
Detecting Errors within a Corpus using Anomaly Detection 

E l e a z a r  E s k i n  
Depar tment  of Computer  Science 

Columbia University 
eeskin@cs.columbia.edu 

A b s t r a c t  

We present a method for automatically detect- 
ing errors in a manually marked corpus us- 
ing anomaly detection. Anomaly detection is 
a method for determining which elements of a 
large data set do not conform to the whole. 
This method fits a probability distribution over 
the data and applies a statistical test to detect 
anomalous elements. In the corpus error detec- 
tion problem, anomalous elements are typically 
marking errors. We present the results of ap- 
plying this method to the tagged portion of the 
Penn Treebank corpus. 

1 I n t r o d u c t i o n  

Manually marking corpora is a time consuming 
and expensive process. The process is subject to 
human error by the experts doing the marking. 
Unfortunately, many natural language process- 
ing methods are sensitive to these errors. In 
order to ensure accuracy in a corpus, typically 
several experts pass over the corpus to ensure 
consistency. For large corpora this can be a 
tremendous expense. 

In this paper, we propose a method for au- 
tomatically detecting errors in a marked cor- 
pus using an anomaly detection technique. This 
technique detects anomalies or elements which 
do not fit in with the rest of the corpus. When 
applied to marked corpora, the anomalies tend 
to be errors in the markings of the corpus. 

To detect the anomalies, we first compute a 
probability distribution over the entire corpus. 
Then we apply a statistical test which identi- 
fies which elements are anomalies. In this case 
the anomalies are the elements with very low 
likelihood. These elements are marked as errors 
and are thrown out of the corpus. The model is 
recomputed on the remaining elements. At con- 
clusion, we are left with two data sets: one the 

normal elements and the second the detected 
anomalous elements. 

We evaluate this method over the part of 
speech tagged portion of the Penn Treebank cor- 
pus (Marcus et al., 1993). In one experiment, 
our method detected 1000 anomalies within a 
data set of 1.25 million tagged elements. Human 
judges evaluated the results of the application 
of this method and verified that 69% of iden- 
tified anomalies are in fact tagging errors. In 
another experiment, our method detected 4000 
anomalies of which 44% are tagging errors. 

1.1 R e l a t e d  W o r k  

The tagged portion of the Penn Treebank 
has been extensively utilized for construction 
and evaluation of taggers. This includes 
transformation-based tagging (Brill, 1994; Brill 
and Wu, 1998). Weischedel et al. (1993) applied 
Markov Models to tagging. Abney et al. (1999) 
applied boosting to part of speech tagging. Ad- 
wait Ratnaparkhi (1996) estimates a probabil- 
ity distribution for tagging using a maximum 
entropy approach. 

Regarding error detection in corpora, Rat- 
naparkhi (1996) discusses inconsistencies in 
the Penn Treebank and relates them to inter- 
annotator differences in tagging style. Abney, 
Schapire and Singer (1999) discuss how to use 
boosting for cleaning data. 

Much related work to the anomaly detection 
problem stems from the field of statistics in 
the study of outliers. This work examines de- 
tecting and dealing with outliers in univariate 
data, multivariate data, and structured data 
where the probability distribution over the data 
is given a priori. Statistics gives a set of discor- 
dancy tests which can be applied to any given 
element in the dataset to determine whether it 
is an outlier. A survey of outliers in statistics is 
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given in Barnett  and Lewis (1994). 
Anomaly detection is extensively used within 

the field of computer security specifically in in- 
trusion detection (Denning, 1987). Typically 
anomaly detection methods are applied to de- 
tect attacks by comparing the activity during an 
attack to the activity under normal use (Lane 
and Brodley, 1997; Warrender et al., 1999). The 
method used in this paper is based on a method 
for anomaly detection which detects anomalies 
in noisy data (Eskin, 2000). 

The sparse Markov transducer probability 
modeling method is an extension of adaptive 
mixtures of probabilistic transducers (Singer, 
1997; Pereira and Singer, 1999). Naive Bayes 
learning, which is used to estimate probabilities 
in this paper, is described in (Mitchell, 1997). 

2 A n o m a l y  D e t e c t i o n  

More formally, anomaly detection is the process 
of determining when an element of data is an 
outlier. Given a set of training data without a 
probability distribution, we want to construct 
an automatic method for detecting anomalies. 
We are interested in detecting anomalies for two 
main reasons. One, we are interested in model- 
ing the data and the anomalies can contaminate 
the model. And two, the anomalies themselves 
can be of interest as they may show rarely oc- 
curring events. For the purposes of this work, 
we axe most interested in identifying mistagged 
elements, i.e. the second case. 

In order to motivate a method for detect- 
ing anomalies, we must first make assumptions 
about how the anomalies occur in the data. We 
use a "mixture model" for explaining the pres- 
ence of anomalies, one of several popular models 
in statistics for explaining outliers (Barnett and 
Lewis, 1994). In the mixture model, there are 
two probability distributions which generate the 
data. An element xi is either generated from the 
majority distribution or with (small) probabil- 
ity A from an alternate (anomalous) distribu- 
tion. Our distribution for the data, D, is then: 

D -- (1 - A)M + AA (I) 

where M is the majority distribution, and A 
is the anomalous distribution. The mixture 
framework for explaining anomalies is indepen- 
dent of the properties of the distributions M 
and A. In other words, no assumptions about 
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the nature of the probability distributions are 
necessary. The specific probability distribu- 
tions, M and A, are chosen based on prior 
knowledge of the problem. Typically M is a 
structured distribution which is estimated over 
the data using a machine learning technique, 
while A is a uniform (random) distribution rep- 
resenting elements which do not fit into M. 

In the corpus error detection problem, we are 
assuming that  for each tag in the corpus with 
probability (1 - A) the human annotator markes 
the corpus with the correct tag and with prob- 
ability A the human annotator makes an error. 
In the case of an error, we assume that the tag 
is chosen at random. 

2.1 D e t e c t i o n  o f  A n o m a l i e s  

Detecting anomalies, in this framework, is 
equivalent to determining which elements were 
generated by the distribution A and which ele- 
ments were generated by distribution M. Ele- 
ments generated by A are anomalies, while ele- 
ments generated by M are not. In our case, we 
have probability distributions associated with 
the distributions M and A, PM and PA respec- 
tively. 

The algorithm partitions the data into two 
sets, the normal elements M and the anomalies 
A. For each element, we make a determination 
of whether it is an anomaly and should be in- 
cluded in A or a majority element in which it 
should be included in M. We measure the like- 
lihood of the distribution under both cases to 
make this determination. 

The likelihood, L, of distribution D with 
probability function P over elements Xl,...,XN 
is defined as follows: 

N 

L(D) = l 'I  PD(Xi) = (2) 
i-----1 

Since the product  of small numbers is difficult 
to compute, we instead compute the log likeli- 
hood, LL. The log likelihood for our case is: 

LL(D) = IMI log(1 - A) + ~[] log(PM(xi)) 
x iEM 

+lAIlogA + ~ log(PA(xj)) (3) 
xj EA 



In order to determine which elements are 
anomalies, we use a general principal for deter- 
mining outliers in multivariate data (Barnett, 
1979). We measure how likely each element xi is 
an outlier by comparing the difference between 
the log likelihood of the distribution if the ele- 
ment is removed from the majority distribution 
and included in the anomalous distribution. If 
this difference is sufficiently large, we declare 
the element an anomaly. 

Specifically what  this difference should be de- 
pends on the probability distributions and prior 
knowledge of the problem such as the rate of the 
anomalies, A. 

3 M e t h o d o l o g y  

3.1 Corpus 
The corpus we use is the Penn Treebank tagged 
corpus. The corpus contains approximately 1.25 
million manually tagged words from Wall Street 
Journal articles. For each word, a record is gen- 
erated containing the following elements: 

1. The tag of the current word Ti. 

2. The current word Wi. 

3. The previous tag ~ - I .  

4. The next tag 7~+1. 

Over records containing these 4 elements, we 
compute our probability distributions. 

3.2 Probability Modeling M e t h o d s  

The anomaly detection framework is indepen- 
dent of specific probability distributions. Dif- 
ferent probability distributions have different 
properties. Since the anomaly detection frame- 
work does not depend on a specific probability 
distribution, we can choose the probability dis- 
tribution to best model the data  based on our 
intuitions about the problem. 

To illustrate this, we perform two sets of ex- 
periments, each using a different probability dis- 
tribution modeling method. The first set of 
experiments uses sparse Markov transducers as 
the probability modeling method,  while the sec- 
ond uses a simple naive Bayes method. 

3.3 Sparse Markov Transducers 
Sparse Markov transducers compute probabilis- 
tic mappings over sparse data. A Markov trans- 
ducer is defined to be a probability distribution 

conditional on a finite set of inputs. A Markov 
transducer of order L is the conditional proba- 
bility distribution of the form: 

P(Yt[XtXt_lXt_2Xt_3...Xt_(L_l) ) (4) 

where Xk are random variables over the in- 
put  alphabet Ei,~ and Yk is a random variable 
over the output  alphabet Eout. This probability 
distribution stochastically defines a mapping of 
strings over the input  alphabet into the output  
alphabet. The mapping is conditional on the L 
previous input symbols. 

In the case of sparse data, the probability 
distribution is conditioned on only some of the 
inputs. We use sparse Markov transducers to 
model these type of distributions. A sparse 
Markov transducer is a conditional probability 
of the form: 

(5) 

where ¢ represents a wild card symbol and 
ti = t -  ~ = l n J -  ( i -  1). The goal of the 
sparse Markov transducer estimation algorithm 
is to estimate a conditional probability of this 
form based upon a set of inputs and their cor- 
responding outputs.  However, the task is com- 
plicated due to the lack of knowledge a priori 
of which inputs the probability distribution is 
conditional on. 

Intuitively, a fixed order Markov Chain of or- 
der L is equivalent to a n-gram wi th  n = L. 
In a variable order Markov Chain, the value of 
n changes depending on the context. For ex- 
ample, some elements in the data  may use a 
bigram, while others may use a trigram. The 
sparse Markov transducer uses a weighted sum 
of n-grams for different values of n and these 
weights depend on the context. In addition the 
weighted sum is over not only n-grams, but  also 
n-grams with wild cards such as a trigram where 
only the first and last element is conditioned on. 

In this case we are 'looking at the input se- 
quence of the current word, Wt, the previous 
tag, Tt-1, and the next tag, Tt+l. The out- 
put  is the set of all possible tags. The models 
that  are in the weighted sum are the trigram, 
WtTt-lTt+l; the bigrams WtTt-1, WtTt+l and 
Tt-lTt+l; and the unigrams Wt, Tt-1 and Tt+l. 
The specific weights of each model depends on 
the context or the actual values of Wt, Tt-1, and 
Tt+l. 
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Sparse Markov transducers depend on a set of 
prior probabilities that incorporate prior knowl- 
edge about the importance of various elements 
in the input sequence. These prior probabilities 
are set based on the problem. For this problem, 
we use the priors to encode the information that 
the current word, Wt, is very important in de- 
termining the part of speech. 

Each model in the weighted sum uses a 
pseudo-count predictor. This predictor com- 
putes the probability of an output (tag) by the 
number of times that a specific output was seen 
in a given context. In order to avoid probabil- 
ities of 0, we assume that we have seen each 
output at least once in every context. In fact, 
these predictors can be any probability distri- 
bution which can also depend on what works 
best for the task. 

3.4 Na ive  Bayes  

The probability distribution for the tags was 
also estimated using a straight forward naive 
Bayes approach. 

We are interested in the probability of a tag, 
given the current word, the previous tag, and 
the next tag, or the probability distribution 
P(TiIWi,  T i - t ,  ~+1) which using Bayes Rule is 
equivalent to: 

P(Ti}Wi,  T i - l ,  Ti+ l ) = 

P(Wi, Ti-I, Ti+zlTi) * P(Ti)  
P(Wi ,  T i - , ,T i+I )  (6) 

If we make the Naive Bayes independence as- 
sumption and we assume that the denominator 
is constant for all values this reduces to: 

P(~IW~, ~ -1 ,  Ti+,) = 
P(WiIT~) * P(T~-IIT~) * P(Ti+zlTi) * P(Ti) (7) 

C 

where C is a normalization constant in order to 
have the probabilities sum to 1. Each of the val- 
ues on the right side of the equation can easily 
be computed over the data estimating a proba- 
bility distribution. 

3.5 C o m p u t i n g  Probability 
Distributions 

Each probability distribution was trained over 
each record giving a model over the entire data. 
The probability model is then used to deter- 
mine whether or not an element is an anomaly 

by applying the test in equation (3). Typi- 
cally this can be done in an efficient manner 
because the approach does not require reesti- 
mating the model over the entire data set. If an 
element is designated as an anomaly, we remove 
it from the set of normal elements andefficiently 
reestimate the probability distribution to obtain 
more anomalous elements. 

4 Results /Evaluat ion 

The method was applied to the Penn Tree- 
bank corpus and a set of anomalies were gen- 
erated. These anomalies were evaluated by hu- 
man judges to determine if they are in fact tag- 
ging errors in the corpus. The human judges 
were natural language processing researchers 
(not the author) familiar with the Penn Tree- 
bank markings. 

In the experiments involving the sparse 
Markov transducers, after applying the method, 
7055 anomalies were detected. In the ex- 
periments involving the naive Bayes learning 
method, 6213 anomalies were detected. 

Sample output from the system is shown in 
figure 1. The error is shown in the context 
marked with !!!. The likelihood of the tag is 
also given which is extremely low for the errors. 
The system also outputs a suggested tag and 
its likelihood which is the tag with the highest 
likelihood for that context. As we can see, these 
errors are clearly annotation errors. 

Since the anomalies detected from the two 
probability modeling methods differed only 
slightly, we performed human judge verification 
of the errors over only the results of the sparse 
Markov transducer experiments. 

The anomalies were ordered based on their 
likelihood. Using this ranking, the set of anoma- 
lies were broken up into sets of 1000 records. We 
examined the first 4000 elements by randomly 
selecting 100 elements out of each 1000. 

Human judges were presented with the sys- 
tem output for four sets of 100 anomalies. The 
judges were asked to choose among three op- 
tions for each example: 

1. Corpus Error -  The tag in the corpus sen- 
tence is incorrect. 

2. Unsure - The judge is unsure whether or 
not the corpus tag is correct. 
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Error 0.000035: I ts /PRP$ fast-food/NN restaurants/NNS - / :  including/VBG 
Denny/NNP ' s /eOS ,/, H a r d e e / N i e  's/POS ,/, Quincy/NNP 's/POS and/CC 
E1/NNP Pollo/NNP Loco/NNP (/( "/" !!!the/NN!!! only/JJ  significant/JJ fast-food/NN 
chain/NN to/TO specialize/VB in/IN char-broiled/JJ chicken/NN "/" )/) - / :  are/VBP 
stable/JJ ,/, recession-resistant/JJ and/CC growing/VBG ./. 
Suggested Tag: DT (0.998262) 

Error 0.019231: Not/RB even/RB Jack/NNP Lemmon/NNP 's/POS 
doddering/JJ !!!makes/NNS!!! this/DT trip/NN worth/NN taking/VBG ./. 
Suggested Tag: VBZ (0.724359) 

expert /JJ  

Error 0.014286: I t / P R P  also/RB underscores/VBZ the /DT difficult/JJ task/NN 
ahead/RB as/IN !!!Coors/NNS!!! attempts/VBZ to/TO purchase/VB Stroh/NNP Brew- 
ery/NNP Co./NNP and/CC fight/VB off/RP increasingly/RB tough/JJ  competition/NN 
from/IN Anheuser-Busch/NNP Cos/NNP ./. 
Suggested Tag: NNP (0.414286) 

Figure 1: Sample output of anomalies in Penn Treebank corpus. The errors are marked with !!!. 

3. System Error - The tag in the corpus sen- 
tence is correct and the system incorrectly 
marked it as an error. 

The "unsure" choice was allowed because of the 
inherent subtleties in differentiating between 
types of tags such as "VB vs. VBP" or "VBD 
vs. VBN". 

Over the 400 examples evaluated, 158 were 
corpus errors, 202 were system errors and the 
judges were unsure in 40 of the cases. The cor- 
pus error rate was computed by throwing out 
the unsure cases and computing: 

Corpus error rate = (8) 
Corpus Errors 

System Errors + Corpus Errors 

The total corpus error rate over the 400 manu- 
ally checked examples was was 44%. As can be 
seen, many of the anomalies are in fact errors 
in the corpus. 

For each error, we asked the human judge to 
determine if the correct tag is the systems sug- 
gested tag. Out of the total 158 corpus errors, 
the systems correct tag would have corrected 
the error in 145 cases. 

Since the verified examples were random, we 
can assume that 91% of corpus errors would be 
automatically corrected if the system would re- 
place the suspect tag with the suggested tag. Ig- 
noring the "unsure" elements for the purposes 

of this analysis, if we attempted to automati- 
cally correct the first 1000 examples where the 
error rate was 69%, this method would have led 
to a reduction of the total number of errors in 
the corpus by 245. 

5 C o n c l u s i o n  

This paper presents a fully automatic method 
for detecting errors in corpora using anomaly 
detection techniques. As shown, the anomalies 
detected in the Penn Treebank corpus tend to 
be tagging errors. 

This method has some inherent limitations 
because not all errors in the corpus would mani- 
fest themselves as anomalies. In infrequent con- 
texts or ambiguous situations, the method may 
not have enough information to detect an error. 
In addition, if there are inconsistencies between 
annotators, the method would not detect the 
errors because the errors would be manifested 
over a significant portion of the corpus. 

Although this paper presents a fully au- 
tomatic method for error detection in cor- 
pora, this method can also be used as a semi- 
automatic method for correcting errors. The 
method can guide an annotator to the elements 
which are most likely errors. The method can 
greatly reduce the number of elements that an 
annotator needs to examine. 

Future work in this area involves modeling 
the corpora with other probability distributions. 
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Anoma~ Rank Corpus Errors System Error Unsure Corpus Error Rate 
1-1000 63 28 9 69% 

1001-2000 36 54 i0 40% 
2001-3000 18 70 12 20% 
3001-4000 41 50 9 45% 

Totals  158 202 40 44% 

Table 1: Results of error detection experiments on the tagged portion of the Penn Treebank 

The method is very sensitive to the effective- 
ness of the probability model in modeling the 
normal elements. Extensions to the probabil- 
ity distributions presented here such as adding 
information about endings of words or using 
more features could increase the accuracy of the 
probability distribution and the overall perfor- 
mance of the anomaly detection system. Other 
future work involves applying this method to 
other marked corpora. 
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