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A b s t r a c t  

The performance of machine learning algorithms can 
be improved by combining the output  of different 
systems. In this paper we apply this idea to the 
recognition of noun phrases. We generate different 
classifiers by using different representations of the 
data. By combining the results with voting tech- 
niques described in (Van Halteren et al., 1998) we 
manage to improve the best reported performances 
on standard data  sets for base noun phrases and ar- 
bitrary noun phrases. 

1 I n t r o d u c t i o n  

(Van Halteren et al., 1998) and (Brill and Wu, 1998) 
describe a series of successful experiments for im- 
proving the performance of part-of-speech taggers. 
Their results have been obtained by combining the 
output  of different taggers with system combination 
techniques such as majority voting. This approach 
cancels errors that  are made by the minority of the 
taggers. With the best voting technique, the com- 
bined results decrease the lowest error rate of the 
component taggers by as much as 19% (Van Hal- 
teren et al., 1998). The fact that  combination of 
classifiers leads to improved performance has been 
reported in a large body of machine learning work. 

We would like to know what improvement combi- 
nation techniques would cause in noun phrase recog- 
nition. For this purpose, we apply a single memory- 
based learning technique to data  that  has been rep- 
resented in different ways. We compare various com- 
bination techniques on a part  of the Penn Treebank 
and use the best method on standard data  sets for 
base noun phrase recognition and arbitrary noun 
phrase recognition. 

2 M e t h o d s  and e x p e r i m e n t s  

In this section we start  with a description of our task: 
recognizing noun phrases. After this we introduce 
the different data  representations we use and our 
machine learning algorithms. We conclude with an 
outline of techniques for combining classifier results. 

2.1 Task description 
Noun phrase recognition can be divided in two tasks: 
recognizing base noun phrases and recognizing arbi- 
t rary  noun phrases. Base noun phrases (baseNPs) 
are noun phrases which do not contain another noun 
phrase. For example, the sentence 

In [ early trading ] in [ Hong Kong ] 
[ Monday ] , [ gold ] was quoted at 
[ $ 366.50 ] [ an ounce ] . 

contains six baseNPs (marked as phrases between 
square brackets). The  phrase $ 366.50 an o u n c e  

is a noun phrase as well. However, it is not a 
baseNP since it contains two other noun phrases. 
Two baseNP data  sets have been put  forward by 
(Ramshaw and Marcus, 1995). The main data  set 
consist of four sections (15-18) of the Wall Street 
Journal (WSJ) part  of the Penn Treebank (Marcus 
et al., 1993) as training material and one section 
(20) as test material 1. The baseNPs in this  data are 
slightly different from the ones that  can be derived 
from the Treebank, most notably in the attachment 
of genitive markers. 

The recognition task involving arbitrary noun 
phrases at tempts to find both baseNPs and noun 
phrases that  contain other noun phrases. A stan- 
dard data  set for this task was put forward at the 
CoNLL-99 workshop. It consist on the same parts 
of the Penn Treebank as the main baseNP data set: 
WSJ sections 15-18 as training data  and section 20 
as test data  2. The noun phrases in this data set 
are the same as in the Treebank and therefore the 
baseNPs in this data  set are slightly different from 
the ones in the (Ramshaw and Marcus, 1995) data  
sets. 

In both tasks, performance is measured with three 
scores. First, with the percentage of detected noun 
phrases that  are correct (precision). Second, with 
the percentage of noun phrases in the data  that  
were found by the classifier (recall). And third, 

1This (Ramshaw and Marcus, 1995) baseNP data set is 
available via ftp://ftp.cis.upenn.edu/pub/chunker/ 

2Software for generating the data is available from 
http://lcg-www.uia.ac.be/conl199/npb/ 
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with the FZ=I rate which is equal to (2*preci- 
sion*recall)/(precision+recall). The latter rate has 
been used as the target for optimization. 

2.2 D a t a  r e p r e s e n t a t i o n  

In our example sentence in section 2.1, noun phrases 
are represented by bracket structures. Both (Mufioz 
et al., 1999) and (Tjong Kim Sang and Veenstra, 
1999) have shown how classifiers can process bracket 
structures. One classifier can be trained to recog- 
nize open brackets (O) while another will process 
close brackets (C). Their results can be converted to 
baseNPs by making pairs of open and close brackets 
with large probability scores (Mufioz et al., 1999) or 
by regarding only the shortest phrases between open 
and close brackets as baseNPs (Tjong Kim Sang and 
Veenstra, 1999). We have used the bracket repre- 
sentation (O+C) in combination with the second 
baseNP construction method. 

An alternative representation for baseNPs has 
been put forward by (Ramshaw and Marcus, 1995). 
They have defined baseNP recognition as a tagging 
task: words can be inside a baseNP (1) or outside of 
baseNPs (O). In the case that one baseNP immedi- 
ately follows another baseNP, the first word in the 
second baseNP receives tag B. Example: 

Ino earlyi tradingr ino Hongl Kongz 
MondayB ,o goldz waso quotedo a to  $r 
366.50z anB ounce/ -o 

This set of three tags is sufficient for encoding 
baseNP structures since these structures are non- 
recursive and nonoverlapping. 

(Tjong Kim Sang and Veenstra, 1999) have pre- 
sented three variants of this tagging representation. 
First, the B tag can be used for the first word of 
every noun phrase (IOB2 representation). Second, 
instead of the B tag an E tag can be used to mark the 
last word of a baseNP immediately before another 
baseNP (IOE1). And third, the E tag can be used 
for every noun phrase final word (IOE2). They have 
used the (Ramshaw and Marcus, 1995) representa- 
tion as well (IOB1). We will use these four tagging 
representations as well as the O+C representation. 

2.3 M a c h i n e  l e a r n i n g  a l g o r i t h m s  

We have used the memory-based learning algorithm 
IBI-IG which is part of TiMBL package (Daelemans 
et al., 1999b). In memory-based learning the train- 
ing data is stored and a new item is classified by the 
most frequent classification among training items 
which are closest to this new item. Data items are 
represented as sets of feature-value pairs. In IBI-IG 
each feature receives a weight which is based on the 
amount of information which it provides for com- 
puting the classification of the items in the training 
data. These feature weights are used for computing 

the distance between a pair of data  items (Daele- 
mans et al., 1999b). ml-IG has been used success- 
fully on a large variety of natural language process- 
ing tasks. 

Beside IBI - IG,  we have used IGTREE in the combi- 
nation experiments. IGTREE is a decision tree vari- 
ant of II31-IG (Daelemans et al., 1999b). It uses the 
same feature weight method as IBI-IG. Data items 
are stored in a tree with the most important features 
close to the root node. A new item is classified by 
traveling down from the root node until a leaf node 
is reached or no branch is available for the current 
feature value. The most frequent classification of the 
current node will be chosen. 

2.4 C o m b i n a t i o n  t e c h n i q u e s  

Our experiments will result in different classifica- 
tions of the data  and we need to find out how to 
combine these. For this purpose we have evaluated 
different voting mechanisms, effectively the voting 
methods as described in (Van Halteren et al., 1998). 
All combination methods assign some weight to the 
results of the individual classifier. For each input to- 
ken, they pick the classification score with the high- 
est total score. For example, if five classifiers have 
weights 0.9, 0.4, 0.8, 0.6 and 0.6 respectively and 
they classify some token as npstart ,  null, npstart,  
null and null, then the combination method will pick 
npstart  since it has a higher total score (1.7) than 
null (1.6). The values of the weights are usually es- 
t imated by processing a part  of the training data, 
the tuning data, which has been kept separate as 
training data  for the combination process. 

In the first voting method, each of the five classi- 
tiers receives the same weight (majority). The sec- 
ond method regards as the weight of each individual 
classification algorithm its accuracy on the tuning 
data  (TotPrecision). The third voting method com- 
putes the precision of each assigned tag per classifier 
and uses this value as a weight for the classifier in 
those cases that  it chooses the tag (TagPrecision). 
The fourth method uses the tag precision weights 
as well but it subtracts from them the recall val- 
ues of the competing classifier results. Finally, the 
fifth method uses not only a weight for the current 
classification but it also computes weights for other 
possible classifications. The other classifications are 
determined by examining the tuning data  and reg- 
istering the correct values for every pair of classifier 
results (pair-wise voting). 

Apart from these five voting methods we have also 
processed the output  streams with two classifiers: 
IBI-IG (memory-based) and IGTREE (decision tree). 
This approach is called classifier stacking. Like (Van 
Halteren et al., 1998), we have used different input 
versions: one containing only the classifier output 
and another containing both classifier output and 
a compressed representation of the classifier input. 
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train 
All correct 
Majority correct 
Minority correct 
All wrong 

0 C 
96.21% 96.66% 

1.98% 1.64% 
0.88% 0.75% 
0.93% 0.95% 

Table 1: Token classification agreement between the 
five classifiers applied to the baseNP training data 
after conversion to the open bracket (O) and the 
close bracket representation (C). 

For the latter purpose we have used the part-of- 
speech tag of the current word. 

3 R e s u l t s  
Our first goal was to find out whether system combi- 
nation could improve performance of baseNP recog- 
nition and, if this was the fact, to select the best 
combination technique. For this purpose we per- 
formed a 10-fold cross validation experiment on the 
baseNP training data, sections 15-18 of the WSJ 
part  of the Penn Treebank (211727 tokens). Like 
the data  used by (Ramshaw and Marcus, 1995), 
this data  was retagged by the Brill tagger in or- 
der to obtain realistic part-of-speech (POS) tags 3. 
The data  was segmented into baseNP parts and non- 
baseNP parts in a similar fashion as the data  used 
by (Ramshaw and Marcus, 1995). 

The data  was converted to the five data  represen- 
tations (IOB1, IOB2, IOE1, IOE2 and O+C) and 
IBI-IG was used to classify it by using 10-fold cross 
validation. This means that  the data  was divided 
in ten consecutive parts of about the same size af- 
ter which each part  was used as test data with the 
other nine parts as training data. The standard pa- 
rameters of IBI-IG have been used except for k, the 
number of examined nearest neighbors, which was 
set to three. Each word in the data  was represented 
by itself and its POS tag and additionally a left and 
right context of four word-POS tag pairs. For the 
first four representations, we have used a second pro- 
cessing stage as well. In this stage, a word was repre- 
sented by itself, its POS tag, a left and right context 
of three word-POS tag pairs and a left and right 
context of two classification results of the first pro- 
cessing stage (see figure 1). The second processing 
stage improved the FZ=I scores with almost 0.7 on 
average. 

The classifications of the IOB1, IOB2, IOE1 and 
IOE2 representations were converted to the open 
bracket (O) and close bracket (C) representations. 

aNo perfect  P enn  Treebank  P OS  tags  will be available for 
novel texts .  If we would have used the  Treebank  POS  tags  
for NP recognit ion,  our  pe r fo rmance  ra tes  would have been 
unreal is t ical ly  high.  

train 
Representation 
IOB1 
IOB2 
IOE1 
IOE2 
O+C 

Simple Voting 
Majority 
TotPrecision 
TagPrecision 
Precision-Recall 

0 

98.01% 
97.8O% 
97.97% 
97.89% 
97.92% 

98.19% 
98.19% 
98.19% 
98.19% 

C 

98.14% 
98.08% 
98.04% 
98.08% 
98.13% 

98.30% 
98.30% 
98.30% 
98.30% 

Pairwise Voting 
TagPair 98.19% 98.30% 
M e m o r y - B a s e d  
Tags 98.19% 98.34% 
Tags + POS 98.19% 98.35% 
Decision Trees 
Tags 98.17% 98.34% 
Tags + POS 98.17% 98.34% 

Table 2: Open and close bracket accuracies for the 
baseNP training data  (211727 tokens). Each com- 
bination performs significantly bet ter  than any of 
the five individual classifiers listed under Represen- 
tation. The performance differences between the 
combination methods are not significant. 

After this conversion step we had five O results and 
five C results. In the bracket representations, to- 
kens can be classified as either being the first token 
of an NP (or the last in the C representation) or not. 
The results obtained with these representations have 
been measured with accuracy rates: the percentage 
of tokens that  were classified correctly. Only about 
one in four tokens are at a baseNP boundary so 
guessing that  a text  does not contains baseNPs will 
already give us an accuracy of 75%. Therefore the 
accuracy rates obtained with these representations 
are high and the room for improvement is small (see 
table 1). However, because of the different treatment 
of neighboring chunks, the five classifiers disagree in 
about 2.5% of the classifications. It seems useful to 
use combination methods for finding the best classi- 
fication for those ambiguous cases. 

The five O results and the five C results were pro- 
cessed by the combination techniques described in 
section 2.4. The accuracies per input token for the 
combinations can be found in table 2. For both 
data  representations, all combinations perform sig- 
nificantly bet ter  than the best individual classifier 
(p<0.001 according to a X 2 test) 4. Unlike in (Van 

4We have pe r fo rmed  significance c o m p u t a t i o n s  on the  
bracket  accuracy  ra tes  because  we have been unable  to find 
a sa t i s fac tory  m e t h o d  for c o m p u t i n g  significance scores for 
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trading/NN in/IN Hong/NNP Kong/NNP Monday/NNP ,/, gold/NN was/VBD quoted/VBN 
in/IN Hong/NNP/I Kong/NNP/I Monday/NNP ,/ , /O gold/NN/I was/VBD 

Figure 1: Example of the classifier input features used for classifying Monday in the example sentence. The 
first processing stage (top) contains a word and POS context of four left and four right while the second 
processing stage (bottom) contains a word and POS context of three and a chunk tag context of two. 

section 20 
Majority voting 
(Mufioz et al., 1999) 
(Tjong Kim Sang and Veenstra~ 1999) 
(Ramshaw and Marcus, 1995) 
(Argarnon et al., 1998) 

accuracy precision 
O:98.10% C:98.29% 93.63% 

O:98.1% C:98.2% 93.1% 
97.58% 92.50% 
97.37% 91.80% 

91.6% 

recall FZ=I 
92.89% 93.26 
92.4% 92.8 

92.25% 92.37 
92.27% 92.03 
91.6% 91.6 

section 00 accuracy precision 
Majority voting 0:98.59% C:98.65% 95.04% 

r (Tjong Kim Sang and Veenstra, 1999) 98.04% 93.71% 
(Ramshaw and Marcus, 1995) 97.8% 93.1% 

recall FB=I 
94.75% 94.90 
93.90% 93.81 
93.5% 93.3 

Table 3: The results of majority voting of different data representations applied to the two standard data 
sets put forward by (Ramshaw and Marcus, 1995) compared with earlier work. The accuracy scores indicate 
how often a word was classified correctly with the representation used (O, C or IOB1). The training data 
for WSJ section 20 contained 211727 tokens while section 00 was processed with 950028 tokens of training 
data. Majority voting outperforms all earlier reported results for the two data sets. 

Halteren et al., 1998), the best voting technique did 
not outperform the best stacked classifier. Further- 
more the performance differences between the com- 
bination methods are not significant (p>0.05). To 
our surprise the five voting techniques performed the 
same. We assume that this has happened because 
the accuracies of the individual classifiers do not dif- 
fer much and because the classification involves a 
binary choice. 

Since there is no significant difference between the 
combination methods, we can use any of them in the 
remaining experiments. We have chosen to use ma- 
jority voting because it does not require tuning data. 
We have applied it to the two data sets mentioned 
in (Ramshaw and Marcus, 1995). The first data set 
uses WSJ sections 15-18 as training data (211727 
tokens) and section 20 as test data (47377 tokens). 
The second one uses sections 02-21 of the same cor- 
pus as training data (950028 tokens) and section 00 
as test data (46451 tokens). All data sets were pro- 
cessed in the same way as described earlier. The 
results of these experiments can be found in table 3. 
With section 20 as test set, we managed to reduce 
the error of the best result known to us with 6% with 
the error rate dropping from 7.2% to 6.74%, and for 
section 00 this difference was almost 18% with the 

FB= 1 rates.  

error rate dropping from 6.19% to 5.10% (see table 
3). 

We have also applied majority voting to the NP 
data set put forward on the CoNLL-99 workshop. 
In this task the goal is to recognize all NPs. We 
have approached this as repeated baseNP recogni- 
tion. A first stage detects the baseNPs. The recog- 
nized NPs are replaced by their presumed head word 
with a special POS tag and the result is send to a 
second stage which recognizes NPs with one level of 
embedding. The output of this stage is sent to a 
third stage and this stage finds NPs with two levels 
of embedding and so on. 

In the first processing stage we have used the five 
data representations with majority voting. This ap- 
proach did not work as well for other stages. The 
O+C representation outperformed the other four 
representations by a large margin for the valida- 
tion data 5. This caused the combined output of 
all five representations being worse than the O+C 
result. Therefore we have only used the O+C repre- 
sentation for recognizing nombaseNPs. The overall 
system reached an F~=I score of 83.79 and this is 
slightly better than the best rate reported at the 

5The  val idat ion d a t a  is the  tes t  set  we have used for esti- 
m a t i n g  the  best  p a r a m e t e r s  for the  CoNLL exper iment :  WSJ  
section 21. 
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CoNLL-99 workshop (82.98 (CoNLL-99, 1999), an 
error reduction of 5%). 

4 R e l a t e d  w o r k  

(Abney, 1991) has proposed to approach parsing by 
starting with finding correlated chunks of words. 
The chunks can be combined to trees by a sec- 
ond processing stage, the attacher. (Ramshaw 
and Marcus, 1995) have build a chunker by apply- 
ing transformation-based learning to sections of the 
Penn Treebank. Rather than working with bracket 
structures, they have represented the chunking task 
as a tagging problem. POS-like tags were used to 
account for the fact that words were inside or out- 
side chunks. They have applied their method to two 
segments of the Penn Treebank and these are still 
being used as benchmark data sets. 

Several groups have continued working with the 
Ramshaw and Marcus data sets for base noun 
phrases. (Argamon et al., 1998) use Memory-Based 
Sequence Learning for recognizing both NP chunks 
and VP chunks. This method records POS tag se- 
quences which contain chunk boundaries and uses 
these sequences to classify the test data. Its per- 
formance is somewhat worse than that of Ramshaw 
and Marcus (F~=1=91.6 vs. 92.0) but it is the best 
result obtained without using lexical information 6. 
(Cardie and Pierce, 1998) store POS tag sequences 
that make up complete chunks and use these se- 
quences as rules for classifying unseen data. This 
approach performs worse than the method of Arga- 
mon et al. (F~=1=90.9). 

Three papers mention having used the memory- 
based learning method IBI-IG. (Veenstra, 1998) in- 
troduced cascaded chunking, a two-stage process in 
which the first stage classifications are used to im- 
prove the performance in a second processing stage. 
This approach reaches the same performance level 
as Argamon et al. but it requires lexical informa- 
tion. (Daelemans et al., 1999a) report a good per- 
formance for baseNP recognition but they use a dif- 
ferent data set and do not mention precision and 
recall rates. (Tjong Kim Sang and Veenstra, 1999) 
compare different data representations for this task. 
Their baseNP results are slightly better than those 
of Ramshaw and Marcus (F~=1=92.37). 

(XTAG, 1998) describes a baseNP chunker built 
from training data by a technique called supertag- 
ging. The performance of the chunker was an 
improvement of the Ramshaw and Marcus results 
(Fz=I =92.4). (Mufioz et al., 1999) use SNOW, a net- 
work of linear units, for recognizing baseNP phrases 

6We have applied majority voting of five data represen- 
tations to the Ramshaw and Marcus data set without using 
lexical information and the results were: accuracy O: 97.60%, 
accuracy C: 98.10%, precision: 92.19%, recall: 91.53% and 
F~=I: 91.86. 

and SV phrases. They compare two data representa- 
tions and report that a representation with bracket 
structures outperforms the IOB tagging representa- 
tion introduced by (Ramshaw and Marcus, 1995). 
SNoW reaches the best performance on this task 
(Fz=I =92.8). 

There has been less work on identifying general 
noun phrases than on recognizing baseNPs. (Os- 
borne, 1999) extended a definite clause grammar 
with rules induced by a learner that was based upon 
the maximum description length principle. He pro- 
cessed other parts of the Penn Treebank than we 
with an F~=I rate of about 60. Our earlier effort 
to process the CoNLL data set was performed in 
the same way as described in this paper but with- 
out using the combination method for baseNPs. We 
obtained an F~=I rate of 82.98 (CoNLL-99, 1999). 

5 C o n c l u d i n g  r e m a r k s  

We have put forward a method for recognizing noun 
phrases by combining the results of a memory-based 
classifier applied to different representations of the 
data. We have examined different combination tech- 
niques and each of them performed significantly bet- 
ter than the best individual classifier. We have cho- 
sen to work with majority voting because it does 
not require tuning data and thus enables the indi- 
vidual classifiers to use all the training data. This 
approach was applied to three standard data sets 
for base noun phrase recognition and arbitrary noun 
phrase recognition. For all data sets majority voting 
improved the best result for that data set known to 
US. 

Varying data representations is not the only way 
for generating different classifiers for combination 
purposes. We have also tried dividing the training 
data in partitions (bagging) and working with artifi- 
cial training data generated by a crossover-like oper- 
ator borrowed from genetic algorithm theory. With 
our memory-based classifier applied to this data, we 
have been unable to generate a combination which 
improved the performance of its best member. An- 
other approach would be to use different classifica- 
tion algorithms and combine the results. We are 
working on this but we are still to overcome the prac- 
tical problems which prevent us from obtaining ac- 
ceptable results with the other learning algorithms. 
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