
Bagging and Boost ing a Treebank Parser

John C. H e n d e r s o n
T h e M I T R E C o r p o r a t i o n

202 B u r l i n g t o n R o a d
B e d f o r d , M A 01730
j h n d r s n @ m i t r e . o r g

Eric B r i l l
M i c r o s o f t R e s e a r c h

1 M i c r o s o f t W a y
R e d m o n d , W A 98052
b r i l l @ m i c r o s o f t . c o m

A b s t r a c t
Bagging and boosting, two effective machine learn-
ing techniques, are applied to natural language pars-
ing. Experiments using these techniques with a
trainable statistical parser are described. The best
resulting system provides roughly as large of a gain
in F-measure as doubling the corpus size. Error
analysis of the result of the boosting technique re-
veals some inconsistent annotations in the Penn
Treebank, suggesting a semi-automatic method for
finding inconsistent treebank annotations.

1 I n t r o d u c t i o n
Henderson and Brill (1999) showed that independent
human research efforts produce parsers that can be
combined for an overall boost in accuracy. Finding
an ensemble of parsers designed to complement each
other is clearly desirable. The parsers would need
to be the result of a unified research effort, though,
in which the errors made by one parser are targeted
with priority by the developer of another parser.

A set of five parsers which each achieve only 40%
exact sentence accuracy would be extremely valu-
able if they made errors in such a way that at least
two of the five were correct on any given sentence
(and the others abstained or were wrong in different
ways). 100% sentence accuracy could be achieved
by selecting the hypothesis that was proposed by
the two parsers that agreed completely.

In this paper, the task of automatically creating
complementary parsers is separated from the task of
creating a single parser. This facilitates study of the
ensemble creation techniques in isolation. The result
is a method for increasing parsing performance by
creating an ensemble of parsers, each produced from
data using the same parser induction algorithm.

2 B a g g i n g and Pars ing
2.1 Background
The work of Efron and Tibshirani (1993) enabled
Breiman's refinement and application of their tech-
niques for machine learning (Breiman, 1996). His
technique is called bagging, short for "bootstrap ag-
gregating". In brief, bootstrap techniques and bag-

ging in particular reduce the systematic biases many
estimation techniques introduce by aggregating es-
timates made from randomly drawn representative
resamplings of those datasets.

Bagging at tempts to find a set of classifiers which
are consistent with the training data, different from
each other, and distributed such that the aggregate
sample distribution approaches the distribution of
samples in the training set.

Algorithm: Bagging Predictors
(Breiman, 1996) (1)
Given: training set • = { (y i ,x~) , i E { 1 . . . m } }
drawn from the set A of possible training sets where
Yi is the label for example x~, classification induction
algorithm q2 : A --* • with classification algorithm
C e • and ¢ : X - - ~ Y .

1. Create k bootstrap replicates o f / : by sampling
m items from E with replacement. Call them
L 1 . . . L k .

2. For each j e { 1 . . . k } , Let Cj = ~ (£ j) be the
classifier induced using Lj as the training set.

3. If Y is a discrete set, then for each x~ observed
in the test set, yi = m o d e (¢ j (x i) . . . Cj(x~)). y~
is the value predicted by the most predictors,
the majority vote.

2.2 Bagging for Parsing
An algorithm that applies the technique of bagging
to parsing is given in Algorithm 2. Previous work on
combining independent parsers is leveraged to pro-
duce the combined parser. The rest of the algorithm
is a straightforward transformation of bagging for
classifiers. Exploratory work in this vein was de-
scribed by HajiC et al. (1999).

Algorithm: Bagging A Parser (2)
Given: A corpus (again as a f u n c t i o n) C : S × T ~ N,
S is the set of possible sentences, and T is the set
of trees, with size m = [C] = ~ s , t C(s, t) and parser
induction algorithm g.

1. Draw k bootstrap replicates C1 . . . Ck of C each
containing m samples of (s,t) pairs randomly

34

picked from the domain of C according to the
distribution D (s , t) = C(s,t)/]C]. Each boot-
strap replicate is a bag of samples, where each
sample in a bag is drawn randomly with replace-
ment from the bag corresponding to C.

2. Create parser f~ = g(Ci) for each i.

3. Given a novel sentence 8test E C t e s t , combine
the collection of hypotheses ti = f i(Stest) us-
ing the unweighted constituent voting scheme
of Henderson and Brill (1999).

2.3 E x p e r i m e n t

The training set for these experiments was sections
01-21 of the Penn Treebank (Marcus et al., 1993).
The test set was section 23. The parser induction
algorithm used in all of the experiments in this pa-
per was a distribution of Collins's model 2 parser
(Collins, 1997). All comparisons made below refer
to results we obtained using Collins's parser.

The results for bagging are shown in Figure 2 and
Table 1. The row of figures are (from left-to-right)
training set F-measure ~, test set F-measure, percent
perfectly parsed sentences in training set, and per-
cent perfectly parsed sentences in test set. An en-
semble of bags was produced one bag at a time. In
the table, the I n i t i a l row shows the performance
achieved when the ensemble contained only one bag,
F ina l (X) shows the performance when the ensem-
ble contained X bags, BestF gives the performance
of the ensemble size that gave the best F-measure
score. T ra inBes tF and Tes tBes tF give the test set
performance for the ensemble size that performed
the best on the training and test sets, respectively.

On the training set all of the accuracy measures
are improved over the original parser, and on the
test set there is clear improvement in precision and
recall. The improvement on exact sentence accuracy
for the test set is significant, but only marginally so.

The overall gain achieved on the test set by bag-
ging was 0.8 units of F-measure, but because the
entire corpus is not used in each bag the initial per-
formance is approximately 0.2 units below the best
previously reported result. The net gain using this
technique is 0.6 units of F-measure.

3 Boosting
3.1 Background
The AdaBoost algorithm was presented by Fre-
und and Schapire in 1996 (Freund and Schapire,
1996; Freund and Schapire, 1997) and has become a
widely-known successful method in machine learn-
ing. The AdaBoost algorithm imposes one con-
straint on its underlying learner: it may abstain from
making predictions about labels of some samples,

1This is the balanced version ofF-measure , where precision
and recall are weighted equally.

but it must consistently be able to get more than
50°-/o accuracy on the samples for which it commits
to a decision. Tha t accuracy is measured accord-
ing to the distribution describing the importance of
samples that it is given. The learner must be able
to get more correct samples than incorrect samples
by mass of importance on those that it labels. This
statement of the restriction comes from Schapire and
Singer's study (1998). It is called the weak learning
criterion.

Schapire and Singer (1998) extended AdaBoost by
describing how to choose the hypothesis mixing co-
efficients in certain circumstances and how to incor-
porate a general notion of confidence scores. They
also provided a better characterization of its theo-
retical performance. The version of AdaBoost used
in their work is shown in Algorithm 3, as it is the
version that most amenable to parsing.

Algorithm: AdaBoost
(F r e u n d and Schapire, 1997") (3)
Given: Training set /: as in bagging, except yi E
{ -1 , 1 } is the label for example xi. Initial uniform
distribution D1 (i) = 1 /m. Number of iterations, T.
Counter t = 1. tI,, ¢~, and ¢ are as in Bagging.

1. Create Lt by randomly choosing with replace-
ment m samples from L: using distribution Dt.

2. Classifier induction: Ct ~- ~(Lt)

3. Choose at E IR.

4. Adjust and normalize the distribution. Zt is a
normalization coefficient.

1
D, + , (i) = -~- Dt (i) exp(-c~tYiCt(xi))

5. Increment t. Quit if t > T.

6. Repeat from step 1.

7. The final hypothesis is

~)boost(:g) ~- sign Z ~t¢,(x)
t

The value of at should generally be chosen to min-
imize

Z Dt (i) exp(-a~ Yi Ct (x ,))
i

in order to minimize the expected per-sample train-
ing error of the ensemble, which Schapire and Singer
show can be concisely expressed by I-] Zt. They also

give several examples for how to pick an appropriate
a, and selection generally depends on the possible
outputs of the underlying learner.

Boosting has been used in a few NLP systems.
Haruno et al. (1998) used boosting to produce more
accurate classifiers which were embedded as control

35

Set Instance P R F Gain Exact Gain
Training Original Parser 96.25 96.31 96.28 NA 64.7 NA

Initial 93.61 93.63 93.62 0.00 55.5 0.0
BestF(15) 96.16 95.86 96.01 2.39 62.1 6.6
Final(15) 96.16 95.86 96.01 2.39 62.1 6.6

Test Original Parser 88.73 88.54 88.63 NA 34.9 NA
Initial 88.43 88.34 88.38 0.00 33.3 0.0
TrainBestF(15) 89.54 88.80 89.17 0.79 34.6 1.3
TestBestF(13) 89.55 88.84 89.19 0.81 34.7 1.4
Final(15) 89.54 88.80 89.17 0.79 34.6 1.3

Table 1: Bagging the Treebank

mechanisms of a parser for Japanese. The creators
of AdaBoost used it to perform text classification
(Schapire and Singer, 2000). Abney et al. (1999)
performed part-of-speech tagging and prepositional
phrase a t tachment using AdaBoost as a core compo-
nent. They found they could achieve accuracies on
both tasks tha t were competit ive with the state of
the art. As a side effect, they found that inspecting
the samples that were consistently given the most
weight during boosting revealed some faulty anno-
tations in the corpus. In all of these systems, Ad-
aBoost has been used as a traditional classification
system.

3.2 Boosting for Parsing
Our goal is to recast boosting for parsing while con-
sidering a parsing system as the embedded learner.
The formulation is given in Algorithm 4. The in-
tuition behind the additive form is that the weight
placed on a sentence should be the sum of the weight
we would like to place on its constituents. The
weight on constituents that are predicted incorrectly
are adjusted by a factor of 1 in contrast to a factor
of ~ for those that are predicted incorrectly.

Algorithm: Boosting A Parser (4)
Given corpus C with size m = IC I = ~s .~C(s , t)
and parser induction algorithm g. Initial uniform
distribution Dl(i) = 1/m. Number of iterations, T.
Counter t = 1.

1. Create Ct by randomly choosing with replace-
ment m samples from C using distribution Dr.

2. Create parser ft ~ g(Ct).

3. Choose a t E R (described below).

4. Adjust and normalize the distribution. Zt is
a normalization coefficient. For all i, let parse
tree ~-~' ~-- f t (s ,) . Let ~(T,c) be a function indi-
cating that c is in parse tree r , and ITI is the
number of constituents in tree T. T(s) is the set
of constituents that are found in the reference
or hypothesized annotation for s.

Dt+l (i) :

1 - ,

c E T (s i)

5. Increment t. Quit if t > T.

6. Repeat from step 1.

7. The final hypothesis is computed by combin-
ing the individual constituents. Each parser Ct
in the ensemble gets a vote with weight at for
the constituents they predict. Precisely those
constituents with weight strictly larger than
1 ~--~t a t are put into the final hypothesis.

A potential constituent can be considered correct
if it is predicted in the hypothesis and it exists in
the reference, or it is not predicted and it is not in
the reference. Potential constituents tha t do not ap-
pear in the hypothesis or the reference should not
make a big contribution to the accuracy computa-
tion. There are many such potential constituents,
and if we were maximizing a function that t reated
getting them incorrect the same as getting a con-
stituent that appears in the reference correct, we
would most likely decide not to predict any con-
stituents.

Our model of constituent accuracy is thus sim-
ple. Each prediction correctly made over T(s) will be
given equal weight. Tha t is, correctly hypothesizing
a constituent in the reference will give us one point,
but a precision or recall error will cause us to miss
one point. Constituent accuracy is then a/ (a+b+c) ,
where a is the number of constituents correctly hy-
pothesized, b is the number of precision errors and c
is the number of recall errors.

In Equation 1, a computat ion of aca as described
is shown.

Otca =

D (i)

i c6T(si)
D (i)

i c C T (s i)

Boosting algorithms were developed that at-
tempted to maximize F-measure, precision, and re-
call by varying the computat ion of a, giving results
too numerous to include here. The algorithm given
here performed the best of the lot, but was only
marginally bet ter for some metrics.

(1:

36

Set Instance P R F Gain Exact Gain
Training Original Parser 96.25 96.31 96.28 NA 64.7 NA

Initial 93.54 93.61 93.58 0.00 54.8 0.0
BestF(15) 96.21 95.79 96.00 2.42 57.3 2.5
Final(15) 96.21 95.79 96.00 2.42 57.3 2.5

Test Original Parser 88.73 88.54 88.63 NA 34.9 NA
Initial 88.05 88.09 88.07 0.00 33.3 0.0
TrainBestF(15) 89.37 88.32 88.84 0.77 33.0 -0.3
TestBestF(14) 89.39 88.41 88.90 0.83 33.4 0.1
Final(15) 89.37 88.32 88.84 0.77 33.0 -0.3

Table 2: Boosting the Treebank

3.3 Experiment

The experimental results for boosting are shown in
Figure 3 and Table 2. There is a large plateau in
performance from iterations 5 through 12. Because
of their low accuracy and high degree of specializa-
tion, the parsers produced in these iterations had
little weight during voting and had little effect on
the cumulative decision making.

As in the bagging experiment, it appears that
there would be more precision and recall gain to
be had by creating a larger ensemble. In both the
bagging and boosting experiments t ime and resource
constraints dictated our ensemble size.

In the table we see that the boosting algorithm
equaled bagging's test set gains in precision and re-
call. The I n i t i a l performance for boosting was
lower, though. We cannot explain this, and expect
it is due to unfortunate resampling of the data dur-
ing the first iteration of boosting. Exact sentence
accuracy, though, was not significantly improved on
the test set.

Overall, we prefer bagging to boosting for this
problem when raw performance is the goal. There
are side effects of boosting that are useful in other
respects, though, which we explore in Section 4.2.

3.3.1 Weak Learning Criterion Violations
It was hypothesized in the course of investigating the
failures of the boosting algorithm that the parser in-
duction system did not satisfy the weak learning cri-
terion. It was noted that the distribution of boosting
weights were more skewed in later iterations. Inspec-
tion of the sentences that were getting much mass
placed upon them revealed that their weight was be-
ing boosted in every iteration. The hypothesis was
that the parser was simply unable to learn them.

39832 parsers were built to test this, one for each
sentence in the training set. Each of these parsers
was trained on only a single sentence 2 and evaluated
on the same sentence. It was discovered that a full
4764 (11.2%) of these sentences could not be parsed
completely correctly by the parsing system.

2The sentence was replicated 10 times to avoid threshold-
ing effects in the learner.

3.3.2 Corpus Trimming
In order to evaluate how well boosting worked with
a learner that be t ter satisfied the weak learning cri-
terion, the boosting experiment was run again on
the Treebank minus the troublesome sentences de-
scribed above. The results are in Table 3. This
dataset produces a larger gain in comparison to the
results using the entire Treebank. The initial ac-
curacy, however, is lower. We hypothesize that the
boosting algorithm did perform bet ter here, but the
parser induction system was learning useful informa-
tion in those sentences that it could not memorize
(e.g. lexical information) that was successfully ap-
plied to the test set.

In this manner we managed to clean our dataset to
the point that the parser could learn each sentence
in isolation. The corpus-makers cannot necessarily
be blamed for the sentences that could not be mem-
orized. All tha t can be said about those sentences
is that for bet ter or worse, the parser 's model would
not accommodate them.

4 Corpus Ana lys i s

4.1 Noisy Corpus: Empirical Investigation
To acquire experimental evidence of noisy data, dis-
tr ibutions that were used during boosting the sta-
ble corpus were inspected. The distribution was ex-
pected to be skewed if there was noise in the data, or
be uniform with slight fluctuations if it fit the data
well.

We see how the boosting weight distribution
changes in Figure 1. The individual curves are in-
dexed by boosting iteration in the key of the figure.
This training run used a corpus of 5000 sentences.
The sentences are ranked by the weight they are
given in the distribution, and sorted in decreasing or-
der by weight along the x-axis. The distribution was
smoothed by putt ing samples into equal weight bins,
and reporting the average mass of samples in the bin
as the y-coordinate. Each curve on this graph cor-
responds to a boosting iteration. We used 1000 bins
for this graph, and a log scale on the x-axis. Since
there were 5000 samples, all samples initially had a
y-value of 0.0002.

37

Set Instance P R F Gain Exact Gain
Training Original Parser 96.25 96.31 96.28 NA 64.7 NA

Initial 94.60 94.68 94.64 0.00 62.2 0.0
BestF(8) 97.38 97.00 97.19 2.55 63.1 0.9
Final(15) 97.00 96.17 96.58 1.94 55.0 -7.2

Test Original Parser 88.73 88.54 88.63 NA 34.9 NA
Initial 87.43 87.21 87.32 0.00 32.6 0.0
TrainBestF(8) 89.12 87.62 88.36 1.04 32.8 0.2
TestBestF(6) 89.07 87.77 88.42 1.10 32.9 0.4
Final(15) 89.18 87.19 88.18 0.86 31.7 -0.8

Table 3: Boosting the Stable Corpus

0.05

0.045

0.04

0035

0.03

~' o.o2s I

0,02

0.015

0.01

0.005

0

, , . . . , i " .

2

3

4 •

5

6

7

8

9

1 0 - -

1 1

i

Figure 1: Weight Change During Boosting

Notice first tha t the left endpoints of the lines
move from bo t tom to top in order of boosting it-
eration. The distribution becomes monotonically
more skewed as boosting progresses. Secondly we
see by the last iteration that most of the weight is
concentrated on less than 100 samples. This graph
shows behavior consistent with noise in the corpus
on which the boosting algorithm is focusing.

4.2 T r e e b a n k Incons is tencies

There are sentences in the corpus tha t can be learned
by the parser induction algorithm in isolation but
not in concert because they contain conflicting in-
formation. Finding these sentences leads to a bet ter
understanding of the quality of our corpus, and gives
an idea for where improvements in annotat ion qual-
ity can be made. Abney et al. (1999) showed a
similar corpus analysis technique for par t of speech
tagging and prepositional phrase tagging, but for
parsing we must remove errors introduced by the
parser as we did in Section 3.3.2 before questioning
the corpus quality. A particular class of errors, in-
consistencies, can then be investigated. Inconsistent
annotations are those that appear plausible in iso-
lation, but which conflict with annotation decisions
made elsewhere in the corpus.

In Figure 5 we show a set of trees selected from

within the top 100 most heavily weighted trees at
the end of 15 iterations of boosting the stable cor-
pus.Collins's parser induction system is able to learn
to produce any one of these structures in isolation,
but the presence of conflicting information in differ-
ent sentences prevents it from achieving 100% accu-
racy on the set.

5 Training Corpus Size Effects
We suspect our best parser diversification techniques
gives performance gain approximately equal to dou-
bling the size of the training set. While this cannot
be directly tested without hiring more annotators,
an expected performance bound for a larger train-
ing set can be produced by extrapolat ing from how
well the parser performs using smaller training sets.
There are two characteristics of training curves for
large corpora that can provide such a bound: train-
ing curves generally increase monotonically in the
absence of over-training, and their first derivatives
generally decrease monotonically.

Set Sentences P R
50
100
500
1000
5000
10000
20000
39832
50
100
500
1000
5000
10000
20000
39832

F Exact
67.57 32.15 43.57 5.4
69,03 56.23 61.98 8,5
78,12 75.46 76.77 18,2
81.36 80.70 81.03 22.9
87.28 87.09 87.19 34.1
89.74 89.56 89.65 41.0
92.42 92.40 92.41 50.3
96.25 96.31 96.28 64.7
68.13 32.24 43.76 4.7
69.90 54.19 61.05 7.8
78.72 75.33 76.99 19.1
81.61 80.68 81.14 22.2
86.03 85.43 85.73 28.6
87.29 86.81 87.05 30.8
87.99 87.87 87.93 32.7
88.73 88.54 88.63 34.9

Table 4: Effects of Varying Training Corpus Size

The training curves we present in Figure 4 and Ta-
ble 4 suggest that roughly doubling the corpus size

3 8

in the range of interest (between 10000 and 40000
sentences) gives a test set F-measure gain of approx-
imately 0.70.

Bagging achieved significant gains of approxi-
mately 0.60 over the best reported previous F-
measure without adding any new data. In this re-
spect, these techniques show promise for making
performance gains on large corpora without adding
more data or new parsers.

6 C o n c l u s i o n

We have shown two methods, bagging and boosting,
for automatically creating ensembles of parsers that
produce better parses than any individual in the en-
semble. Neither of the algorithms exploit any spe-
cialized knowledge of the underlying parser induc-
tion algorithm, and the data used in creating the
ensembles has been restricted to a single common
training set to avoid issues of training data quantity
affecting the outcome.

Our best bagging system performed consistently
well on all metrics, including exact sentence accu-
racy. It resulted in a statistically significant F-
measure gain of 0.6 over the performance of the base-
line parser. That baseline system is the best known
Treebank parser. This gain compares favorably with
a bound on potential gain from increasing the corpus
size.

Even though it is computationally expensive to
create and evaluate a small (15-30) ensemble of
parsers, the cost is far outweighed by the opportu-
nity cost of hiring humans to annotate 40000 more
sentences. The economic basis for using ensemble
methods will continue to improve with the increasing
value (performance per price) of modern hardware.

Our boosting system, although dominated by the
bagging system, also performed significantly better
than the best previously known individual parsing
result. We have shown how to exploit the distri-
bution created as a side-effect of the boosting al-
gorithm to uncover inconsistencies in the training
corpus. A semi-automated technique for doing this
as well as examples from the Treebank that are in-
consistently annotated were presented. Perhaps the
biggest advantage of this technique is that it requires
no a priori notion of how the inconsistencies can be
characterized.

7 A c k n o w l e d g m e n t s

We would like to thank Michael Collins for enabling
all of this research by providing us with his parser
and helpful comments.

This work was funded by NSF grant IRI-9502312.
The views expressed in this paper are those of the
authors and do not necessarily reflect the views of
the MITRE Corporation. This work was done while
both authors were at Johns Hopkins University.

R e f e r e n c e s

Steven Abney, Robert E. Schapire, and Yoram
Singer. 1999. Boosting applied to tagging and PP
attachment. In Proceedings of the Joint SIGDAT
Conference on Empirical Methods in Natural Lan-
guage Processing and Very Large Corpora, pages
38-45, College Park, Maryland.

L. Breiman. 1996. Bagging predictors. In Machine
Learning, volume 24, pages 123-140.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. In Proceedings of
the Annual Meeting of the Association for Com-
putational Linguistics, volume 35, Madrid.

B. Efron and R. Tibshirani. 1993. An Introduction
to the Bootstrap. Chapman and Hall.

Y. Freund and R.E. Schapire. 1996. Experiments
with a new boosting algorithm. In Proceedings of
the International Conference on Machine Learn-
ing.

Y. Freund and R.E. Schapire. 1997. A decision-
theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and
Systems Sciences, 55(1):119-139, Aug.

Jan Haji~, E. Brill, M. Collins, B. Hladka, D. Jones,
C. Kuo, L. Ramshaw, O. Schwartz, C. Tillmann,
and D. Zeman. 1999. Core natural language
processing technology applicable to multiple lan-
guages. Prague Bulletin of Mathematical Linguis-
tics, 70.

Masahiko Haruno, Satoshi Shirai, and Yoshifumi
Ooyama. 1998. Using decision trees to construct
a practical parser. In Proceedings of the 36th
Annual Meeting of the Association for Compu-
tational Linguistics and 17th International Con-
ference on Computational Linguistics, volume 1,
pages 505-511, Montreal, Canada.

John C. Henderson and Eric Brill. 1999. Exploiting
diversity in natural language processing: Combin-
ing parsers. In Proceedings of the Fourth Confer-
ence on Empirical Methods in Natural Language
Processing, College Park, Maryland.

Mitchell P. Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building a large
annotated corpus of english: The Penn Treebank.
Computational Linguistics, 19(2):313-330.

Robert E. Schapire and Yoram Singer. 1998. Im-
proved boosting algorithms using confidence-rated
predictions. In Proceedings of the Eleventh An-
nual Conference on Computational Learning The-
ory, pages 80-91.

Robert E. Schapire and Yoram Singer. 2000. Boos-
texter: A boosting-based system for text catego-
rization. Machine Learning, 39(2/3):1-34, May.
To appear.

"4Q 39

\
j J

i

i £/

'...]~'.,..

A N

b~
.=.

O
O

O

b~
..=

b~

40

, , z _ ~

/~ ~j

~_. ~g

0

O

41

