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A b s t r a c t  

A long-standing issue regarding algorithms that  ma- 
nipulate context-free grammars (CFGs) in a "top- 
down" left-to-right fashion is that  left recursion can 
lead to nontermination. An algorithm is known 
that  transforms any CFG into an equivalent non- 
left-recursive CFG, but the resulting grammars are 
often too large for practical use. We present a new 
method for removing left recursion from CFGs that  
is both theoretically superior to the standard algo- 
rithm, and produces very compact non-left-recursive 
CFGs in practice. 

1 I n t r o d u c t i o n  

A long-standing issue regarding algorithms that  ma- 
nipulate context-free grammars (CFGs) in a "top- 
down" left-to-right fashion is that  left recursion can 
lead to nontermination. This is most familiar in the 
case of top-down recursive-descent parsing (Aho et 
al., 1986, pp. 181-182). A more recent motivation 
is that  off-the-shelf speech recognition systems are 
now available (e.g., from Nuance Communications 
and Microsoft) that  accept CFGs as language models 
for constraining recognition; but  as these recogniz- 
ers process CFGs top-down, they also require that  
the CFGs used be non-left-recursive. 

The source of the problem can be seen by consid- 
ering a directly left-recursive grammar production 
such as A -4 As.  Suppose we are trying to parse, 
or recognize using a speech recognizer, an A at a 
given position in the input. If we apply this pro- 
duction top-down and left-to-right, our first subgoal 
will be to parse or recognize an A at the same input 
position. This immediately puts us into an infinite 
recursion. The same thing will happen with an indi- 
rectly left-recursive grammar, via a chain of subgoals 
that  will lead us from the goal of parsing or recogniz- 
ing an A at a given position to a descendant subgoal 
of parsing or recognizing an A at that  position. 

In theory, the restriction to non-left-recursive 
CFGs puts no additional constraints on the lan- 
guages that  can be described, because any CFG 
can in principle be transformed into an equivalent 
non-left-recursive CFG. However, the s tandard algo- 

ri thm for carrying out this transformation (Aho et 
al., 1986, pp. 176-178) (Hopcroft and Ullman, 1979, 
p. 96)--a t t r ibuted to M. C. Panll by Hopcroft and 
Ullman (1979, p. 106)--can produce transformed 
grammars that  are orders of magnitude larger than 
the original grammars. In this paper we develop a 
number of improvements to Panll's algorithm, which 
help somewhat but  do not completely solve the prob- 
lem. We then go on to develop an alternative ap- 
proach based on the left-corner grammar transform, 
which makes it possible to remove left recursion with 
no significant increase in size for several grammars 
for which Paull's original algorithm is impractical. 

2 N o t a t i o n  a n d  T e r m i n o l o g y  

Grammar nonterminals will be designated by "low 
order" upper-case letters (A, B, etc.); and termi- 
nals will be designated by lower-case letters. We 
will use "high order" upper-case letters (X, Y, Z) 
to denote single symbols that  could be either ter- 
minals or nonterminals, and Greek letters to denote 
(possibly empty) sequences of terminals and/or  non- 
terminals. Any production of the form A --4 a will 
be said to be an A-production, and a will be said to 
be an expansion of A. 

We will say that  a symbol X is a direct left corner 
of a nonterminal A, if there is an A-production with 
X as the left-most symbol on the right-hand side. 
We define the left-corner relation to be the reflexive 
transitive closure of the direct-left-corner relation, 
and we define the proper-left-corner relation to be 
the transitive closure of the direct-left-corner rela- 
tion. A nonterminal is left recursive if it is a proper 
left corner of itself; a nonterminal is directly left re- 
cursive if it is a direct left corner of itself; and a 
nonterminal is indirectly left recursive if it is left re- 
cursive, but  not directly left recursive. 

3 T e s t  G r a m m a r s  

We will test the algorithms considered here on three 
large, independently-motivated, natural-language 
grammars. The CT grammar 1 was compiled into 
a CFG from a task-specific unification grammar 

1Courtesy of John Dowding, SRI International 
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Grammar  size 
Terminals 
Nonterminals 
Productions 
LR nonterminals 
Productions for LR nonterminals 

Toy CT ATIS P T  
Grammar Grammar  Grammar Grammar 

88 
40 
16 
55 

4 
27 

55,830 
1,032 
3,946 

24,456 
535 

2,211 

16,872 
357 
192 

4,592 
9 

1,109 

67,904 
47 
38 

15,039 
33 

14,993 

Table 1: Grammars used for evaluation. 

written for CommandTalk (Moore et al., 1997), a 
spoken-language interface to a military simulation 
system. The ATIS grammar was extracted from an 
internally generated treebank of the DARPA ATIS3 
training sentences (Dahl et al., 1994). The P T  gram- 
mar 2 was extracted from the Penn Treebank (Mar- 
cus et al., 1993). To these grammars we add a small 
"toy" grammar, simply because some of the algo- 
rithms cannot be run to completion on any of the 
"real" grammars within reasonable t ime and space 
bounds. 

Some statistics on the test grammars are con- 
tained in Table 1. The criterion we use to judge 
effectiveness of the algorithms under test  is the size 
of the' resulting grammar, measured in terms of the 
total number of terminal and nonterminal symbols 
needed to express the productions of the grammar. 
We use a slightly nonstandard metric, counting the 
symbols as if, for each nonterminal, there were a 
single production of the form A --+ a l  I . .-  [ a,~. 
This reflects the size of files and da ta  structures typ- 
ically used to store grammars for top-down process- 
ing more accurately than counting a separate occur- 
rence of the left-hand side for each distinct right- 
hand side. 

It should be noted that  the CT grammar has a 
very special property: none of the 535 left recursive 
nonterminals is indirectly left recursive. The gram- 
mar was designed to have this property specifically 
because Paull's algorithm does not handle indirect 
left recursion well. 

It should also be noted that  none of these gram- 
mars contains empty productions or cycles, which 
can cause problems for algorithms for removing left 
recursion. It is relatively easy to trasform an arbi- 
t rary  CFG into an equivalent grammar which does 
not contain any of the probelmatical cases. In its 
initial form the P T  grammar contained cycles, but  
these were removed at a cost of increasing the size 
of the grammar by 78 productions and 89 total  sym- 
bols. No empty productions or cycles existed any- 
where else in the original grammars. 

2Courtesy of Eugene Charniak, Brown University 

4 Paull's Algorithm 

Panll's algorithm for eliminating left recursion from 
CFGs attacks the problem by an iterative procedure 
for transforming indirect left recursion into direct 
left recursion, with a subprocedure for eliminating 
direct left recursion, This algorithm is perhaps more 
familiar to some as the first phase of the textbook 
algorithm for transfomrming CFGs to Greibach nor- 
real form (Greibach, 1965). 3 The subprocedure to 
eliminate direct left recursion performs the following 
transformation (Hopcroft and UUman, 1979, p. 96): 

Let 

A Aa11... IAa  

be the set of all directly left recursive A- 
productions, and let 

I/?s 
be the remaining A-productions. Replace 
all these productions with 

A --+/71 [ / ? IA '  [ . . .  [/?8 [ /?sA' ,  

and 

A'  --+ az [ a l A '  [ . . .  I as  [ a s A ' ,  

where A ~ is a new nonterminal not used 
elsewhere in the grammar. 

This transformation is embedded in the full algo- 
ri thm (Aho et al., 1986, p. 177), displayed in Fig- 
ure 1. 

The idea of the algorithm is to eliminate left re- 
cursion by transforming the grammar so that  all the 
direct left corners of each nonterminal strictly follow 
that  nonterminal in a fixed total ordering, in which 
case, no nonterminal can be left recursive. This is 
accomplished by iteratively replacing direct left cor- 
ners that  precede a given nonterminal with all their 
expansions in terms of other nonterminals tha t  are 
greater in the ordering, until the nonterminal has 
only itself and greater nonterminals as direct left 

3This has led some readers to a t t r ibute  the algorithm to 
Greibach, but  Greibach's original method was quite different 
and much more complicated. 
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Assign an ordering A 1 , . . . ,  A,~ to the nonterminals of the grammar.  

for i := 1 to n do begin 
for j :-- 1 to i - 1 do begin 

for each production of the form Ai ~ Aja do begin 
remove Ai -+ Aja from the g rammar  
for each production of the form Aj -~/~ do begin 

add Ai --~/~a to the g rammar  
end 

end 
end 
transform the Ai-productions to eliminate direct left recursion 

end 

Figure 1: Paull 's  algorithm. 

Grammar  Description Grammar  Size 
original toy g rammar  88 
PA, "best" ordering 156 
PA, lexicographical ordering 970 
PA, "worst" ordering 5696 

Table 2: Effect of nonterminal ordering on Paull 's  algorithm. 

corners. Any direct left recursion for that  nonter- 
minal is then eliminated by the first t ransformation 
discussed. 

The difficulty with this approach is that  the it- 
erated substitutions can lead to an exponential in- 
crease in the size of the grammar .  Consider the 
g rammar  consisting of the productions Az -+ 0 I 1, 
plus Ai+z -+ AiO I Ail for I < i < n. I t  is easy to see 
that  Paull 's  algorithm will t ransform the g rammar  
so that  it consists of all possible Ai-productions with 
a binary sequence of length i on the right-hand side, 
for 1 < i < n, which is exponentially larger than 
the original grammar.  Notice tha t  the efficiency of 
PauU's algorithm crucially depends on the ordering 
of the nonterminals. If the ordering is reversed in 
the g rammar  of this example, Paull 's  algorithm will 
make no changes, since the g rammar  will already 
satisfy the condition that  all the direct left corners 
of each nonterminal strictly follow that  nonterminal 
in the revised ordering. The textbook discussions of 
Paull 's  algorithm, however, are silent on this issue. 

In the inner loop of Panll 's  algorithm, for nonter- 
minals Ai and Aj, such tha t  i > j and Aj is a direct 
left corner of Ai, we replace all occurrences of Aj as a 
direct left corner of Ai with all possible expansions 
of Aj. This only contributes to elimination of left 
recursion from the g rammar  if Ai is a left-recursive 
nonterminal, and Aj ]ies on a pa th  that  makes Ai 
left recursive; that  is, if Ai is a left corner of A3 (in 

addition to Aj being a left corner of Ai). We could 
eliminate replacements that  are useless in removing 
left recursion if we could order the nonterminals of 
the g rammar  so that,  if i > j and Aj is a direct left 
corner of Ai, then Ai is also a left corner of Aj. We 
can achieve this by ordering the nonterminals in de- 
creasing order of the number of distinct left corners 
they have. Since the left-corner relation is transitive, 
if C is a direct left corner of B,  every left corner of 
C is also a left corner o f /3 .  In addition, since we 
defined the left-corner relation to be reflexive, B is a 
left corner of itself. Hence, if C is a direct left corner 
of B,  it must follow B in decreasing order of number  
of distinct left corners, unless B is a left corner of 
C. 

Table 2 shows the effect on Paull 's  algorithm of 
ordering the nonterminals according to decreasing 
number  of distinct left corners, with respect to the 
toy grammar.  4 In the table, "best" means an or- 
dering consistent with this constraint. Note that  
if a g rammar  has indirect left recursion, there will 
be multiple orderings consistent with our constraint, 
since indirect left recursion creates cycles in the the 
left-corner relation, so every nonterminal in one of 
these cycles will have the same set of left corners. 
Our "best" ordering is simply an arbitrari ly chosen 

4As mentioned previously, grammar sizes are given in 
terms of total terminal and nonterminal symbols needed to 
express the grammar. 
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original grammar 
PA 
LF 
LF+PA 
L F + N L R G + P A  

CT Grammar  ATIS Grammar  
55,830 
62,499 
54,991 
59,797 
57,924 

16,872 
> 5,000,000 

11,582 
2,004,473 

72,035 

P T  Grammar 
67,904 

> 5,000,000 
37,811 

> 5,000,000 
> 5,000,000 

Table 3: Grammar  size comparisons with Panll 's algorithm variants 

ordering respecting the constraint; we are unaware 
of any method for finding a unique best ordering, 
other than trying all the orderings respecting the 
constraint. 

As a neutral comparison, we also ran the algo- 
ri thm with the nonterminals ordered lexicographi- 
cally. Finally, to test how bad the algorithm could 
be with a really poor choice of nonterminal ordering, 
we defined a "worst" ordering to be one with increas-  
ing numbers of distinct left corners. It should be 
noted that  with either the lexicographical or worst 
ordering, on all of our three large grammars Panll 's 
algorithm exceeded a cut-off of 5,000,000 grammar 
symbols, which we chose as being well beyond what 
might be considered a tolerable increase in the size 
of the grammar. 

Let PA refer to Paull 's algorithm with the non- 
terminals ordered according to decreasing number 
of distinct left corners. The second line of Table 3 
shows the results of running PA on our three large 
grammars. The CT grammar increases only mod- 
estly in size, because as previously noted, it has no 
indirect left recursion. Thus the combinatorial phase 
of Paull's algorithm is never invoked, and the in- 
crease is solely due to the transformation applied to 
directly left-recursive productions. With the ATIS 
grammar and P T  grammar, which do not have this 
special property, Panll 's algorithm exceeded our cut- 
off, even with our best ordering of nonterminals. 

Some additional optimizations of Panll's aglo- 
rithm are possible. One way to reduce the num- 
ber of substitutions made by the inner loop of the 
algorithm is to "left factor" the grammar (Aho et 
al., 1986, pp. 178-179). The left-factoring transfor- 
mation (LF) applies the following grammar rewrite 
schema repeatedly, until it is no longer applicable: 

LF:  For each nonterminal A, let a be the 
longest nonempty sequence such that  there 
is more than one grammar production of 
the form A --+ a~.  Replace the set of all 
productions 

A - + a f t 1 ,  . . . ,  A - + a ~ n  

with the productions 

A -+ a A ' ,  A '  --~ i l l ,  . . . ,  A '  --~ fin, 

where A' is a new nonterminal symbol. 

With left factoring, for each nonterminal A there will 
be only one A-production for each direct left corner 
of A, which will in general reduce the number of 
substitutions performed by the algorithm. 

The effect of left factoring by itself is shown in 
the third line of Table 3. Left factoring actually re- 
duces the size of all three grammars, which may be 
unintuitive, since left factoring necessarily increases 
the number of productions in the grammar. How- 
ever, the transformed productions axe shorter, and 
the grammar size as measured by total number of 
symbols can be smaller because common left factors 
are represented only once. 

The result of applying PA to the left-factored 
grammars is shown in the fourth line of Table 3 
(LF+PA).  This produces a modest decrease in the 
size of the non-left-recursive form of the CT gram- 
mar, and brings the nomleft-recursive form of the 
ATIS grammar under the cut-off size, but  the non- 
left-recursive form of the P T  grammar still exceeds 
the cut-off. 

The final optimization we have developed for 
Paull 's algorithm is to transform the grammar to 
combine all the non-left-recursive possibilities for 
each left-recursive nonterminal under a new nonter- 
minal symbol. This transformation, which we might 
call "non-left-recursion grouping" (NLRG), can be 
defined as follows: 

NLRG: For each left-recursive nontermi- 
nal A, let a l , . . . , a n  be all the expansions 
of A that  do not have a left recursive non- 
terminal as the left most symbol. If n > 1, 
replace the set of productions 

A -~ a l  , . . . ,  A --~ a,~ 

with the productions 

A ~ A  ~,A ~ a l ,  . . . , A  ~ - ~ a n ,  

where A t is a new nonterminal symbol. 

Since all the new nonterminals introduced by this 
transformation will be non-left-recursive, Paull's al- 
gorithm with our best ordering will never substitute 
the expansions of any of these new nonterminals into 
the productions for any other nonterminal, which 
in general reduces the number of substitutions the 
algorithm makes. We did not empirically measure 
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original g rammar  
LF 
L F + N L R G + P A  
LC 
LCLR 
L F ÷ L C L n  
L F + N L R G + L C L R  

CT Grammar  ATIS Grammar  P T  Grammar  
55,830 
54,991 
57,924 

762,576 
60,556 
58,893 
57,380 

16,872 
11,582 
72,035 

287,649 
40,660 
13,641 
12,243 

67,904 
37,811 

> 5,000,000 
1,567,162 
1,498,112 

67,167 
50,277 

Table 4: Gram m ar  size comparisons for LC transform variants 

the effect on g rammar  size of applying the NLRG 
transformation by itself, but it is easy to see that  
it increases the g rammar  size by exactly two sym- 
bols for each left-recursive nontermina] to which it 
is applied. Thus an addition of twice the number  of 
left-recursive nontermina]s will be an upper  bound 
on the increase in the size of the grammar,  but since 
not every left-recursive nonterminal necessarily has 
more than one non-left-recursive expansion, the in- 
crease may be less than this. 

The fifth line of Table 3 ( L F + N L R G + P A )  shows 
the result of applying LF, followed by NLRG, fol- 
lowed by PA. This produces another modest  de- 
crease in the size of the non-left-recursive form of 
the CT g rammar  and reduces the size of the non- 
left-recursive form of the ATIS grammar  by a factor 
of 27.8, compared to LF÷PA.  The non-left-recursive 
form of the P T  g rammar  remains larger than the 
cut-off size of 5,000,000 symbols, however. 

5 L e f t - R e c u r s i o n  E l i m i n a t i o n  B a s e d  
o n  t h e  L e f t - C o r n e r  T r a n s f o r m  

An alternate approach to eliminating left-recursion 
is based on the left-corner (LC) g rammar  transform 
of Rosenkrantz and Lewis (1970) as presented and 
modified by Johnson (1998). Johnson's  second form 
of the LC transform can be expressed as follows, with 
expressions of the form A-a, A - X ,  and A - B  being 
new nonterminals in the transformed grammar:  

1. If  a terminal symbol a is a proper left corner of 
A in the original grammar,  add A -4 aA-a to 
the transformed grammar.  

2. If B is a proper left corner of A and B --+ X ~  
is a production of the original grammar ,  add 
A - X  -+ ~ A - B  to the t ransformed grammar .  

3. If X is a proper left corner of A and A --+ X ~  
is a production of the original grammar ,  add 
A - X  -+ ~ to the t ransformed grammar.  

In Rosenkrantz and Lewis's original LC transform, 
schema 2 applied whenever B is a left corner of A, 
including all cases where B = A. In Johnson's  ver- 
sion schema 2 applies when B -- A only if A is a 
proper left corner of itself. Johnson then introduces 

schema 3 handle the residual cases, without intro- 
ducing instances of nonterminals of the form A - A  
that  need to be allowed to derive the empty  string. 

The original purpose of the LC transform is to 
allow simulation of left-corner parsing by top-down 
parsing, but it also eliminates left recursion from any 
noncyclic CFG. 5 Fhrthermore, in the worst case, the 
total  number  of symbols in the transformed gram- 
mar  cannot exceed a fixed multiple of the square of 
the number  of symbols in the original grammar ,  in 
contrast  to Paull 's  algorithm, which exponentiates 
the size of the g rammar  in the worst case. 

Thus, we can use Johnson's  version of the LC 
transform directly to eliminate left-recursion. Be- 
fore applying this idea, however, we have one gen- 
era] improvement to make in the transform. Johnson 
notes that  in his version of the LC transform, a new 
nontermina] of the form A - X  is useless unless X is 
a proper left corner of A. We further note that  a 
new nonterminal of the form A - X ,  as well as the 
orginal nonterminal A, is useless in the transformed 
grammar ,  unless A is either the top nonterminal of 
the g rammar  or appears  on the right-hand side of 
an original g r ammar  production in other than the 
left-most position. This can be shown by induction 
on the length of top-down derivations using the pro- 
ductions of the transformed grammar .  Therefore, 
we will call the original nonterminals meeting this 
condition "retained nontermina]s" and restrict the 
LC transform so that  productions involving nonter- 
minals of the form A - X  are created only if A is a 
retained nonterminal. 

Let LC refer to Johnson's  version of the LC trans- 
form restricted to retained nonterminals. In Table 4 
the first three lines repeat  the previously shown sizes 
for our three original grammars ,  their left-factored 
form, and their non-left-recursive form using our 
best variant of Panll 's  algorithm ( L F + N L R G + P A ) .  
The fourth line shows the results of applying LC to 
the three original grammars .  Note that  this pro- 
duces a non-left-recursive form of the P T  gram- 
mar  smaller than the cut-off size, but the non-left- 
recursive forms of the CT and ATIS grammars  are 

Sin the case of a cyclic CFG, the  schema  2 fails to  guar-  
antee  a non-lef t - recursive t r ans fo rmed  g r a m m a r .  
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considerably larger than the most compact versions 
created with Paull's algorithm. 

We can improve on this result by noting that, 
since we are interested in the LC transform only as 
a means of eliminating left-recursion, we can greatly 
reduce the size of the transformed grammars by ap- 
plying the transform only to left-recursive nonter- 
minals. More precisely, we can retain in the trans- 
formed grammar all the productions expanding non- 
left-recursive nonterminals of the original grammar, 
and for the purposes of the LC transform, we can 
treat nomleft-recursive nonterminals as if they were 
terminals: 

1. If a terminal symbol or non-left-recursive non- 
terminal X is a proper left corner of a re- 
tained left-recursive nonterminal A in the orig- 
inal grammar, add A -+ X A - X  to the trans- 
formed grammar. 

2. If B is a left-recursive proper left corner of a 
retained left-recursive nonterminal A and B --~ 
X/~ is a production of the original grammar, add 
A - X  -~ ~A-B to the transformed grammar. 

3. If X is a proper left corner of a retained left- 
recursive nonterminal A and A --~ X/~ is a pro- 
duction of the original grammar, add A - X  --~ 
to the transformed grammar. 

4. If A is a non-left-recursive nonterminal and A -~ 
/3 is a production of the original grammar, add 
A -~/~ to the transformed grammar. 

Let LCLR refer to the LC transform restricted 
by these modifications so as to apply only to left- 
recursive nonterminals. The fifth line of Table 4 
shows the results of applying LCLR to the three orig- 
inal grammars. LCLR greatly reduces the size of the 
non-left-recursive forms of the CT and ATIS gram- 
mars, but the size of the non-left-recursive form of 
the PT grammar is only slightly reduced. This is 
not surprising if we note from Table 1 that almost 
all the productions of the PT grammar are produc- 
tions for left-recursive nonterminals. However, we 
can apply the additional transformations that we 
used with Paull's algorithm, to reduce the num- 
ber of productions for left-recursive nonterminals 
before applying our modified LC transform. The 
effects of left factoring the grammar before apply- 
ing LCLR (LF+LCLR), and additionally combining 
non-left-recursive productions for left-recursive non- 
terminals between left factoring and applying LCLR 
(LF+NLRG+LCLR), are shown in the sixth and 
seventh lines of Table 4. 

With all optimizations applied, the non-left- 
recursive forms of the ATIS and PT grammars are 
smaller than the originals (although not smaller 
than the left-factored forms of these grammars), 
and the non-left-recursive form of the CT gram- 
mar is only slightly larger than the original. In all 

cases, LF+NLRG+LCLR produces more compact 
grammars than LF+NLRG+PA, the best variant of 
Paull's algorithm--slightly more compact in the case 
of the CT grammar, more compact by a factor of 5.9 
in the case of the ATIS grammar, and more compact 
by at least two orders of magnitude in the case of the 
PT grammar. 

6 C o n c l u s i o n s  

We have shown that, in its textbook form, 
the standard algorithm for eliminating left recur- 
sion from CFGs is impractical for three diverse, 
independently-motivated, natural-language gram- 
mars. We apply a number of optimizations to the 
algorithm--most notably a novel strategy for order- 
ing the nonterminals of the grammar--but one of 
the three grammars remains essentially intractable. 
We then explore an alternative approach based on 
the LC grammar transform. With several optimiza- 
tions of this approach, we are able to obtain quite 
compact non-left-recursive forms of all three gram- 
mars. Given the diverse nature of these grammars, 
we conclude that our techniques based on the LC 
transform are likely to be applicable to a wide range 
of CFGs used for natural-language processing. 

R e f e r e n c e s  

A. V. Aho, R. Sethi, and J. D. Ullman. 1986. 
Compilers: Principles, Techniques, and Tools. 
Addison-Wesley Publishing Company, Reading, 
Massachusetts. 

D. A. Da.hl et al. 1994. Expanding the scope of the 
ATIS task: the ATIS-3 corpus. In Proceedings o/ 
the Spoken Language Technology Workshop, pages 
3-8, Plainsboro, New Jersey. Advanced Research 
Projects Agency. 

S. A. Greibach. 1965. A new normal-form theorem 
for context-free phrase structure grammars. Jour- 
nal of the Association for Computing Machinery, 
12(1):42-52, January. 

J. E. Hopcroft and J. D. Ullman. 1979. Introduc- 
tion to Automata Theory, Languages, and Com- 
putation. Addison-Wesley Publishing Company, 
Reading, Massachusetts. 

M. Johnson. 1998. Finite-state approximation 
of constraint-based grammars using left-corner 
grammar transforms. In Proceedings, COLING- 
ACL '98, pages 619-623, Montreal, Quebec, 
Canada. Association for Computational Linguis- 
tics. 

M. P. Marcus, B. Santorini, and M. A. 
Marcinkiewicz. 1993. Building a large anno- 
tated corpus of English: The Penn Treebank. 
Computational Linguistics, 19(2):313-330, June. 

R. Moore, J. Dowding, H. Bratt, J. M. Gawron, 
Y. Gorfu, and A. Cheyer. 1997. Commandtalk: 

2 5 4  



A spoken-language interface for battlefield simu- 
lations. In Proceedings of the Fifth Conference on 
Applied Natural Language Processing, pages 1-7, 
Washington, DC. Association for Computational 
Linguistics. 

S. J. Rosenkrantz and P. M. Lewis. 1970. Deter- 
ministic left corner parser. In IEEE Conference 
Record of the 11th Annual Symposium on Switch- 
ing and Automata Theory, pages 139-152. 

2 5 5  


