
Trainable Methods for Surface Natural Language Generat ion

A d w a i t Ratnaparkhi
IBM T J Wat son Research Center

P.O. Box 218
Yorktown Heights, NY 10598

aratnapa@us, ibm. com

Abstract

We present three systems for surface natural lan-
guage generation that are trainable from annotated
corpora. The first two systems, called NLG1 and
NLG2, require a corpus marked only with domain-
specific semantic attributes, while the last system,
called NLG3, requires a corpus marked with both
semantic attributes and syntactic dependency infor-
mation. All systems attempt to produce a grammat-
ical natural language phrase from a domain-specific
semantic representation. NLG1 serves a baseline
system and uses phrase frequencies to generate a
whole phrase in one step, while NLG2 and NLG3
use maximum entropy probability models to indi-
vidually generate each word in the phrase. The sys-
tems NLG2 and NLG3 learn to determine both the
word choice and the word order of the phrase. We
present experiments in which we generate phrases to
describe flights in the air travel domain.

1 I n t r o d u c t i o n

This paper presents three trainable systems for sur-
face natural language generation (NLG). Surface
NLG, for our purposes, consists of generating a
grammatical natural language phrase that expresses
the meaning of an input semantic representation.
The systems take a "corpus-based" or "machine-
learning" approach to surface NLG, and learn to
generate phrases from semantic input by statisti-
cally analyzing examples of phrases and their cor-
responding semantic representations. The determi-
nation of the content in the semantic representation,
or "deep" generation, is not discussed here. Instead,
the systems assume that the input semantic repre-
sentation is fixed and only deal with how to express
it in natural language.

This paper discusses previous approaches to sur-
face NLG, and introduces three trainable systems
for surface NLG, called NLG1, NLG2, and NLG3.
Quantitative evaluation of experiments in the air
travel domain will also be discussed.

2 Previous Approaches
Templates are the easiest way to implement surface
NLG. A template for describing a flight noun
phrase in the air travel domain might be f l i g h t
departing from $city-fr at $time-dep and
arriving in $city-to at $time-arr where the
words starting with "$" are actually variables --
representing the departure city, and departure time,
the arrival city, and the arrival time, respectively--
whose values will be extracted from the environment
in which the template is used. The approach of
writing individual templates is convenient, but may
not scale to complex domains in which hundreds
or thousands of templates would be necessary, and
may have shortcomings in maintainability and text
quality (e.g., see (Reiter, 1995) for a discussion).

There are more sophisticated surface genera-
tion packages, such as FUF/SURGE (Elhadad and
Robin, 1996), KPML (Bateman, 1996), MUMBLE
(Meteer et al., 1987), and RealPro (Lavoie and Ram-
bow, 1997), which produce natural language text
from an abstract semantic representation. These
packages require linguistic sophistication in order to
write the abstract semantic representation, but they
are flexible because minor changes to the input can
accomplish major changes to the generated text.

The only trainable approaches (known to the au-
thor) to surface generation are the purely statistical
machine translation (MT) systems such as (Berger
et al., 1996) and the corpus-based generation sys-
tem described in (Langkilde and Knight, 1998). The
MT systems of (Berger et al., 1996) learn to gen-
erate text in the target language straight from the
source language, without the aid of an explicit se-
mantic representation. In contrast, (Langkilde and
Knight, 1998) uses corpus-derived statistical knowl-
edge to rank plausible hypotheses from a grammar-
based surface generation component.

3 T r a i n a b l e S u r f a c e N L G

In trainable surface NLG, the goal is to learn the
mapping from semantics to words that would other-
wise need to be specified in a grammar or knowledge
base. All systems in this paper use attribute-value

194

pairs as a semantic representation, which suffice as
a representation for a limited domain like air travel.
For example, the set of attribute-value pairs { $city-
fr = New York City, $city-to = Seattle , $time-dep
= 6 a.m., $date-dep = Wednesday } represent the
meaning of the noun phrase % flight to Seattle that
departs from New York City at 6 a.m. on Wednes-
day". The goal, more specifically, is then to learn
the optimal attribute ordering and lexical choice for
the text to be generated from the attribute-value
pairs. For example, the NLG system should auto-
matically decide if the at tr ibute ordering in "flights
to New York in the evening" is bet ter or worse than
the ordering in "flights in the evening to New York".
Furthermore, it should automatically decide if the
lexical choice in "flights departing to New York" is
better or worse than the choice in "flights leaving to
New York". The motivation for a trainable surface
generator is to solve the above two problems in a
way that reflects the observed usage of language in
a corpus, but without the manual effort needed to
construct a grammar or knowledge base.

All the trainable NLG systems in this paper as-
sume the existence of a large corpus of phrases in
which the values of interest have been replaced with
their corresponding attributes, or in other words, a
corpus of generation templates. Figure 1 shows a
sample of training data, where only words marked
with a "$" are attributes. All of the NLG systems
in this paper work in two steps as shown in Table 2.
The systems NLG1, NLG2 and NLG3 all implement
step 1; they produce a sequence of words intermixed
with attributes, i.e., a template, from the the at-
tributes alone. The values are ignored until step 2,
when they replace their corresponding attributes in
the phrase produced by step 1.

3.1 N L G I : t h e base l ine

The surface generation model NLG1 simply chooses
the most frequent template in the training data that
corresponds to a given set of attributes. Its perfor-
mance is intended to serve as a baseline result to the
more sophisticated models discussed later. Specifi-
cally, nlgl(A) returns the phrase that corresponds
to the at t r ibute set A:

nlgl(A) = { argInaXphraseeTA[empty string] C(phrase, A) TATA =

where TA are the phrases that have occurred with
A in the training data, and where C(phrase, A) is
the training data frequency of the natural language
phrase phrase and the set of attributes A. NLG1
will fail to generate anything if A is a novel combi-
nation of attributes.

3.2 N L G 2 : n - g r a m m o d e l

The surface generation system NLG2 assumes that
the best choice to express any given attribute-value

set is the word sequence with the highest probabil-
ity that mentions all of the input attr ibutes exactly
once. When generating a word, it uses local infor-
mation, captured by word n-grams, together with
certain non-local information, namely, the subset of
the original attributes that remain to be generated.
The local and non-local information is integrated
with use of features in a maximum entropy prob-
ability model, and a highly pruned search procedure
attempts to find the best scoring word sequence ac-
cording to the model.

3.2.1 P r o b a b i l i t y M o d e l
The probability model in NLG2 is a conditional dis-
tribution over V U * s t o p , , where V is the genera-
tion vocabulary and where . s t o p . is a special "stop"
symbol. The generation vocabulary V consists of all
the words seen in the training data. The form of the
maximum entropy probability model is identical to
the one used in (Berger et al., 1996; Ratnaparkhi,
1998):

k f$(wi ,wi-1 ,wi-2,at~ri)
Y I j = I Otj

p(wilwi-l, wi-2,attri) =
Z (W i - l , w i - 2 , a t t r i)
k

to t j = l

where wi ranges over V t3 . s t o p . and
{wi-l ,wi-2,attri} is the history, where wi de-
notes the ith word in the phrase, and attri denotes
the attributes that remain to be generated at posi-
tion i in the phrase. The f j , where fj(a, b) E {0, 1},
are called features and capture any information
in the history that might be useful for estimating
p(wi[wi-1, wi-2, attri). The features used in NLG2
are described in the next section, and the feature
weights a j , obtained from the Improved Iterative
Scaling algorithm (Berger et al., 1996), are set to
maximize the likelihood of the training data. The
probability of the sequence W = wl . . . wn, given
the attribute set A, (and also given that its length
is n) is:

Pr(W = wa. . .wnllen(W) = n,A) =
n

H p(wilwi_1, wi_2, attri)
i = l

3.2.2 F e a t u r e S e l e c t i o n
The feature patterns, used in NLG2 are shown in
Table 3. The actual features are created by match-
ing the patterns over the training data, e.g., an ac-
tual feature derived from the word bi-gram template
might be:

1 if wi = from

f (w i , Wi--1, Wi--2, attr~) = and wi-t = f l i g h t
and $ci ty -- fz E attri

0 otherwise

195

flights on $air from $city-fr to $city-to the $time-depint of $date-dep
Strip flights on $air from $city-fr to $city-to leaving after $time-depaft on $date-dep
flights leaving from $city-fr going to $city-to after Stime-depaft on $date-dep
flights leaving from $city-fr to $city-to the $time-depint of Sdate-dep
$air flight $fltnum from $city-fr to $city-to on $date-dep
$city-fr to $city-to $air flight Sfltnum on the $date-dep
Strip flights from $city-fr to $city-to

Input to Step 1:
Output of Step 1:

Table 1: Sample training data

{ $city-fr, $city-to, $time-dep, $date-dep }
'% flight to $city-to that departs from $city-fr at
Stime-dep on $date-dep"

Input to Step 2:

Output of Step 2:

"a flight to $city-to that departs from $city-fr at
$time-dep on $date-dep", { $city-fr = New York
City, $city-to = Seattle , $time-dep = 6 a.m.,
$date-dep = Wednesday }
'% flight to Seattle that departs from New York
City at 6 a.m. on Wednesday"

Table 2: Two steps of NLG process

Low frequency features involving word n-grams
tend to be unreliable; the NLG2 system therefore
only uses features which occur K times or more in
the training data.

3.2.3 Search Procedure
The search procedure attempts to find a word se-
quence wl . . . wn of any length n ~ M for the input
attribute set A such that

1. wn is the stop symbol , s t o p ,

2. All of the attributes in A are mentioned at least
once

3. All of the attributes in A are mentioned at most
once

and where M is an heuristically set maximum phrase
length.

The search is similar to a left-to-right breadth-
first-search, except that only a fraction of the word
sequences are considered. More specifically, the
search procedure implements the recurrence:

WN,1 = top(N, (wlw e V})

Wg,i+l = top(N, next(WN,i))

The set WN# is the top N scoring sequences of
length i, and the expression next(WN,i) returns
all sequences wl. . .Wi+l such that w l . . .w i E
WN,i, and wi+l E V U . s top . . The expression
top(N, next(WN#)) finds the top N sequences in
next(Wg,i). During the search, any sequence that
ends with , s t o p . is removed and placed in the set

of completed sequences. If N completed hypotheses
are discovered, or if WN,M is computed, the search
terminates. Any incomplete sequence which does
not satisfy condition (3) is discarded and any com-
plete sequence that does not satisfy condition (2) is
also discarded.

When the search terminates, there will be at most
N completed sequences, of possibly differing lengths.
Currently, there is no normalization for different
lengths, i.e., all sequences of length n < M are
equiprobable:

Pr(len(W) = n) = -~ n < M

= 0 n > M

NLG2 chooses the best answer to express the at-
tribute set A as follows:

nlg2(A) = argmaXwew,,g 2 Pr(len(W) = n) .

Pr (Wl l en (W) = n, A)

where Wnt~2 are the completed word sequences that
satisfy the conditions of the NLG2 search described
above.

3.3 NLG3: dependency in fo rmat ion
NLG3 addresses a shortcoming of NLG2, namely
that the previous two words are not necessarily the
best informants when predicting the next word. In-
stead, NLG3 assumes that conditioning on syntacti-
cally related words in the history will result on more
accurate surface generation. The search procedure
in NLG3 generates a syntactic dependency tree from

196

Description
No Attributes remaining
Word bi-gram with at tr ibute
Word tri-gram with attribute

Feature f (wi , Wi-1, Wi-2, attri)
1 if wi =? and attri = {}, 0 otherwise
1 if wi =? and wi-1 =? and ? E attri, 0 otherwise
1 if wi =? and wi-lwi-~ =?? and ? E attri, 0 otherwise

Table 3: Features patterns for NLG2. Any occurrence of "?" will be instantiated with an actual value from
training data.

top-to-bottom instead of a word sequence from left-
to-right, where each word is predicted in the context
of its syntactically related parent, grandparent, and
siblings. NLG3 requires a corpus that has been an-
notated with tree structure like the sample depen-
dency tree shown in Figure 1.

3.3.1 P r o b a b i l i t y M o d e l
The probability model for NLG3, shown in Figure 2,
conditions on the parent, the two closest siblings, the
direction of the child relative to the parent, and the
attributes that remain to be generated.

Just as in NLG2, p is a distribution over V t2
. s t o p , , and the Improved Iterative Scaling algo-
ri thm is used to find the feature weights a j . The
expression chi(w) denotes the ith closest child to
the headword w, par(w) denotes the parent of the
headword w, dir E { l e f t , r i g h t } denotes the direc-
tion of the child relative to the parent, and attrw,i
denotes the attributes that remain to be generated
in the tree when headword w is predicting its i th
child. For example, in Figure 1, if w ="flights",
then Chl(W) ="evening" when generating the left
children, and chl(w) ="from" when generating the
right children. As shown in Figure 3, the proba-
bility of a dependency tree that expresses an at-
tr ibute set A can be found by computing, for each
word in the tree, the probability of generating its
left children and then its right children. 1 In this
formulation, the left children are generated inde-
pendently from the right children. As in NLG2,
NLG3 assumes the uniform distribution for the
length probabilities P r (# of left children = n) and
P r (# of right children = n) up to a certain maxi-
mum length M ' = 10.

3.3.2 F e a t u r e Se l ec t i on

The feature patterns for NLG3 are shown in Ta-
ble 4. As before, the actual features are created by
matching the patterns over the training data. The
features in NLG3 have access to syntactic informa-
tion whereas the features in NLG2 do not. Low fre-
quency features involving word n - g r a m s tend to be
unreliable; the NLG3 system therefore only uses fea-
tures which occur K times or more in the training
data. Furthermore, if a feature derived from Table 4
looks at a particular word chi(w) and attr ibute a,
we only allow it if a has occurred as a descendent of

1We use a d u m m y ROOT node to generate the top most
head word of the phrase

chi(w) in some dependency tree in the training set.
As an example, this condition allows features that
look at chi(w) ="to" and $city-toE attrw,i but dis-
allows features that look at ch~(w) ="to" and $city-
frE attrw,i.

3.4 S e a r c h P r o c e d u r e

The idea behind the search procedure for NLG3 is
similar to the search procedure for NLG2, namely, to
explore only a fraction of the possible trees by con-
tinually sorting and advancing only the top N trees
at any given point. However, the dependency trees
are not built left-to-right like the word sequences in
NLG2; instead they are built from the current head
(which is initially the root node) in the following
order:

1. Predict the next left child (call it xt)

2. If it is * s to p , , jump to (4)

3. Recursively predict children of xt. Resume from
(1)

4. Predict the next right child (call it Xr)

5. If it is *stop*, we are done predicting children
for the current head

6. Recursively predict children ofxr . Resume from
(4)

As before, any incomplete trees that have generated
a particular at tr ibute twice, as well as completed
trees that have not generated a necessary at tr ibute
are discarded by the search. The search terminates
when either N complete trees or N trees of the max-
imum length M are discovered. NLG3 chooses the
best answer to express the at tr ibute set A as follows:

nlga(A) = argmax Pr(TIA)
TET.Iga

where Tntga are the completed dependency trees that
satisfy the conditions of the NLG3 search described
above.

4 E x p e r i m e n t s

The training and test sets used to evaluate NLG1,
NLG2 and NLG3 were derived semi-automatically
from a pre-existing annotated corpus of user queries
in the air travel domain. The annotation scheme
used a total of 26 attributes to represent flights.

197

flights

e v e n ~ +)
I I

Chicago(+) afternoon(+)
I

the(-)

Figure 1': Sample dependency tree for the phrase evening flights from Chicago in the afternoon. - and +
signs indicate left or right child, respectively.

I-Ik YJ (ch i [t °) ' t o ' ch i - - l (~) ' ch i - -2 (~) 'Pa~(~) 'd t r ' a t t~o , i)

p(chiCw)[w, chi- 1 (w), chi-2 (w), par (w), dir, attr~,i) - ~"Jffi' ~ J
- - Z (w , c h i _ 1 (w) , c h i - 2 (w) ,par (w) ,d i~ ,a t t r t u , i)

Z(w, ehi_l(w),chi_2(w),par(w),dir, attrw,4) = ~v,, l-[j=lk OL~/J(w"w'chi-l(*Z)'chl-2(w)'par(tv)'dir'att*'~'i)
Figure 2: NLG3: Equations for the probability of the ith child of head word w, or chi(w)

Pr(TIA)

Prl¢lt(wlA)

Prri~ht(w[A)

= YI~eTPrl~ft(wlA)Prr~ght(wl A)

---- P r (# of left children = n) YL=ln p(chi(w)lw,chi-l(w),chi-2(w),par(w),dir = left,attr~,i)

= Pr (~ of right children = n) rI~=l p(chi(w)lw, chi-1 (w), chi-2 (w),par(w), dir = right, attrw,~)

Figure 3: NLG3: Equations for the probability of a dependency tree T

Description
Siblings

Parent + sibling

Parent + grandparent

Feature f (chi(w), w, ch~_ 1 (w), chi_2 (w), par (w), dir, attrw,i) = . . .
1 if chi(w) =? and ch i - l (w) =? and chi-2(w) =? and dir =? and
? E attrw,i, 0 otherwise
1 if chi(w) =? and chi_t(w) =? and w =? and dir =? and ? E
attrw,i, 0 otherwise
1 i fchi(w) =? and w =? and par(w) =? and dir =? and ? • attrw,i,
0 otherwise

Table 4: Features patterns for NLG3. Any occurrence of "?" will be instantiated with an actual value from
training data.

System Parameters

NLG1
NLG2 N=IO,M=30,K=3
NLG3 N=5,M=30,K=IO

% Correct % OK % Bad % No output % error reduction
from NLGI

84.9 4.9 7.2 3.0 -
88.2 4.7 6.4 0.7 22
89.9 4.4 5.5 0.2 33

Table 5: Weighted evaluation of trainable surface generation systems by judge A

System Parameters % Correct % OK % Bad % No output % error reduction
from NLG1

NLG1 81.6 8.4 7.0 3.0 -
NLG2 N=IO,M=30,K=3 86.3 5.8 7.2 0.7 26
NLG3 N=5,M=30,K=10 88.4 4.0 7.4 0.2 37

Table 6: Weighted evaluation of trainable surface generation systems by judge B

198

System

NLG1
NLG2
NLG3

Parameters % Correct % OK % Bad % No output % error reduction
from NLG1

48.4 6.8 24.2 20.5
N=IO,M=30,K=3 64.7 12.1 22.6 0.5 32
N=5,M=30,K=IO 63.1 11.6 23.7 1.6 29

Table 7: Unweighted evaluation of trainable surface generation systems by judge A

System Parameters

NLG1
NLG2 N=IO,M=30,K=3
NLG3 N=5,M=30,K=IO

% Correct % OK % Bad % No output % error reduction
from NLG1

41.1 8.9 29.5 20.5
62.1 13.7 23.7 0.5 36
65.3 11.1 22.1 1.6 41

Table 8: Unweighted evaluation of trainable surface generation systems by judge B

The training set consisted of 6000 templates describ-
ing flights while the test set consisted of 1946 tem-
plates describing flights. All systems used the same
training set, and were tested on the attribute sets
extracted from the phrases in the test set. For ex-
ample, if the test set contains the template "flights
to $city-to leaving at Stime-dep", the surface gener-
ation systems will be told to generate a phrase for
the attribute set { $city-to, Stime-dep }. The out-
put of NLG3 on the attribute set { $city-to, $city-fr,
$time-dep } is shown in Table 9.

There does not appear to be an objective auto-
matic evaluation method 2 for generated text that
correlates with how an actual person might judge
the output. Therefore, two judges - - the author
and a colleague - - manually evaluated the output of
all three systems. Each judge assigned each phrase
from each of the three systems one of the following
rankings:

Correct : Perfectly acceptable

OK: Tense or agreement is wrong, but word choice
is correct. (These errors could be corrected by
post-processing with a morphological analyzer.)

Bad: Words are missing or extraneous words are
present

No Outpu t : The system failed to produce any out-
put

While there were a total 1946 attribute sets from
the test examples, the judges only needed to evalu-
ate the 190 unique attribute sets, e.g., the attribute
set { $city-fr $city-to } occurs 741 times in the test
data. Subjective evaluation of generation output is

2Measur ing word overlap or edit d i s tance between the sys-
t e m ' s o u t p u t and a "reference" set would be an au toma t i c
scor ing m e t h o d . We believe t ha t such a m e t h o d does not
accura te ly m e a s u r e the correc tness or g r a m m a t i c a l i t y of the
text .

not ideal, but is arguably superior than an auto-
matic evaluation that fails to correlate with human
linguistic judgement.

The results of the manual evaluation, as well as
the values of the search and feature selection param-
eters for all systems, are shown in Tables 5, 6, 7, and
8. (The values for N, M, and K were determined by
manually evaluating the output of the 4 or 5 most
common attribute sets in the training data). The
weighted results in Tables 5 and 6 account for mul-
tiple occurrences of attribute sets, whereas the un-
weighted results in Tables 7 and 8 count each unique
attribute set once, i.e., { $city-fr $city-to } is counted
741 times in the weighted results but once in the un-
weighted results. Using the weighted results, which
represent testing conditions more realistically than
the unweighted results, both judges found an im-
provement from NLG1 to NLG2, and from NLG2
to NLG3. NLG3 cuts the error rate from NLG1 by
at least 33% (counting anything without a rank of
Correct as wrong). NLG2 cuts the error rate by
at least 22% and underperforms NLG3, but requires
far less annotation in its training data. NLG1 has no
chance of generating anything for 3% of the data - -
it fails completely on novel attribute sets. Using the
unweighted results, both judges found an improve-
ment from NLG1 to NLG2, but, surprisingly, judge
A found a slight decrease while judge B found an
increase in accuracy from NLG2 to NLG3. The un-
weighted results show that the baseline NLG1 does
well on the common attribute sets, since it correctly
generates only less than 50% of the unweighted cases
but over 80% of the weighted cases.

5 D i s c u s s i o n

The NLG2 and NLG3 systems automatically at-
tempt to generalize from the knowledge inherent in
the training corpus of templates, so that they can
generate templates for novel attribute sets. There

199

Probability Generated Text
0.107582
0.00822441
0.00564712
0.00343372
0.0012465

$time-dep flights from $city-fr to $city-to
$time-dep flights between $city-fr and $city-to
Stime-dep flights $city-fr to $city-to
flights from $city-fr to $city-to at Stime-dep
Stime-dep flights from $city-fr to to $city-to

Table 9: Sample output from NLG3. (Dependency tree structures are not shown.) Typical values for
attributes: $time-dep -- "10 a.m.", $city-fr = "New York", $city-to = "Miami"

is some additional cost associated with producing
the syntactic dependency annotation necessary for
NLG3, but virtually no additional cost is associated
with NLG2, beyond collecting the data itself and
identifying the attributes.

The trainable surface NLG systems in this pa-
per differ from grammar-based systems in how they
determine the attribute ordering and lexical choice.
NLG2 and NLG3 automatically determine attribute
ordering by simultaneously searching multiple or-
derings. In grammar-based approaches, such pref-
erences need to be manually encoded. NLG2 and
NLG3 solve the lexical choice problem by learning
the words (via features in the maximum entropy
probability model) that correlate with a given at-
tribute and local context, whereas (Elhadad et al.,
1997) uses a rule-based approach to decide the word
choice.

While trainable approaches avoid the expense of
crafting a grammar to determine attribute order-
ing and lexicai choice, they are less accurate than
grammar-based approaches. For short phrases, ac-
curacy is typically 100% with grammar-based ap-
proaches since the grammar writer can either cor-
rect or add a rule to generate the phrase of interest
once an error is detected. Whereas with NLG2 and
NLG3, one can tune the feature patterns, search pa-
rameters, and training data itself, but there is no
guarantee that the tuning will result in 100% gener-
ation accuracy.

Our approach differs from the corpus-based
surface generation approaches of (Langkilde and
Knight, 1998) and (Berger et al., 1996). (Langkilde
and Knight, 1998) maps from semantics to words
with a concept ontology, grammar, and lexicon, and
ranks the resulting word lattice with corpus-based
statistics, whereas NLG2 and NLG3 automatically
learn the mapping from semantics to words from a
corpus. (Berger et ai., 1996) describes a statistical
machine translation approach that generates text in
the target language directly from the source text.
NLG2 and NLG3 are also statistical learning ap-
proaches but generate from an actual semantic rep-
resentation. This comparison suggests that statis-
tical MT systems could also generate text from an
"interlingua", in a way similar to that of knowledge-

based translation systems.
We suspect that our statistical generation ap-

proach should perform accurately in domains of sim-
ilar complexity to air travel. In the air travel do-
main, the length of a phrase fragment to describe
an attribute is usually only a few words. Domains
which require complex and lengthy phrase fragments
to describe a single attribute will be more challeng-
ing to model with features that only look at word
n-grams for n E {2, 3). Domains in which there
is greater ambiguity in word choice will require a
more thorough search, i.e., a larger value of N, at
the expense of CPU time and memory. Most im-
portantly, the semantic annotation scheme for air
travel has the property that it is both rich enough
to accurately represent meaning in the domain, but
simple enough to yield useful corpus statistics. Our
approach may not scale to domains, such as freely
occurring newspaper text, in which the semantic an-
notation schemes do not have this property.

Our current approach has the limitation that it
ignores the values of attributes, even though they
might strongly influence the word order and word
choice. This limitation can be overcome by using
features on values, so that NLG2 and NLG3 might
discover - - to use a hypothetical example - - that
"flights leaving $city-fr" is preferred over "flights
from $city-fr" when $city-fr is a particular value,
such as "Miami".

6 Conclusions

This paper presents the first systems (known to the
author) that use a statistical learning approach to
produce natural language text directly from a se-
mantic representation. Information to solve the
attribute ordering and lexical choice problems--
which would normally be specified in a large hand-
written graxnmar-- is automatically collected from
data with a few feature patterns, and is combined
via the maximum entropy framework. NLG2 shows
that using just local n-gram information can out-
perform the baseline, and NLG3 shows that using
syntactic information can further improve genera-
tion accuracy. We conjecture that NLG2 and NLG3
should work in other domains which have a com-
plexity similar to air travel, as well as available an-

200

notated data.

7 A c k n o w l e d g e m e n t s

The author thanks Scott McCarley for serving as the
second judge, and Scott Axelrod, Kishore Papineni,
and Todd Ward for their helpful comments on this
work. This work was supported in part by DARPA
Contract # MDA972-97-C-0012.

R e f e r e n c e s

John Bateman. 1996. Kpml development envi-
ronment - multilingual linguistic resource devel-
opment and sentence generation. Technical re-
port, German Centre for Information Technol-
ogy (GMD), Institute for Integrated Information
and Publication Systems (IPSI), Darmstadt, Ger-
many.

Adam Berger, Stephen A. Della Pietra, and Vin-
cent J. Della Pietra. 1996. A Maximum Entropy
Approach to Natural Language Processing. Com-
putational Linguistics, 22(1):39-71.

Michael Elhadad and Jacques Robin. 1996. An
overview of surge: a reusable comprehensive syn-
tactic realization component. Technical Report
96-03, Ben Gurion University, Beer Sheva, Israel.

Michael Elhadad, Kathleen McKeown, and Jacques
Robin. 1997. Floating constraints in lexical
choice. Computational Linguistics, pages 195-
239.

Irene Langkilde and Kevin Knight. 1998. Genera-
tion that exploits corpus-based statistical knowl-
edge. In Proceedings of the 36th Annual Meeting
of the Association for Computational Linguistics
and 17th International Conference on Computa-
tional Linguistics, University of Montreal, Mon-
treal, Quebec, Canada.

Benoit Lavoie and Owen Rambow. 1997. A fast
and portable realizer for text generation systems.
In Proceedings of the Fifth Conference on Ap-
plied Natural Language Processing, pages 265-268,
Washington D.C., March 31-April 3.

M. W. Meteer, D. D. McDonald, S.D. Anderson,
D. Forster, L.S. Gay, A.K. Huettner, and P. Si-
bun. 1987. Mumble-86: Design and implementa-
tion. Technical Report Technical Report COINS
87-87, University of Massachusetts at Amherst.

Adwait Ratnaparkhi. 1998. Maximum Entropy
Models for Natural Language Ambiguity Resolu-
tion. Ph.D. thesis, University of Pennsylvania.

Ehud Reiter. 1995. Nlg vs. Templates. In Proceed-
ings of the 5th European Workshop on Natural
Language Generation, Leiden, The Netherlands.

201

