
Sentence R e d u c t i o n for A u t o m a t i c Text S u m m a r i z a t i o n

Hongyan Jing
D e p a r t m e n t of C o m p u t e r S c i e n c e

C o l u m b i a U n i v e r s i t y
N e w York , N Y 10027, U S A

hj i n g @ c s . c o l u m b i a . e d u

Abstract
We present a novel sentence reduction system for
automatically removing extraneous phrases from
sentences that are extracted from a document for
summarization purpose. The system uses multiple
sources of knowledge to decide which phrases in an
extracted sentence can be removed, including syn-
tactic knowledge, context information, and statistics
computed from a corpus which consists of examples
written by human professionals. Reduction can sig-
nificantly improve the conciseness of automatic sum-
maries.

1 Motivation

Current automatic summarizers usually rely on sen-
tence extraction to produce summaries. Human pro-
fessionals also often reuse the input documents to
generate summaries; however, rather than simply
extracting sentences and stringing them together, as
most current summarizers do, humans often "edit"
the extracted sentences in some way so that the re-
sulting summary is concise and coherent. We ana-
lyzed a set of articles and identified six major opera-
tions that can be used for editing the extracted sen-
tences, including removing extraneous phrases from
an extracted sentence, combining a reduced sentence
with other sentences, syntactic transformation, sub-
stituting phrases in an extracted sentence with their
paraphrases, substituting phrases with more general
or specific descriptions, and reordering the extracted
sentences (Jing and McKeown, 1999; Jing and McK-
eown, 2000).

We call the operation of removing extraneous
phrases from an extracted sentence sentence reduc-
tion. It is one of the most effective operations that
can be used to edit the extracted sentences. Reduc-
tion can remove material at any granularity: a word,
a prepositional phrase, a gerund, a to-infinitive or a
clause. We use the term "phrase" here to refer to
any of the above components that can be removed in
reduction. The following example shows an original
sentence and its reduced form written by a human
professional:

Original sentence:
When it arrives sometime next year in new
T V sets, the V-chip will give parents a new
and potentially revolutionary device to block
out programs they don' t want their children
to see.

Reduced sentence by humans:
The V-chip will give parents a device to block
out programs they don' t want their children
to see.

We implemented an automatic sentence reduction
system. Input to the reduction system includes
extracted sentences, as well as the original docu-
ment. Output of reduction are reduced forms of
the extracted sentences, which can either be used
to produce summaries directly, or be merged with
other sentences. The reduction system uses multiple
sources of knowledge to make reduction decisions,
including syntactic knowledge, context, and statis-
tics computed from a training corpus. We evaluated
the system against the output of human profession-
als. The program achieved a success rate of 81.3%,
meaning that 81.3% of reduction decisions made by
the system agreed with those of humans.

Sentence reduction improves the conciseness of au-
tomatically generated summaries, making it concise
and on target. It can also improve the coherence of
generated summaries, since extraneous phrases that
can potentially introduce incoherece are removed.
We collected 500 sentences and their corresponding
reduced forms written by humans, and found that
humans reduced the length of these 500 sentences
by 44.2% on average. This indicates that a good
sentence reduction system can improve the concise-
ness of generated summaries significantly.

In the next section, we describe the sentence re-
duction algorithm in details. In Section 3, we intro-
duce the evaluation scheme used to access the perfor-
mance of the system and present evaluation results.
In Section 4, we discuss other applications of sen-
tence reduction, the interaction between reduction
and other modules in a summarizat ion system, and
related work on sentence simplication. Finally, we

310

conclude with future work.

2 S e n t e n c e r e d u c t i o n b a s e d o n
m u l t i p l e s o u r c e s o f k n o w l e d g e

The goal of sentence reduction is to "reduce without
major loss"; that is, we want to remove as many ex-
traneous phrases as possible from an extracted sen-
tence so that it can be concise, but without detract-
ing from the main idea the sentence conveys. Ideally,
we want to remove a phrase from an extracted sen-
tence only i f it is irrelevant to the main topic. To
achieve this, the system relies on multiple sources
of knowledge to make reduction decisions. We first
introduce the resources in the system and then de-
scribe the reduction algorithm.

2.1 T h e r e s o u r c e s

(1) T h e c o r p u s . One of the key features of
the system is that it uses a corpus consisting of
original sentences and their corresponding reduced
forms written by humans for training and testing
purpose. This corpus was created using an auto-
matic program we have developed to automatically
analyze human-written abstracts. The program,
called the decomposition program, matches phrases
in a human-written summary sentence to phrases
in the original document (Jing and McKeown,
1999). The human-written abstracts were collected
from the free daily news service "Communications-
related headlines", provided by the Benton Founda-
tion (http:/ /www.benton.org). The articles in the
corpus are news reports on telecommunication re-
lated issues, but they cover a wide range of topics,
such as law, labor, and company mergers.

(2) T h e l ex icon . The system also uses a large-
scale, reusable lexicon we combined from multiple
resources (Jing and McKeown, 1998). The resources
that were combined include COMLEX syntactic dic-
tionary (Macleod and Grishman, 1995), English
Verb Classes and Alternations (Levin, 1993), the
WordNet lexical database (Miller et al., 1990), the
Brown Corpus tagged with WordNet senses (Miller
et al., 1993). The lexicon includes subcategoriza-
tions for over 5,000 verbs. This information is used
to identify the obligatory arguments of verb phrases.

(3) T h e W o r d N e t lex ica l d a t a b a s e . Word-
Net (Miller et al., 1990) is the largest lexical
database to date. It provides lexical relations
between words, including synonymy, antonymy,
meronymy, entailment (e.g., eat --+ chew), or cau-
sation (e.g., kill --4 die). These lexical links are used
to identify the focus in the local context.

(4) T h e s y n t a c t i c p a r s e r . We use the English
Slot Grammar(ESG) parser developed at IBM (Mc-
Cord, 1990) to analyze the syntactic structure of an
input sentence and produce a sentence parse tree.
The ESG parser not only annotates the syntactic

category of a phrase (e.g., "np" or "vp"), it also an-
notates the thematic role of a phrase (e.g., "subject"
or "object").

2.2 T h e a l g o r i t h m

There are five steps in the reduction program:
S t e p 1: S y n t a c t i c p a r s i n g .
We first parse the input sentence using the ESG

parser and produce the sentence parse tree. The op-
erations in all other steps are performed based on
this parse tree. Each following step annotates each
node in the parse tree with additional information,
such as syntactic or context importance, which are
used later to determine which phrases (they are rep-
resented as subtrees in a parse tree) can be consid-
ered extraneous and thus removed.

S t e p 2: G r a m m a r c h e c k i n g .
In this step, we determine which components of

a sentence must not be deleted to keep the sentence
grammatical. To do this, we traverse the parse tree
produced in the first step in top-down order and
mark, for each node in the parse tree, which of its
children are grammatically obligatory. We use two
sources of knowledge for this purpose. One source
includes simple, linguistic-based rules that use the
thematic role structure produced by the ESG parser.
For instance, for a sentence, the main verb, the sub-
ject, and the object(s) are essential if they exist, but
a prepositional phrase is not; for a noun phrase, the
head noun is essential, but an adjective modifier of
the head noun is not. The other source we rely on
is the large-scale lexicon we described earlier. The
information in the lexicon is used to mark the oblig-
atory arguments of verb phrases. For example, for
the verb "convince", the lexicon has the following
entry:

convince

sense I :

NP-PP :PVAL (' t o f ' ')
NP-T0-INF-OC

sense 2 :

NP

This entry indicates that the verb "convince" can
be followed by a noun phrase and a prepositional
phrase starting with the preposition "of" (e.g., he
convinced me of his innocence). It can also be fol-
lowed by a noun phrase and a to-infinitive phrase
(e.g., he convinced me to go to the party). This
information prevents the system from deleting the
"of" prepositional phrase or the to-infinitive that is
part of the verb phrase.

At the end of this step, each node in the parse tree
- - including both leaf nodes and intermediate nodes
- - is annotated with a value indicating whether it is
grammatically obligatory. Note that whether a node
is obligatory is relative to its parent node only. For

311

example, whether a determiner is obligatory is rela-
tive to the noun phrase it is in; whether a preposi-
tional phrase is obligatory is relative to the sentence
or the phrase it is in.

Step 3: Context information.
In this step, the system decides which components

in the sentence are most related to the main topic
being discussed. To measure the importance of a
phrase in the local context, the system relies on lex-
ical links between words. The hypothesis is that
the more connected a word is with other words in
the local context, the more likely it is to be the
focus of the local context. We link the words in
the extracted sentence with words in its local con-
text, if they are repetitions, morphologically related,
or linked in WordNet through one of the lexical re-
lations. The system then computes an importance
score for each word in the extracted sentence, based
on the number of links it has with other words and
the types of links. The formula for computing the
context importance score for a word w is as follows:

9

ContextWeight(w) = ~-~(Li x NUMi(w))
i-----1

Here, i represents the different types of lexical
relations the system considered, including repeti-
tion, inflectional relation, derivational relation, and
the lexical relations from WordNet. We assigned a
weight to each type of lexical relation, represented
by Li in the formula. Relations such as repetition
or inflectional relation are considered more impor-
tant and are assigned higher weights, while relations
such as hypernym are considered less important and
assigned lower weights. NUMi(w) in the formula
represents the number of a particular type of lexical
links the word w has with words in the local context.

After an importance score is computed for each
word, each phrase in the "sentence gets a score by
adding up the scores of its children nodes in the parse
tree. This score indicates how important the phrase
is in the local context.

Step 4: Corpus evidence.
The program uses a corpus consisting of sen-

tences reduced by human professionals and their
corresponding original sentences to compute how
likely humans remove a certain phrase. The system
first parsed the sentences in the corpus using ESG
parser. It then marked which subtrees in these parse
trees (i.e., phrases in the sentences) were removed
by humans. Using this corpus of marked parse trees,
we can compute how likely a subtree is removed
from its parent node. For example, we can compute
the probability that the "when" temporal clause is
removed when the main verb is "give", represented
as Prob("when-clause is removed"l"v=give"),

or the probability that the to-infinitive modifier
of the head noun "device" is removed, represented as
Prob("to-infinitive modifier is removed"l"n=device").
These probabilities are computed using Bayes's
rule. For example, the probability that the "when"
temporal clause is removed when the main verb is
"give", Prob("when-clause is removed ' l "v=give ') ,
is computed as the product of
Prob("v=give"["when-clause is removed") (i.e.,
the probability that the main verb is "give"
when the "when" clause is removed) and
Prob("when-clause is removed") (i.e., the probabil-
ity that the "when" clause is removed), divided by
Prob("v=give") (i.e., the probability that the main
verb is "give").

Besides computing the probability that a phrase is
removed, we also compute two other types of proba-
bilities: the probability that a phrase is reduced (i.e.,
the phrase is not removed as a whole, but some com-
ponents in the phrase are removed), and the proba-
bility that a phrase is unchanged at all (i.e., neither
removed nor reduced).

These corpus probabilities help us capture hu-
man practice. For example, for sentences like "The
agency reported that ...", "The other source says
that ...", "The new study suggests that . . . ' , the that-
clause following the say-verb (i.e., report, say, and
suggest) in each sentence is very rarely changed at
all by professionals. The system can capture this hu-
man practice, since the probability that that-clause
of the verb say or report being unchanged at all
will be relatively high, which will help the system
to avoid removing components in the that-clause.

These corpus probabilities are computed before-
hand using a training corpus. They are then stored
in a table and loaded at running time.

Step 5: Final Decision.
The final reduction decisions are based on the re-

sults from all the earlier steps. To decide which
phrases to remove, the system traverses the sentence
parse tree, which now have been annotated with dif-
ferent types of information from earlier steps, in the
top-down order and decides which subtrees should
be removed, reduced or unchanged. A subtree (i.e.,
a phrase) is removed only if it is not grammatically
obligatory, not the focus of the local context (indi-
cated by a low importance score), and has a reason-
able probability of being removed by humans.

Figure 1 shows sample output of the reduction
program. The reduced sentences produced by hu-
mans are also provided for comparison.

3 E v a l u a t i o n

3.1 T h e e v a l u a t i o n s c h e m e

We define a measure called success rate to evaluate
the performance of our sentence reduction program.

312

Example 1:
Original sentence : When it arrives sometime next year in new T V sets, the V-chip will give
p a r e n t s a new and potential ly revolut ionary device to block out p rograms they don ' t
w a n t t h e i r children to s e e .
Reduction program: The V-chip will give parents a new and potentially revolutionary device to
block out programs they don't want their children to see.
Professionals : The V-chip will give parents a device to block out programs they don't want
their children to see.

Example 2:
Original sentence : Som and Hoffman 's creation would allow broadcasters to i n s e r t
multiple ratings into a show, enabling the V-chip to filter out racy or violent material but leave
unexceptional portions of a show alone.
Reduction Program: Som and Hoffman's creation would allow broadcasters to insert multiple rat-
ings into a show.
Professionals : (the same)

Figure 1: Sample output of sentence reduction program

The success rate computes the percentage of sys-
tem's reduction decisions that agree with those of
humans.

We compute the success rate in the following way.
The reduction process can be considered as a series
of decision-making process along the edges of a sen-
tence parse tree. At each node of the parse tree,
both the human and the program make a decision
whether to remove the node or to keep it. If a node
is removed, the subtree with that node as the root is
removed as a whole, thus no decisions are needed for
the descendants of the removed node. If the node is
kept, we consider that node as the root and repeat
this process.

D

B E G
/ \ / ' , ,

A C F H

?
A

D

t
B E G

C F H

Reduced: A B D G H

Figure 3: Reduced form by a human

D

B E G

A C F H

Reduced: B C D

Input: A B C D E F G H Figure 4: Reduced form by the program

Figure 2: Sample sentence and parse tree

Suppose we have an input sentence (A B C D E -
FGH), which has a parse tree shown in Figure 2.
Suppose a human reduces the sentence to (A B D G H) ,
which can be translated to a series of decisions made
along edges in the sentence parse tree as shown in
Figure 3. The symbol "y" along an edge means the
node it points to will be kept, and "n" means the
node will be removed. Suppose the program reduces
the sentence to (BCD) , which can be translated sim-
ilarly to the annotated tree shown in Figure 4.

We can see that along five edges (they are D--+B,
D--+E, D--+G, B--+A, B-+C), both the human and
the program made decisions. Two out of the five
decisions agree (they are D--+B and D--4E), so the
success rate is 2/5 (40%). The success rate is defined
a s :

of edges along which the hu-
man and the program have made

success rate = the same decision
the total # of edges along which
both the human and the progam
have made decisions

3 1 3

Note that the edges along which only the human
or the program has made a decision (e.g., G--+F and
G--+F in Figure 3 and Figure 4) are not considered
in the computat ion of success rate, since there is no
agreement issue in such cases.

3 .2 E v a l u a t i o n r e s u l t

In the evaluation, we used 400 sentences in the cor-
pus to compute the probabilities that a phrase is
removed, reduced, or unchanged. We tested the pro-
gram on the rest 100 sentences.

Using five-fold validation (i.e., chose different 100
sentences for testing each t ime and repeating the ex-
periment five times), The program achieved an aver-
age success rate of 81.3%. If we consider the baseline
as removing all the prepositional phrases, clauses,
to-infinitives and gerunds, the baseline performance
is 43.2%.

We also computed the success rate of program's
decisions on particular types of phrases. For the de-
cisions on removing or keeping a clause, the system
has a success rate of 78.1%; for the decisions on re-
moving or keeping a to-infinitive, the system has a
success rate of 85.2%. We found out that the system
has a low success rate on removing adjectives of noun
phrases or removing adverbs of a sentence or a verb
phrase. One reason for this is that our probabili ty
model can hardly capture the dependencies between
a particular adjective and the head noun since the
training corpus is not large enough, while the other
sources of information, including g rammar or con-
text information, provide little evidence on whether
an adjective or an adverb should be removed. Given
that whether or not an adjective or an adverb is
removed does not affect the conciseness of the sen-
tence significantly and the system lacks of reliability
in making such decisions, we decide not to remove
adjectives and adverbs.

On average, the system reduced the length of the
500 sentence by 32.7% (based on the number of
words), while humans reduced it by 41.8%.

The probabilities we computed from the training
corpus covered 58% of instances in the test corpus.
When the corpus probabili ty is absent for a case,
the system makes decisions based on the other two
sources of knowledge.

Some of the errors made by the system result from
the errors by the syntactic parser. We randomly
checked 50 sentences, and found that 8% of the er-
rors made by the system are due to parsing errors.
There are two main reasons responsible for this rela-
tive low percentage of errors resulted from mistakes
in parsing. One reason is that we have taken some
special measures to avoid errors introduced by mis-
takes in parsing. For example, PP a t tachment is a
difficult problem in parsing and it is not rare that
a PP is wrongly attached. Therefore, we take this

into account when marking the obligatory compo-
nents using subcategorization knowledge from the
lexicon (step 2) - we not only look at the PPs that
are attached to a verb phrase, but also PPs tha t are
next to the verb phrase but not attached, in case
it is part of the verb phrase. We also wrote a pre-
processor to deal with particular structures that the
parser often has problems with, such as appositions.
The other reason is that parsing errors do not always
result in reduction errors. For example, given a sen-
tence "The spokesperson of the University said that
. . . ' , al though that-clause in the sentence may have a
complicated structure and the parser gets it wrong,
the reduction system is not necessarily affected since
it may decide in this case to keep that-clause as it
is, as humans often do, so the parsing errors will not
mat te r in this example.

4 Discussion and related work
The reduction algori thm we present assumes generic
summarizat ion; that is, we want to generate a sum-
mary that includes the most impor tan t information
in an article. We can tailor the reduction system
to queries-based summarizat ion. In that case, the
task of the reduction is not to remove phrases that
are extraneous in terms of the main topic of an arti-
cle, but phrases tha t are not very relevant to users'
queries. We extended our sentence reduction pro-
gram to query-based summariza t ion by adding an-
other step in the algori thm to measure the relevance
of users' queries to phrases in the sentence. In the
last step of reduction when the system makes the fi-
nal decision, the relevance of a phrase to the query is
taken into account, together with syntactic, context,
and corpus information.

Ideally, the sentence reduction module should in-
teract with other modules in a summariza t ion sys-
tem. It should be able to send feedback to the ex-
traction module if it finds tha t a sentence selected by
the extraction module may be inappropriate (for ex-
ample, having a very low context importance score).
I t should also be able to interact with the modules
that run after it, such as the sentence combination
module, so tha t it can revise reduction decisions ac-
cording to the feedback from these modules.

Some researchers suggested removing phrases or
clauses from sentences for certain applications.
(Grefenstette, 1998) proposed to remove phrases in
sentences to produce a telegraphic text that can
be used to provide audio scanning service for the
blind. (Corston-Oliver and Dolan, 1999) proposed
to remove clauses in sentences before indexing doc-
uments for Informat ion Retrieval. Both studies re-
moved phrases based only on their syntactic cate-
gories, while the focus of our system is on deciding
when it is appropriate to remove a phrase.

Other researchers worked on the text simplifica-

314

tion problem, which usually involves in simplifying
text but not removing any phrases. For example,
(Carroll et al., 1998) discussed simplifying newspa-
per text by replacing uncommon words with com-
mon words, or replacing complicated syntactic struc-
tures with simpler structures to assist people with
reading disabilities. (Chandrasekar et al., 1996) dis-
cussed text simplification in general. The difference
between these studies on text simplification and our
system is that a text simplification system usually
does not remove anything from an original sentence,
although it may change its structure or words, but
our system removes extraneous phrases from the ex-
tracted sentences.

5 C o n c l u s i o n s a n d f u t u r e w o r k

We present a novel sentence reduction system which
removes extraneous phrases from sentences that
are extracted from an article in text summariza-
tion. The deleted phrases can be prepositional
phrases, clauses, to-infinitives, or gerunds, and mul-
tiple phrases can be removed form a single sen-
tence. The focus of this work is on determining,
for a sentence in a particular context, which phrases
in the sentence are less important and can be re-
moved. Our system makes intelligent reduction deci-
sions based on multiple sources of knowledge, includ-
ing syntactic knowledge, context, and probabilities
computed from corpus analysis. We also created a
corpus consisting of 500 sentences and their reduced
forms produced by human professionals, and used
this corpus for training and testing the system. The
evaluation shows that 81.3% of reduction decisions
made by the system agreed with those of humans.

In the future, we would like to integrate our sen-
tence reduction system with extraction-based sum-
marization systems other than the one we have de-
veloped, improve the performance of the system fur-
ther by introducing other sources of knowledge nec-
essary for reduction, and explore other interesting
applications of the reduction system.

A c k n o w l e d g m e n t

This material is based upon work supported by the
National Science Foundation under Grant No. IRI
96-19124 and IRI 96-18797. Any opinions, findings,
and conclusions or recommendations expressed in
this material are those of the authors and do not
necessarily reflect the views of the National Science
Foundation.

R e f e r e n c e s

John Carroll, Guido Minnen, Yvonne Canning,
Siobhan Devlin, and John Tait. 1998. Practi-
cal simplification of English newspaper text to
assist aphasic readers. In Proceedings of AAAI-
98 Workshop on Integrating Artificial Intelligence

and Assistive Technology, Madison, Wisconsin,
July.

R. Chandrasekar, C. Doran, and B. Srinivas. 1996.
Motivations and methods for text simplification.
In Proceedings of the 16th International Confer-
ence on Computational Linguistics (COLING'96),
Copenhagen, Denmark, August.

Simon H. Corston-Oliver and William B. Dolan.
1999. Less is more: Eliminating index terms from
subordinate clauses. In Proceedings of the 37th
Annual Meeting of the Association for Computa-
tional Linguistics(ACL'99), pages 349-356, Uni-
versity of Maryland, Maryland, June.

Gregory Grefenstette. 1998. Producing intelligent
telegraphic text reduction to provide an audio
scanning service for the blind. In Working Notes
of A A A I 1998 Spring Symposium on Intelligent
Text Summarization, Stanford University, Stand-
ford, California, March.

Hongyan Jing and Kathleen R. McKeown. 1998.
Combining multiple, large-scale resources in a
reusable lexicon for natural language generation.
In Proceedings of the 36th Annual Meeting of the
Association for Computational Linguistics and the
17th International Conference on Computational
Linguistics, volume 1, pages 607-613, Universit~
de Montreal, Quebec, Canada, August.

Hongyan Jing and Kathleen R. McKeown. 1999.
The decomposition of human-written summary
sentences. In Proceedings of the 22nd Interna-
tional ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 129-
136, University of Berkeley, CA, August.

Hongyan Jing and Kathleen R. McKeown. 2000.
Cut and paste based text summarization. In Pro-
ceedings of NAACL 2000.

Beth Levin. 1993. English Verb Classes and Alter-
nations: A Preliminary Investigation. University
of Chicago Press, Chicago, Illinois.

Catherine Macleod and Ralph Grishman, 1995.
COMLEX Syntax Reference Manual. Proteus
Project, New York University.

Michael McCord, 1990. English Slot Grammar.
IBM.

George A. Miller, Richard Beckwith, Christiane Fell-
baum, Derek Gross, and Katherine J. Miller.
1990. Introduction to WordNet: An on-line lexi-
cal database. International Journal of Lexicogra-
phy (special issue), 3(4):235-312.

George A. Miller, Claudia Leacock, Randee Tengi,
and Ross T. Bunker. 1993. A semantic concor-
dance. Cognitive Science Laboratory, Princeton
University.

315

