
Noun Phrase Recognition by System Combination

E r i k F . T j o n g K i m S a n g
Center for D u t c h Language and S p e e c h

U n i v e r s i t y of A n t w e r p
er i k t@uia , ua. ac. be

A b s t r a c t

The performance of machine learning algorithms can
be improved by combining the output of different
systems. In this paper we apply this idea to the
recognition of noun phrases. We generate different
classifiers by using different representations of the
data. By combining the results with voting tech-
niques described in (Van Halteren et al., 1998) we
manage to improve the best reported performances
on standard data sets for base noun phrases and ar-
bitrary noun phrases.

1 I n t r o d u c t i o n

(Van Halteren et al., 1998) and (Brill and Wu, 1998)
describe a series of successful experiments for im-
proving the performance of part-of-speech taggers.
Their results have been obtained by combining the
output of different taggers with system combination
techniques such as majority voting. This approach
cancels errors that are made by the minority of the
taggers. With the best voting technique, the com-
bined results decrease the lowest error rate of the
component taggers by as much as 19% (Van Hal-
teren et al., 1998). The fact that combination of
classifiers leads to improved performance has been
reported in a large body of machine learning work.

We would like to know what improvement combi-
nation techniques would cause in noun phrase recog-
nition. For this purpose, we apply a single memory-
based learning technique to data that has been rep-
resented in different ways. We compare various com-
bination techniques on a part of the Penn Treebank
and use the best method on standard data sets for
base noun phrase recognition and arbitrary noun
phrase recognition.

2 M e t h o d s and e x p e r i m e n t s

In this section we start with a description of our task:
recognizing noun phrases. After this we introduce
the different data representations we use and our
machine learning algorithms. We conclude with an
outline of techniques for combining classifier results.

2.1 Task description
Noun phrase recognition can be divided in two tasks:
recognizing base noun phrases and recognizing arbi-
t rary noun phrases. Base noun phrases (baseNPs)
are noun phrases which do not contain another noun
phrase. For example, the sentence

In [early trading] in [Hong Kong]
[Monday] , [gold] was quoted at
[$ 366.50] [an ounce] .

contains six baseNPs (marked as phrases between
square brackets). The phrase $ 366.50 an o u n c e

is a noun phrase as well. However, it is not a
baseNP since it contains two other noun phrases.
Two baseNP data sets have been put forward by
(Ramshaw and Marcus, 1995). The main data set
consist of four sections (15-18) of the Wall Street
Journal (WSJ) part of the Penn Treebank (Marcus
et al., 1993) as training material and one section
(20) as test material 1. The baseNPs in this data are
slightly different from the ones that can be derived
from the Treebank, most notably in the attachment
of genitive markers.

The recognition task involving arbitrary noun
phrases at tempts to find both baseNPs and noun
phrases that contain other noun phrases. A stan-
dard data set for this task was put forward at the
CoNLL-99 workshop. It consist on the same parts
of the Penn Treebank as the main baseNP data set:
WSJ sections 15-18 as training data and section 20
as test data 2. The noun phrases in this data set
are the same as in the Treebank and therefore the
baseNPs in this data set are slightly different from
the ones in the (Ramshaw and Marcus, 1995) data
sets.

In both tasks, performance is measured with three
scores. First, with the percentage of detected noun
phrases that are correct (precision). Second, with
the percentage of noun phrases in the data that
were found by the classifier (recall). And third,

1This (Ramshaw and Marcus, 1995) baseNP data set is
available via ftp://ftp.cis.upenn.edu/pub/chunker/

2Software for generating the data is available from
http://lcg-www.uia.ac.be/conl199/npb/

50

with the FZ=I rate which is equal to (2*preci-
sion*recall)/(precision+recall). The latter rate has
been used as the target for optimization.

2.2 D a t a r e p r e s e n t a t i o n

In our example sentence in section 2.1, noun phrases
are represented by bracket structures. Both (Mufioz
et al., 1999) and (Tjong Kim Sang and Veenstra,
1999) have shown how classifiers can process bracket
structures. One classifier can be trained to recog-
nize open brackets (O) while another will process
close brackets (C). Their results can be converted to
baseNPs by making pairs of open and close brackets
with large probability scores (Mufioz et al., 1999) or
by regarding only the shortest phrases between open
and close brackets as baseNPs (Tjong Kim Sang and
Veenstra, 1999). We have used the bracket repre-
sentation (O+C) in combination with the second
baseNP construction method.

An alternative representation for baseNPs has
been put forward by (Ramshaw and Marcus, 1995).
They have defined baseNP recognition as a tagging
task: words can be inside a baseNP (1) or outside of
baseNPs (O). In the case that one baseNP immedi-
ately follows another baseNP, the first word in the
second baseNP receives tag B. Example:

Ino earlyi tradingr ino Hongl Kongz
MondayB ,o goldz waso quotedo a to $r
366.50z anB ounce/ -o

This set of three tags is sufficient for encoding
baseNP structures since these structures are non-
recursive and nonoverlapping.

(Tjong Kim Sang and Veenstra, 1999) have pre-
sented three variants of this tagging representation.
First, the B tag can be used for the first word of
every noun phrase (IOB2 representation). Second,
instead of the B tag an E tag can be used to mark the
last word of a baseNP immediately before another
baseNP (IOE1). And third, the E tag can be used
for every noun phrase final word (IOE2). They have
used the (Ramshaw and Marcus, 1995) representa-
tion as well (IOB1). We will use these four tagging
representations as well as the O+C representation.

2.3 M a c h i n e l e a r n i n g a l g o r i t h m s

We have used the memory-based learning algorithm
IBI-IG which is part of TiMBL package (Daelemans
et al., 1999b). In memory-based learning the train-
ing data is stored and a new item is classified by the
most frequent classification among training items
which are closest to this new item. Data items are
represented as sets of feature-value pairs. In IBI-IG
each feature receives a weight which is based on the
amount of information which it provides for com-
puting the classification of the items in the training
data. These feature weights are used for computing

the distance between a pair of data items (Daele-
mans et al., 1999b). ml-IG has been used success-
fully on a large variety of natural language process-
ing tasks.

Beside IBI - IG, we have used IGTREE in the combi-
nation experiments. IGTREE is a decision tree vari-
ant of II31-IG (Daelemans et al., 1999b). It uses the
same feature weight method as IBI-IG. Data items
are stored in a tree with the most important features
close to the root node. A new item is classified by
traveling down from the root node until a leaf node
is reached or no branch is available for the current
feature value. The most frequent classification of the
current node will be chosen.

2.4 C o m b i n a t i o n t e c h n i q u e s

Our experiments will result in different classifica-
tions of the data and we need to find out how to
combine these. For this purpose we have evaluated
different voting mechanisms, effectively the voting
methods as described in (Van Halteren et al., 1998).
All combination methods assign some weight to the
results of the individual classifier. For each input to-
ken, they pick the classification score with the high-
est total score. For example, if five classifiers have
weights 0.9, 0.4, 0.8, 0.6 and 0.6 respectively and
they classify some token as npstart , null, npstart,
null and null, then the combination method will pick
npstart since it has a higher total score (1.7) than
null (1.6). The values of the weights are usually es-
t imated by processing a part of the training data,
the tuning data, which has been kept separate as
training data for the combination process.

In the first voting method, each of the five classi-
tiers receives the same weight (majority). The sec-
ond method regards as the weight of each individual
classification algorithm its accuracy on the tuning
data (TotPrecision). The third voting method com-
putes the precision of each assigned tag per classifier
and uses this value as a weight for the classifier in
those cases that it chooses the tag (TagPrecision).
The fourth method uses the tag precision weights
as well but it subtracts from them the recall val-
ues of the competing classifier results. Finally, the
fifth method uses not only a weight for the current
classification but it also computes weights for other
possible classifications. The other classifications are
determined by examining the tuning data and reg-
istering the correct values for every pair of classifier
results (pair-wise voting).

Apart from these five voting methods we have also
processed the output streams with two classifiers:
IBI-IG (memory-based) and IGTREE (decision tree).
This approach is called classifier stacking. Like (Van
Halteren et al., 1998), we have used different input
versions: one containing only the classifier output
and another containing both classifier output and
a compressed representation of the classifier input.

5 1

train
All correct
Majority correct
Minority correct
All wrong

0 C
96.21% 96.66%

1.98% 1.64%
0.88% 0.75%
0.93% 0.95%

Table 1: Token classification agreement between the
five classifiers applied to the baseNP training data
after conversion to the open bracket (O) and the
close bracket representation (C).

For the latter purpose we have used the part-of-
speech tag of the current word.

3 R e s u l t s
Our first goal was to find out whether system combi-
nation could improve performance of baseNP recog-
nition and, if this was the fact, to select the best
combination technique. For this purpose we per-
formed a 10-fold cross validation experiment on the
baseNP training data, sections 15-18 of the WSJ
part of the Penn Treebank (211727 tokens). Like
the data used by (Ramshaw and Marcus, 1995),
this data was retagged by the Brill tagger in or-
der to obtain realistic part-of-speech (POS) tags 3.
The data was segmented into baseNP parts and non-
baseNP parts in a similar fashion as the data used
by (Ramshaw and Marcus, 1995).

The data was converted to the five data represen-
tations (IOB1, IOB2, IOE1, IOE2 and O+C) and
IBI-IG was used to classify it by using 10-fold cross
validation. This means that the data was divided
in ten consecutive parts of about the same size af-
ter which each part was used as test data with the
other nine parts as training data. The standard pa-
rameters of IBI-IG have been used except for k, the
number of examined nearest neighbors, which was
set to three. Each word in the data was represented
by itself and its POS tag and additionally a left and
right context of four word-POS tag pairs. For the
first four representations, we have used a second pro-
cessing stage as well. In this stage, a word was repre-
sented by itself, its POS tag, a left and right context
of three word-POS tag pairs and a left and right
context of two classification results of the first pro-
cessing stage (see figure 1). The second processing
stage improved the FZ=I scores with almost 0.7 on
average.

The classifications of the IOB1, IOB2, IOE1 and
IOE2 representations were converted to the open
bracket (O) and close bracket (C) representations.

aNo perfect P enn Treebank P OS tags will be available for
novel texts . If we would have used the Treebank POS tags
for NP recognit ion, our pe r fo rmance ra tes would have been
unreal is t ical ly high.

train
Representation
IOB1
IOB2
IOE1
IOE2
O+C

Simple Voting
Majority
TotPrecision
TagPrecision
Precision-Recall

0

98.01%
97.8O%
97.97%
97.89%
97.92%

98.19%
98.19%
98.19%
98.19%

C

98.14%
98.08%
98.04%
98.08%
98.13%

98.30%
98.30%
98.30%
98.30%

Pairwise Voting
TagPair 98.19% 98.30%
M e m o r y - B a s e d
Tags 98.19% 98.34%
Tags + POS 98.19% 98.35%
Decision Trees
Tags 98.17% 98.34%
Tags + POS 98.17% 98.34%

Table 2: Open and close bracket accuracies for the
baseNP training data (211727 tokens). Each com-
bination performs significantly bet ter than any of
the five individual classifiers listed under Represen-
tation. The performance differences between the
combination methods are not significant.

After this conversion step we had five O results and
five C results. In the bracket representations, to-
kens can be classified as either being the first token
of an NP (or the last in the C representation) or not.
The results obtained with these representations have
been measured with accuracy rates: the percentage
of tokens that were classified correctly. Only about
one in four tokens are at a baseNP boundary so
guessing that a text does not contains baseNPs will
already give us an accuracy of 75%. Therefore the
accuracy rates obtained with these representations
are high and the room for improvement is small (see
table 1). However, because of the different treatment
of neighboring chunks, the five classifiers disagree in
about 2.5% of the classifications. It seems useful to
use combination methods for finding the best classi-
fication for those ambiguous cases.

The five O results and the five C results were pro-
cessed by the combination techniques described in
section 2.4. The accuracies per input token for the
combinations can be found in table 2. For both
data representations, all combinations perform sig-
nificantly bet ter than the best individual classifier
(p<0.001 according to a X 2 test) 4. Unlike in (Van

4We have pe r fo rmed significance c o m p u t a t i o n s on the
bracket accuracy ra tes because we have been unable to find
a sa t i s fac tory m e t h o d for c o m p u t i n g significance scores for

52

trading/NN in/IN Hong/NNP Kong/NNP Monday/NNP ,/, gold/NN was/VBD quoted/VBN
in/IN Hong/NNP/I Kong/NNP/I Monday/NNP ,/ , /O gold/NN/I was/VBD

Figure 1: Example of the classifier input features used for classifying Monday in the example sentence. The
first processing stage (top) contains a word and POS context of four left and four right while the second
processing stage (bottom) contains a word and POS context of three and a chunk tag context of two.

section 20
Majority voting
(Mufioz et al., 1999)
(Tjong Kim Sang and Veenstra~ 1999)
(Ramshaw and Marcus, 1995)
(Argarnon et al., 1998)

accuracy precision
O:98.10% C:98.29% 93.63%

O:98.1% C:98.2% 93.1%
97.58% 92.50%
97.37% 91.80%

91.6%

recall FZ=I
92.89% 93.26
92.4% 92.8

92.25% 92.37
92.27% 92.03
91.6% 91.6

section 00 accuracy precision
Majority voting 0:98.59% C:98.65% 95.04%

r (Tjong Kim Sang and Veenstra, 1999) 98.04% 93.71%
(Ramshaw and Marcus, 1995) 97.8% 93.1%

recall FB=I
94.75% 94.90
93.90% 93.81
93.5% 93.3

Table 3: The results of majority voting of different data representations applied to the two standard data
sets put forward by (Ramshaw and Marcus, 1995) compared with earlier work. The accuracy scores indicate
how often a word was classified correctly with the representation used (O, C or IOB1). The training data
for WSJ section 20 contained 211727 tokens while section 00 was processed with 950028 tokens of training
data. Majority voting outperforms all earlier reported results for the two data sets.

Halteren et al., 1998), the best voting technique did
not outperform the best stacked classifier. Further-
more the performance differences between the com-
bination methods are not significant (p>0.05). To
our surprise the five voting techniques performed the
same. We assume that this has happened because
the accuracies of the individual classifiers do not dif-
fer much and because the classification involves a
binary choice.

Since there is no significant difference between the
combination methods, we can use any of them in the
remaining experiments. We have chosen to use ma-
jority voting because it does not require tuning data.
We have applied it to the two data sets mentioned
in (Ramshaw and Marcus, 1995). The first data set
uses WSJ sections 15-18 as training data (211727
tokens) and section 20 as test data (47377 tokens).
The second one uses sections 02-21 of the same cor-
pus as training data (950028 tokens) and section 00
as test data (46451 tokens). All data sets were pro-
cessed in the same way as described earlier. The
results of these experiments can be found in table 3.
With section 20 as test set, we managed to reduce
the error of the best result known to us with 6% with
the error rate dropping from 7.2% to 6.74%, and for
section 00 this difference was almost 18% with the

FB= 1 rates.

error rate dropping from 6.19% to 5.10% (see table
3).

We have also applied majority voting to the NP
data set put forward on the CoNLL-99 workshop.
In this task the goal is to recognize all NPs. We
have approached this as repeated baseNP recogni-
tion. A first stage detects the baseNPs. The recog-
nized NPs are replaced by their presumed head word
with a special POS tag and the result is send to a
second stage which recognizes NPs with one level of
embedding. The output of this stage is sent to a
third stage and this stage finds NPs with two levels
of embedding and so on.

In the first processing stage we have used the five
data representations with majority voting. This ap-
proach did not work as well for other stages. The
O+C representation outperformed the other four
representations by a large margin for the valida-
tion data 5. This caused the combined output of
all five representations being worse than the O+C
result. Therefore we have only used the O+C repre-
sentation for recognizing nombaseNPs. The overall
system reached an F~=I score of 83.79 and this is
slightly better than the best rate reported at the

5The val idat ion d a t a is the tes t set we have used for esti-
m a t i n g the best p a r a m e t e r s for the CoNLL exper iment : WSJ
section 21.

53

CoNLL-99 workshop (82.98 (CoNLL-99, 1999), an
error reduction of 5%).

4 R e l a t e d w o r k

(Abney, 1991) has proposed to approach parsing by
starting with finding correlated chunks of words.
The chunks can be combined to trees by a sec-
ond processing stage, the attacher. (Ramshaw
and Marcus, 1995) have build a chunker by apply-
ing transformation-based learning to sections of the
Penn Treebank. Rather than working with bracket
structures, they have represented the chunking task
as a tagging problem. POS-like tags were used to
account for the fact that words were inside or out-
side chunks. They have applied their method to two
segments of the Penn Treebank and these are still
being used as benchmark data sets.

Several groups have continued working with the
Ramshaw and Marcus data sets for base noun
phrases. (Argamon et al., 1998) use Memory-Based
Sequence Learning for recognizing both NP chunks
and VP chunks. This method records POS tag se-
quences which contain chunk boundaries and uses
these sequences to classify the test data. Its per-
formance is somewhat worse than that of Ramshaw
and Marcus (F~=1=91.6 vs. 92.0) but it is the best
result obtained without using lexical information 6.
(Cardie and Pierce, 1998) store POS tag sequences
that make up complete chunks and use these se-
quences as rules for classifying unseen data. This
approach performs worse than the method of Arga-
mon et al. (F~=1=90.9).

Three papers mention having used the memory-
based learning method IBI-IG. (Veenstra, 1998) in-
troduced cascaded chunking, a two-stage process in
which the first stage classifications are used to im-
prove the performance in a second processing stage.
This approach reaches the same performance level
as Argamon et al. but it requires lexical informa-
tion. (Daelemans et al., 1999a) report a good per-
formance for baseNP recognition but they use a dif-
ferent data set and do not mention precision and
recall rates. (Tjong Kim Sang and Veenstra, 1999)
compare different data representations for this task.
Their baseNP results are slightly better than those
of Ramshaw and Marcus (F~=1=92.37).

(XTAG, 1998) describes a baseNP chunker built
from training data by a technique called supertag-
ging. The performance of the chunker was an
improvement of the Ramshaw and Marcus results
(Fz=I =92.4). (Mufioz et al., 1999) use SNOW, a net-
work of linear units, for recognizing baseNP phrases

6We have applied majority voting of five data represen-
tations to the Ramshaw and Marcus data set without using
lexical information and the results were: accuracy O: 97.60%,
accuracy C: 98.10%, precision: 92.19%, recall: 91.53% and
F~=I: 91.86.

and SV phrases. They compare two data representa-
tions and report that a representation with bracket
structures outperforms the IOB tagging representa-
tion introduced by (Ramshaw and Marcus, 1995).
SNoW reaches the best performance on this task
(Fz=I =92.8).

There has been less work on identifying general
noun phrases than on recognizing baseNPs. (Os-
borne, 1999) extended a definite clause grammar
with rules induced by a learner that was based upon
the maximum description length principle. He pro-
cessed other parts of the Penn Treebank than we
with an F~=I rate of about 60. Our earlier effort
to process the CoNLL data set was performed in
the same way as described in this paper but with-
out using the combination method for baseNPs. We
obtained an F~=I rate of 82.98 (CoNLL-99, 1999).

5 C o n c l u d i n g r e m a r k s

We have put forward a method for recognizing noun
phrases by combining the results of a memory-based
classifier applied to different representations of the
data. We have examined different combination tech-
niques and each of them performed significantly bet-
ter than the best individual classifier. We have cho-
sen to work with majority voting because it does
not require tuning data and thus enables the indi-
vidual classifiers to use all the training data. This
approach was applied to three standard data sets
for base noun phrase recognition and arbitrary noun
phrase recognition. For all data sets majority voting
improved the best result for that data set known to
US.

Varying data representations is not the only way
for generating different classifiers for combination
purposes. We have also tried dividing the training
data in partitions (bagging) and working with artifi-
cial training data generated by a crossover-like oper-
ator borrowed from genetic algorithm theory. With
our memory-based classifier applied to this data, we
have been unable to generate a combination which
improved the performance of its best member. An-
other approach would be to use different classifica-
tion algorithms and combine the results. We are
working on this but we are still to overcome the prac-
tical problems which prevent us from obtaining ac-
ceptable results with the other learning algorithms.

A c k n o w l e d g e m e n t s

We would like to thank the members of the CNTS
group in Antwerp, Belgium, the members of the ILK
group in Tilburg, The Netherlands and three anony-
mous reviewers for valuable discussions and com-
ments. This research was funded by the European
TMR network Learning Computational Grammars ~.

7 http:/ / lcg-www.uia.ac.be/

55.

References
Steven Abney. 1991. Parsing by chunks. In Principle-

Based Parsing. Kluwer Academic Publishers.
Shlomo Argamon, Ido Dagan, and Yuval Krymolowski.

1998. A memory-based approach to learning shal-
low natural language patterns. In Proceedings of
COLING-ACL '98. Association for Computational
Linguistics.

Eric Brill and Jun Wu. 1998. Classifier combination
for improved lexical disambiguation. In Proceedings
of COLING-ACL '98. Association for Computational
Linguistics.

Claire Cardie and David Pierce. 1998. Error-driven
pruning of treebank grammars for base noun phrase
identification. In Proceedings of COLING-ACL '98.
Association for Computational Linguistics.

CoNLL-99. 1999. Conll-99 home page. http://lcg-
www.uia.ac.be/conl199/.

Walter Daelemans, Antal van den Bosch, and Jakub Za-
vrel. 1999a. Forgetting exceptions is harmful in lan-
guage learning. Machine Learning, 34.

Walter Daelemans, Jakub Zavrel, Ko van der Sloot, and
Antal van den Bosch. 1999b. TiMBL: Tilburg Mem-
ory Based Learner, version 2.0, Reference Guide.
ILK Technical Report 99-01. http://ilk.kub.nl/-ilk/
papers/ilk9901.ps.gz.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: the Penn Treebank. Computational
Linguistics, 19.

Marcia Mufioz, Vasin Punyakanok, Dan Roth, and Day
Zimak. 1999. A learning approach to shallow parsing.
In Proceedings of EMNLP-WVLC'99. Association for
Computational Linguistics.

Miles Osborne. 1999. MDL-based DCG induction
for NP identification. In Miles Osborne and Erik
Tjong Kim Sang, editors, CoNLL-99 Computational
Natural Language Learning. Association for Compu-
tational Linguistics.

Lance A. Ramshaw and Mitchell P. Marcus. 1995.
Text chunking using transformation-based learning.
In Proceedings of the Third ACL Workshop on Very
Large Corpora. Association for Computational Lin-
guistics.

Erik F. Tjong Kim Sang and Jorn Veenstra. 1999. Rep-
resenting text chunks. In Proceedings of EACL '99. As-
sociation for Computational Linguistics.

Hans van Halteren, Jakub Zavrel, and Walter Daele-
mans. 1998. Improving data driven wordclass tagging
by system combination. In Proceedings of COLING-
A CL'98. Association for Computational Linguistics.

Jorn Veenstra. 1998. Fast NP chunking using memory-
based learning techniques. In BENELEARN-98: Pro-
ceedings of the Eighth Belgian-Dutch Conference on
Machine Learning. ATO-DLO, Wageningen, report
352.

The XTAG Research Group. 1998. A Lexicalized
Tree Adjoining Grammar for English. IRCS Tech
Report 98-18, University of Pennsylvania. (also
cs.CL/9809024).

55

