundary". All other periods were marked as
sentence-terminal. This produced 0.01% error rate
on the Brown Corpus and 0.13% error rate on the
WSJ as displayed in the first row of Table 1.

In practice, however, we cannot expect the tagger
to be 100% correct and the second row of Table 1 dis-
plays the actual results of applying our POS tagger
to the Brown Corpus and tile WSJ. General tagging
performance on both our corpora was a bit better
than a 4% error rate which is in line with the stan-
dard performance of POS taggers reported on these
two corpora. On the capitalized words in manda-
tory positions the tagger achieved a 3.1-4.7% error
rate which is an improvement over the lexical lookup
approach by 2-3 times. On the sentence breaking
punctuation the tagger performed extremely well -
an error rate of 0.39% on the WSJ and 0.25% on
the Brown Corpus. If we compare these results with
the upper bound we see that the errors made by the
tagger on the capitalized words and abbreviations

267

instigated about a 0.25% error rate on the sentence
boundaries.

We also applied our tagger to single-case texts.
We converted the WSJ and the Brown Corpus to
upper-case only. In contrast to the mixed case texts
where capitalization together with the syntactic in-
formation provided very reliable evidence, syntactic
information without capitalization is not sufficient
to disambiguate sentence boundaries. For the ma-
jority of POS tags there is no clear preference as to
whether they are used as sentence start ing or sen-
tence internal. To minimize the error rate on single
case texts, our tagger adopted a s trategy to mark all
periods which follow al)breviations as "non-sentence
boundaries". This gave a 1.98% error rate on the
WSJ and a 0.51% error rate on the Brown Corpus.
These results are in line with the results reported for
the SATZ system on single case texts.

4 E n h a n c e d F e a t u r e S e t

(Mikheev, 1999) described a new approach to the
disambiguation of capitalized words in manda tory
positions. Unlike POS tagging, this approach
does not use local syntactic context, but ra ther it
applies the so-called document-centered approach.
The essence of the document-centered approach is
to scan the entire document for the contexts where
the words in question are used unambiguously. Such
contexts give the grounds for resolving ambiguous
contexts.

For instance, for the disambiguation of capital-
ized words in mandatory positions the above rea-
soning can be crudely summarized as follows: if we
detect that a word has been used capitalized in an
unambiguous context (not in a manda tory position),
this increases the chances for this word to act as
a proper name in mandatory positions in the same
document. And, conversely, if a word is seen only
lowercased, this increases the chances to downcase it
in mandatory positions of the same document. By
collecting sequences and unigrams of unambiguously
capitalized and lowercased words in the document
and imposing special ordering of their applications
(Mikheev, 1999) reports that the document-centered
approach achieved a 0.4-0.7% error rate with cover-
age of about 90% on the disambiguation of capital-
ized words in mandatory positions.

We decided to combine this approach with our
POS tagging system in the hope of achieving bet ter
accuracy on capitalized words after the periods and
therefore improving the accuracy of sentence split-
ting. Although the document-centered approach to
capitalized words proved to be more accurate than
POS tagging, the two approaches are complimentary
to each other since they use different types of infor-
mation. Thus, the hybrid system can bring at least
two advantages. First, unassigned by the document-

centered approach 10% of the ambiguously capital-
ized words can be assigned using a s tandard POS
tagging method based on the local syntactic con-
text. Second, the local context can correct some of
the errors made by the document-centered approach.
To implement this hybrid approach we incorporated
the assignments made by the document-centered ap-
proach to the words in mandatory positions to our
POS tagging model by simple linear interpolation.

The third row of Table 1 displays the results of
the application of the extended tagging model. We
see an improvement on proper name recognition by
about 1.5%: overall error rate of 1.87% on the Brown
Corpus and overall error rate 3.22% on the WSJ.
This in its turn allowed for bet ter tagging of sen-
tence boundaries : a 0.20% error rate on the Brown
Corpus and a 0.31% error rate on the WSJ, which
corresponds to about 20% cut in the error rate in
comparision to the s tandard POS tagging.

5 Handling of Abbreviat ions
Information about whether a word is an abbrevia-
tion or not is absolutely crucial for sentence splitting.
Unfortunately, abbreviations do not form a closed
set, i.e., one cannot list all possible abbreviations.
I t gets even worse - abbreviations can coincide with
ordinary words, i.e., "in" can denote an abbrevia-
tion for "inches", "no" can denote an abbreviation
for "number", "bus" can denote an abbreviation for
"business", etc.

Obviously, a practical sentence splitter which in
our case is a POS tagger, requires a module that can
guess unknown abbreviations. First, such a module
can apply a well-known heuristic that single-word
abbreviations are short and normally do not include
vowels (Mr., Dr., kg.). Thus a word without vowels
can be guessed to be an abbreviation unless it is writ-
ten in all capital letters which can be an acronym
(e.g. RPC). A span of single letters, separated by
periods forms an abbreviat ion too (e .g .Y.M.C.A.) .
Other words shorter than four characters and un-
known words shorter than five characters should be
treated as potential abbreviations. Although these
heuristics are accurate they manage to identify only
about 60% of all abbreviations in the text which
translates at 40% error rate as shown in the first
row of Table 2.

These surface-guessing heuristics can be supple-
mented with the document-centered approach (DCA)
to abbreviation guessing, which we call Positional
Guessing Strategy (PGS). Although a short word
which is followed by a period can potentially be an
abbreviation, the same word when occurring in the
same document in a different context can be unam-
biguously classified as an ordinary word if it is used
without a trailing period, or it can be unambigu-
ously classified as an abbreviation if it is used with a

2 6 8

Table 2: Error rate for different abbreviation identification methods

Corpus

surface guess
surface guess and DCA
surface guess and DCA and abbr. list

trailing period and is followed by a lowercased word
or a comma. This allows us to assign such words
accordingly even in ambiguous contexts of the same
document, i.e., when they are followed by a period.

For instance, the word "Kong" followed by a pe-
riod and then by a capitalized word cannot be safely
classified as a regular word (non-abbreviation) and
therefore it is a potential abbreviation. But if in the
same document we detect a context "lived in Hong
Kong in 1993" this indicates that "Kong" is nor-
mally written without a trailing period and hence
is not an abbreviation. Having established that,
we can apply this findings to the non-evident con-
texts and classify "Kong" as a regular word (non-
abbreviation) throughout the document. However,
if we detect a context such as "Kong., said" this in-
dicates that in this document "'Kong" is normally
written with a trailing period and hence is an ab-
breviation. This gives us grounds to classify "Kong"
as an abbreviation in all its occurrences within the
same document.

The positional guessing strategy relies on the
assumption that there is a consistency of writing
within the same document. Different authors can
write "Mr" or "Dr" with or without trailing period
but we assume that the same author (the author
of a document) will write consistently. However,
there can occur a situation when a potential abbre-
viation is used as a regular word and as an abbre-
viation within the same document. This is usually
the case when an abbreviation coincides with a reg-
ular word e.g. "Sun." (meaning Sunday) and "Sun"
(the name of a newspaper). To tackle this prob-
lem, our strategy is to collect not only unigrams of
potential abbreviations in unambiguous contexts as
explained earlier but also their bigrams with the pre-
ceding word. Now the positional guessing strategy
can assign ambiguous instances on the basis of the
bigrams it collected from the document.

For instance, if in a document the system found a
context "vitamin C is" it stores the bigram "vitamin
C" and the unigrarn "C" with the information that
it is a regular word. If in the same document the
system also detects a context "John C. later said" it
stores the bigram "John C." and the unigram "C"
with the information that it is an abbreviation. Here
we have conflicting information for the word "C" -
it was detected as acting as a regular word and as an

abbreviation within the same document - so there is
not enough information to resolve ambiguous cases
purely using the unigram. However, some cases can
be resolved on the basis of the bigrams e.g. the sys-
tem will assign "C" as an abbreviation in an ambigu-
ous context "... John C. Research ..." and it will
assign "C" as a regular word (non-abbreviation) in
an ambiguous context "... vitamin C. Research ..."

When neither unigrams nor bigrams can help to
resolve an ambiguous context for a potential abbre-
viation, the system decides in favor of the more fre-
quent category deduced from the current document
for this potential abbreviation. Thus if the word
"In" was detected as acting as a non-abbreviation
(preposition) five times in the current document and
two times as abbreviation (for the state Indiana),
in a context where neither of the bigrams collected
from the document can be applied, "In" is assigned
as a regular word (non-abbreviation). The last re-
sort strategy is to assign all non-resolved cases as
non-abbreviations.

Apart from the ability of finding abbreviations be-
yond the scope of the surface guessing heuristics, the
document-centered approach also allows for the clas-
sification of some potential abbreviations as ordinary
words, thus reducing the ambiguity for the sentence
splitting module. The second row of Table 2 shows
the results when we supplemented the surface guess-
ing heuristics with the document-centered approach.
This alone gave a huge improvement over the surface
guessing heuristics.

Using our abbreviation guessing module and an
unlabeled corpus from New York Times 1996 of
300,000 words, we compiled a list of 270 abbrevia-
tions which we then used in our tagging experiments
together with the guessing module. In this list we
included abbreviations which were identified by our
guesser and which had a frequency of five or greater.
When we combined the guessing module together
with the induced abbreviation list and applied it to
the Brown Corpus and the WSJ we measured about
1% error rate on the identification of abbreviation
as can be seen in the third row of Table 2.

We also tested our POS tagger and the extended
tagging model in conjunction with the abbreviation
guesser only, when the system was not equipped with
the list of abbreviations. The error rate on capital-
ized words went just a bit higher while the error

269

rate on the sentence boundaries increased by two-
three times but still stayed reasonable. In terms
of absolute numbers, the tagger achieved a 0.98%
error rate on the Brown Corpus and a 1.95% er-
ror rate on the WSJ when disarnbiguating sentence
boundaries. The extended system without the ab-
breviation list was about 30% more accurate and
achieved a 0.65% error rate on sentence splitting on
the Brown Corpus and 1.39% on the WSJ corpus as
shown in the last row of Table 1. The larger im-
pact on the WSJ corpus can be explained by the
fact that it has a higher proportion of abbreviations
than the Brown Corpus. In the Brown Corpus, 8%
of potential sentence boundaries come after abbre-
viations. Tile WSJ is richer in abbreviations and
17% of potential sentence boundaries come after ab-
breviations. Thus, unidentified abbreviations had a
higher impact on the error rate in the WSJ.

6 C o n c l u s i o n

In this paper we presented an approach which treats
the sentence boundary disambiguation problem as
part of POS tagging. In its "vanilla" version the sys-
tem performed above the results recently quoted in
the literature for the SBD task. When we combined
the "vanilla" model with the document-centered ap-
proach to proper name handling we measured about
a 20% further improvement in the performance on
sentence splitting and about a 40% improvement on
capitalized word assignment.

POS tagging approach to sentence splitting pro-
duces models which are highly portable across differ-
ent corpora: POS categories are much more frequent
than individual words and less affected by unseen
words. This differentiates our approach from word-
based sentence splitters. In contrast to (Palmer and
Hearst, 1997), which also used POS categories as
predictive features, we relied on a proper POS tag-
ging technology, ra ther than a shortcut to POS tag
estimation. This ensured higher accuracy of the
POS tagging method which cut the error rate of the
SATZ system by 69%. On the other hand because of
its simplicity the SATZ approach is probably easier
to implement and faster to train than a POS tagger.

On single-case texts the syntactic approach did
not show a considerable advantage to the word-based
methods: all periods which followed abbreviations
were assigned as "sentence internal" and the results
achieved by our system on the single-case texts were
in line with that of the other systems.

The abbreviation guessing module which com-
bines the surface guessing heuristics with the doc-
ument centered approach makes our system very ro-
bust to new domains. The system demonstrated
strong performance even without being equipped
with a list of known abbreviations which, to our
knowledge, none of previously described SBD sys-

tems could achieve.
Another important advantage of our approach we

see is that it requires potentially a smaller amount
of training da ta and this training da ta does not need
to be labeled in any way. In training a conventional
sentence splitter one usually collects periods with
the surrounding context and these samples have to
be manually labeled. In our case a POS tagging
model is trained on all available words, so syntactic
dependencies between words which can appear in a
local context of a period can be established from
other parts of the text. Our system does not require
annota ted da ta for training and can be unsupervis-
edly trained from raw texts of approximately 300,000
words or more.

There are ways for further improvement of the
performance of our system by combining it with a
word-based system which encodes specific behavior
for individual words. This is similar to how the
SATZ system was combined with the Alembic sys-
tem. This addresses the l imitation of our syntactic
approach in treat ing cases when an abbreviation is
followed by a proper name always as "non sentence
boundary" . In fact we encoded one simple rule tha t
an abbreviat ion which stands for an American state
(e.g. Ala. or Kan.) always is sentence terminal if
followed by a proper name. This reduced the error
rate on the WSJ from 0.31% to 0.25%. Another av-
enue for further development is to extend the system
to other languages.

References
Aberdeen, J., J Burger, D. Day, L. Hirschman,

P. Robinson, and M. Vilain. 1995. Mitre: De-
scription of the alembic system used for muc-6.
In The Proceedings of the Sixth Message Under-
standing Conference (MUC-6), Columbia, Mary-
land. Morgan Kaufmann.

Baum, L.E. 1972. An inequality and associated
maximization techique in statistical estimation for
probabilistic functions of a Markov process. In-
equalities 3 (1972) 1-8.

Kupiec, Julian. 1992. Robust part-of-speech tagging
using a hidden markov model. Computer Speech
and Language.

Marcus, Mitchell, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large anno-
ta ted corpus of english: The penn treebank. Com-
putational Linguistics, 19(2):313-329.

Mikheev, A. 1999. A knowledge-free method for
capitalized word disambiguation. In Proceedings
of the 37th Conference of the Association for
Computational Linguistics (ACL'99), pages 159-
168. University of Maryland.

Mikheev, A., 1997. LT POS - the LTG part o/speech
tagger. Language Technology Group, University
of Edinburgh. www.ltg.ed.ac.uk/software/pos.

2 7 0

Palmer, D. D. and M. A. Hearst. 1997. Adaptive
multilingual sentence boundary disambiguation.
Computational Linguistics.

Reynar, J. C. and A. Ratnaparkhi. 1997. A max-
imum entropy approach to identifying sentence
boundaries. In Proceedings of the Fifth A CL Con-
ference on Applied Natural Language Processing
(ANLP'97), Washington, D.C.

Riley, M.D. 1989. Some applications of tree-based
modeling to speech and language indexing. In
Proceedings of the DARPA Speech and Natu-
ral Language Workshop, pages 339-352. Morgan
Kaufman.

Viterbi, A.J. 1967. Error bounds for convolutional
codes and an asymptomatically optimal decod-
ing algorithm. IEEE Transactions on Information
Theory.

271

