
Spel l ing and G r a m m a r Cor rec t ion for Dan i sh in S C A R R I E

P a t r i z i a P a g g i o
Center for Sprog teknolog i

Copenhagen (DK)
patrizia@cst, ku. dk

A b s t r a c t

This paper reports on work carried out to de-
velop a spelling and grammar corrector for Dan-
ish, addressing in particular the issue of how a
form of shallow parsing is combined with er-
ror detection and correction for the treatment
of context-dependent spelling errors. The syn-
tactic grammar for Danish used by the system
has been developed with the aim of dealing with
the most frequent error types found in a parallel
corpus of unedited and proofread texts specif-
ically collected by the project's end users. By
focussing on certain grammatical constructions
and certain error types, it has been possible
to exploit the linguistic 'intelligence' provided
by syntactic parsing and yet keep the system
robust and efficient. The system described is
thus superior to other existing spelling checkers
for Danish in its ability to deal with context-
dependent errors.

1 I n t r o d u c t i o n

In her much-quoted and still relevant review o f
technologies for automatic word correction (Ku-
kich, 1992), Kukich observes that "research in
context-dependent spelling correction is in its
infancy" (p. 429), and that the task of treating
context-dependent errors is still an elusive one
due to the complexity of the linguistic knowl-
edge often necessary to analyse the context in
sufficient depth to find and correct such er-
rors. But progress in parsing technology and
the growing speed of computers seem to have
made the task less of a chimera. The '90s
have in fact seen a renewed interest in gram-
mar checking, and proposals have been made
for systems covering English (Bernth, 1997) and
other languages such as Italian (Bolioli et al.,
1992), Spanish and Greek (Bustamante and
Ldon, 1996), Czech (Holan et al., 1997) and

Swedish (Hein, 1998).
This paper describes the prototype of a

spelling and grammar corrector for Danish
which combines traditional spelling checking
functionalities with the ability to carry out com-
pound analysis and to detect and correct cer-
tain types of context-dependent spelling errors
(hereafter simply "grammar errors"). Gram-
mar correction is carried out by parsing the
text, making use of feature overriding and error
weights to accommodate the errors. Although
a full parse of each sentence is at tempted, the
grammar has been developed with the aim of
dealing only with the most frequent error types
found in a parallel corpus of unedited and proof-
read texts specifically collected by the project's
end users. By focussing on certain grammati-
cal constructions and certain error types, it has
been possible to exploit the linguistic 'intelli-
gence' provided by syntactic parsing and yet
keep the system robust and efficient. The sys-
tem described is thus superior to other existing
spelling checkers for Danish in its ability to deal
with certain types of grammar errors.

We begin by giving an overview of the sys-
tem's components in Section 2. In Section 3 we
describe the error types we want to deal with:
Section 4 gives an overview of the grammar:
in particular, the methods adopted for treating
feature mismatches and structural errors are ex-
plained. Finally, in Section 5 evaluation results
are presented and a conclusion is drawn.

2 T h e p r o t o t y p e

The prototype is a system for high-quality
proofreading for Danish which has been de-
veloped in the context of a collaborative EU-
project 1. Together with the Danish prototype,

1Main contractors in the consortium were:
WordFinder Software AB (Sweden), Center for

255

the project has also produced similar systems
for Swedish and Norwegian, all of them tailored
to meet the specific needs of the Scandinavian
publishing industry. They all provide writing
suppor t in the form of word and grammar check-
ing.

The Danish version of the system 2 consti tutes
a further development of the CORRie proto type
(Vosse, 1992) (Vosse, 1994), adapted to deal
with the Danish language, and to the needs of
the project ' s end users. The sys tem processes
text in batch mode and produces an annota ted
ou tpu t text where errors are flagged and re-
placements suggested where possible. Text cor-
rection is performed in two steps: first the sys-
tem deals with spelling errors and typos result-
ing in invalid words, and then with grammar
errors.

Invalid words are identified on the basis of
dict ionary lookup. The dict ionary presently
consists of 251,000 domain-relevant word forms
extracted from a collection of 68,000 newspa-
per articles. A separate idiom list allowing for
the identification of multi-word expressions is
also available. Among the words not found in
the dict ionary or the idiom list, those occurring
most frequently in the text (where frequency is
assessed relative to the length of the text) are
taken to be new words or proper names 3. The
remaining unknown words are passed on to the
compound analysis grammar, which is a set of
regular expressions covering the most common
types of compound nominals in Danish . This is
an important feature, as in Danish compound-
ing is very productive, and compounds are writ-
ten as single words.

Words still unknown at this point are taken
to be spelling errors. The System flags them as

Sprogteknologi (Denmark), Department of Linguistics
at Uppsala University (Sweden), Institutt for lingvistikk
og litteraturvitenskab at the University of Bergen (Nor-
way), and Svenska Dagbladet (Sweden). A number of
subcontractors also contributed to the project. Subcon-
tractors in Denmark were: Munksgaard International
Publishers, Berlingske Tidende, Det Danske Sprog- og
Litteraturselskab, and Institut for Almen og Anvendt
Sprogvidenskab at the University of Copenhagen.

2In addition to the author of the present paper,
tlle Danish SCARRIE team at CST consisted of Claus
Povlsen, Bart Kongejan and Bradley Music.

3The system also checks whether a closely matching
alternative can be found in the dictionary, to avoid mis-
taking a consistently misspelt word for a new word.

such and tries to suggest a replacement. The
algorithm used is based on trigram and tri-
phone analysis (van Berkel and Smedt, 1988),
and takes into account the orthographic strings
corresponding to the invalid word under con-
sideration and its possible replacement, as well
as the phonetic representations of the same two
words. Phonetic representations are generated
by a set of grapheme-to-phoneme rules (Hansen ,
1999) the aim of which is to assign phonetically
motivated misspellings and their correct coun-
terparts identical or similar phonetic represen-
tations.

Then the system tries to identify context-
dependent spelling errors. This is done by pars-
ing the text. Parsing results are passed on to
a corrector to find replacements for the errors
found. The parser is an implementation of the
Tomita algorithm with a component for error
recognition whose job is to keep track of error
weights and feature mismatches as described in
(Vosse, 1991). Each input sentence is assigned
the analysis with the lowest error weight. If the
error is due to a feature mismatch, the offending
feature is overridden, and if a dictionary entry
satisfying the grammar constraints expressed by
the context is found in the dictionary, it is of-
fered as a replacement. If the s t ruc tu re is in-
complete, on the other hand, an error message
is generated. Finally, if the system identifies an
error as a split-up or a run-on, it will suggest
either a possible concatenation, or a sequence
of valid words into which the misspelt word can
be split up.

3 T h e e r r o r s

To ensure the coverage of relevant error types,
a set of parallel unedited and proofread texts
provided by the Danish end users has been col-
lected. This text collection consists of newspa-
per and magazine articles published in 1997 for
a total of 270,805 running words. The articles
have been collected in their raw version, as well
as in the edited version provided by the pub-
lisher's own proofreaders. Although not very
large in number of words, th@ corpus consists
of excerpts from 450 different articles to en-
sure a good spread of lexical domains and error
types. The corpus has been used to construct
test suites for progress evaluation, and also to
guide grammar development. The aim set for

256

Error type No.

Context independent errors 386
Context dependent errors 308
Punctua t ion problems 212
Style problems 89
Graphical problems 24

Total 1019

%

38
30
21

9
2

100

Figure 1: Error distribution in the Danish cor-
pus

g rammar development was then to enable the
system to identify and analyse the grammati-
cal constructions in which errors typically occur,
whilst to some extent disregarding the remain-
der of the text.

The errors occurring in the corlbus have been
analysed according to the taxonomy in (Ram-
bell, 1997). Figure 1 shows the distribution of
the various error types into the five top-level
categories of the taxonomy. As can be seen,
g rammar errors account for 30~0 of the errors.
Of these, 70% fall into one of the following cat-
egories (Povlsen, 1998):

• Too many finite verbal forms or missing fi-
nite verb

• Errors in nominal phrases:

- agreement errors,

- wrong determination,

- genitive errors,

- errors concerning pronouns;

• Split-ups and run-ons.

Another way of grouping the errors is by the
kind of parsing failure they generate: they can
then be viewed as either feature mismatches,
or as s tructural errors. Agreement errors are
typical examples of feature mismatches. In the
following nominal phrase, for example:

(1) de *interessant projekter
(the interesting projects)

_the error can be formalised as a mismatch be-
tween the definiteness of the determiner de (the)
and the indefiniteness of the adjective interes-
sant (interesting). Adjectives have in fact both
an indefinite and a definite form in Danish.

The sentence below, on the other hand, is an
example of s tructural error.

(2) i sin tid *skabet han skulpturer over
atomkraften
(during his time wardrobe/created he
sculptures about nuclear power)

Since the finite verb skabte (created) has been
misspelt as skabet (the wardrobe), the syntactic
s tructure corresponding to the sentence is miss-
ing a verbal head.

Run-ons and split-ups are structural errors of
a part icular kind, having to do with leaves in the
syntactic tree. In some cases they can only be
detected on the basis of the context, because the
misspelt word has the wrong category or bears
some other grammatical feature that is incorrect
in the context. Examples are given in (3) and
(4) below, which like the preceding examples are
taken from the project 's corpus. In both cases,
the error would be a valid word in a different
context. More specifically, rigtignok (indeed) is
an adverb, whilst rigtig nok (actually correct) is
a modified adjective; and inden .for (inside) is a
preposition, whilst indenfor (indoors) is an ad-
verb. In both examples the correct alternative
is indicated in parentheses.

(3) ... studerede rain gruppe *rigtig nok
(rigtignok) under temaoverskrifter
(studied my group indeed on the basis
of topic headings)

(4) *indenfor (inden for) de gule mute
(inside the yellow walls)

Although the system has a facility for identi-
fying and correcting split-ups and run-ons based
on a complex interaction between the dictio-
nary, the idiom list, the compound grammar
and the syntactic grammar, this facility has not
been fully developed yet, and will therefore not
be described any further here. More details can
be found in (Paggio, 1999).

4 T h e g r a m m a r

The grammar is an augmented context-free
grammar consisting of rewrite rules where sym-
bols are associated with features. Error weights
and error messages can also be at tached to ei-
ther rules or single features. The rules are ap-
plied by unification, but in cases where one or
more features do not unify, the offending fea-
tures will be overridden.

257

In the current version of the grammar~ only
the structures relevant to the error types we
want the system to deal with - in other words
nominal phrases and verbal groups - are ac-
counted for in detail. The analysis produced is
thus a kind of shallow syntactic analysis where
the various sentence consti tuents are at tached
under the topmost S node as fragments.

For example, adjective phrases can be anal-
ysed as fragments, as shown in the following
rule:

Fragment ->
AP "?Fragment AP rule":2

To indicate that the fragment analysis is not
optimal, it is associated with an error weight,
as well as an error message to be used for de-
bugging purposes (the message is not visible to
the end user). The weight penalises parse trees
built by applying the rule. The rule is used e.g.
to analyse an AP following a copula verb as in:

(5) De projekter er ikke interessante.
(Those projects are not interesting)

The main motivation for implementing a
grammar based on the idea of fragments was
efficiency. Furthermore, the fragment s t rategy
could be implemented very quickly. However,
as will be clarified in Section 5, this s t rategy is
sometimes responsible for bad flags.

4 .1 F e a t u r e m i s m a t c h e s

As an alternative to the fragment analysis, APs
can be at tached as daughters in NPs. This is of
course necessary for the t rea tment of agreement
in NPs, one of the error types targeted in our
application. This is shown in the following rule:

NP(def Gender PersNumber) ->
Det (def Gender PersNumber)
AP(def _ _)
N(indef Gender:9- PersNumber)

The rule will parse a correct definite N P such
a s :

(6)

bu t also

(7)
(S)

de interessante projekter
(the interesting projects)

de *interessant projekter
de interessante *projekterne

T h e feature overriding mechanism makes it
possible for the system to suggest interessante
as the correct replacement in (7), and projekter
in (8). Let us see how this is done in more de-
tail for example (7). The parser tries to apply
the NP rule to the input string. The rule states
that the adjective phrase must be definite (AP
(def _ _)). Bu t the dictionary entry correspond-
ing to interessant bears the feature 'indef'. The
parser will override this feature and build an
NP according to the constraints expressed by
the rule. At this point, a new dict ionary lookup
is performed, and the definite form of the ad-
jective can be suggested as a replacement.

Weights are used to control rule interaction
as well as to establish priorities among features
tha t may have to be overridden. For example
in our N P rule, a weight has been at tached to
the Gender feature in the N node. The weight
expresses the fact that it costs more to over-
ride gender on the head noun than on the de-
terminer or adjective. The rationale behind this
is the fact tha t if there is a gender mismatch,
the parser should not t ry to find an alternative

• form of the noun (which does not exist), bu t if
necessary override the gender feature either on
the adjective or the determiner.

4.2. C a p t u r i n g s t r u c t u r a l e r r o r s in
g r a m m a r r u l e s

To capture s tructural errors, the formalism al-
lows the grammar writer to write so-called error
rules. The syntax of error rules is very similar
to that used in 'normal' rules, the only differ-
ence being that an error rule must have an er-

• ror weight and an error message at tached to it.
The purpose of the weight is to ensure that e r -
ror rules are applied only if 'normal ' rules are
not applicable. The error message can serve two
purposes. Depending on whether it is s ta ted as
an implicit or an explicit message (i.e. whether
it is preceded by a question mark or not), it will
appear in the log file where it can be used for
debugging purposes, or in the ou tpu t text as a
message to the end user.

The following is an error rule example.

VGroup(_ finite Tense) ->
V(_ finite:4 Tense)
V(_ finite:4 _)

"Sequence of two finite verbs":4

, ' j r - O 258

Error type Total Flagged Hits Misses No suggs
Errors in single words 81 69 (85.2%) 35 (50.8%) 11 (15.9%) 23 (33.3%)
Errors in compounds 42 28 (66.7%) 8 (28.6%) 8 (28.6%) 12 (42.8%)
NP agreement errors 18 15 (83.3%) 15 (100.0%) 0 (0.0%) 0 (0.0%)
VP errors 13 8 (61.6%) 8 (100.0%) 0 (0 . 0 %) 0 (0.0%)
Total 154 120 (7 8 . 0 %) 6 6 (55.0%) 19 (15.8%) 35 (29.2%)

Figure 2: Error coverage and suggestion adequacy evaluated on test suites

A weight of 4 is a t tached to the rule as a
whole, but there are also weights at tached to the
'finiteness' feature on the daughters: their func-
tion is to make it costly for the system to apply
the rule to non-finite forms. In other words, the
feature specification 'finite' is made difficult to
override to ensure that it is indeed a sequence of
finite verbal forms the rule applies to and flags.

The rule will for example parse the verbal se-
quence in the following sentence:

(9) Jeg vil *bevarer (berate) rain frihed.
(*I want keep my freedom)

As a result of parsing, the system in this case
will not a t tempt to correct the wrong verbal
form, but issue the error message "Sequence of
two finite verbs".

Error rules can thus be used to explicitly
describe an error and to issue error messages.
However, so far we have made very limited use
of them, as controlling their interaction with
'normal ' rules and with the feature overriding
mechanism is not entirely easy. In fact, they are
consistently used only to identify incorrect se-
quences of finite verbal forms or sentences miss-
ing a finite verb. To this sparse use of error rules
corresponds, on the other hand, an extensive ex-
ploitation of the feature overriding mechanism.
This strategy allows us to keep the number of
rules in t h e g rammar relatively low, but relies
on a careful manual adjus tment of the weights
a t tached to the various features in the rules.

5 E v a l u a t i o n a n d C o n c l u s i o n

The project 's access to a set of parallel unedited
and proofread texts has made it possible to au-
tomate the evaluation of the system's linguis-
tic functionality. A tool has been implemented
to compare the results obtained by the sys-
tem with the corrections suggested by the pub-
lisher's human proofreaders in order to derive

measures telling us how well the system per-
formed on recall (lexical coverage as well as cov-
erage of errors), precision (percentage of cor-
rect flaggings), as well as suggestion adequacy
(hits, misses and no suggestions offered). The
reader is referred to (Paggio and Music, 1998)
for more details on the evaluation methodology.
The automatic procedure was used to evaluate
the system during development, and in connec-
tion with the user validation. Testing was done
on constructed test suites displaying examples
of the errors targeted in the project and with
text excerpts from the parallel corpora~

Figure 2 shows error recall and suggestion ad-
equacy figures for the various error types repre-
sented in the test suites. These figures are very
positive, especially with regard to the t rea tment
of g rammar errors. To make a comparison with
a commercial product, the Danish version of the
spelling and grammar checker provided by Mi-
crosoft Word does not flag any of the g rammar
errors.

Figure 3 shows how the system performed on
one of the test corpora. The corpus was assem-
bled by mixing short excerpts containing rele-
vant g rammar errors and randomly chosen text.
Since unlike test suites, the corpus also contains
correct text, the figure this t ime also shows lex-
ical coverage and precision figures. The corpus
consists of 278 sentences, with an average length
of 15.18 words per sentence. It may be sur-
prising to see that it contains a limited number
of errors, but it must be remembered that the
texts targeted in the project are wri t ten by ex-
perienced journalists.

The corpus was processed in 58 cpu-seconds
on an HP 9000/B160. As expected, the system
performs less well than on the test suites, and in
general precision is clearly too low. However, we
still consider these results encouraging given the
relatively small resources the project has been
able to spend on grammar development, and we

259

Recall
4220 total words
4157 valid words

3996 (96.1%) valid words accepted
161 (3.9%) valid words rejected

63 invalid words (real errors)
36 (57.1%) real errors spotted (good flags)
27 (42.9%) real errors missed

Precision
175 flaggings

36 (20.6%) good flags
139 (79.4%) bad flags (false positives)

Suggestion adequacy
36 good flags

15 (41.7%) hits (initial suggestion correct)
8 (22.2%) misses (suggestions offered, none correct)

13 (36.1%) with no suggestions offered

Figure 3: Test corpus evaluation

believe they can be improved.

We regard error coverage as quite satisfac-
tory for a research prototype. In a comparative
test made on a similar (slightly smaller) corpus,
SCARR/E obtained 58.1% error coverage, and
Word 53.5%. To quote a figure from another
recently published test (Martins et al., 1998),
the ReGra system is reported to miss 48.1%
real errors. It is worth noting that ReGra has
much more extensive linguistic resources avail-
able than SCARRIE, i.e. a dictionary of 1.5
million words and a grammar of 600 production
rules. Most of the errors not found by SCAR-
RIE in the test have to do with punctuation
and other stylistic matters not treated in the
project. There are also, however, agreement er-
rors which go unnoticed. These failures are due
to one of two reasons: either that no parse has
been produced for the sentence in question, or
that the grammar has produced a wrong analy-
sis.

The precision obtained is at least at first sight
much too low. On the same test corpus, how-
ever, Word only reached 15.9% precision. On
closer inspection, 72 of the bad flags produced
by SCARRIE turned out to be due to unrecog-
nised proper names. Disregarding those, preci-
sion goes up to 34.9%. As was mentioned early,
SCARRIE has a facility for guessing unknown
proper names on the basis of their frequency
of occurrence in the text. But since the test

corpus consists of Short unrelated excerpts, a
large number of proper names only occur once
or twice. To get an impression of how the sys-
tem would perform in a situation where the
same proper names and unknown words had a
higher frequency of occurrence, we doubled the
test corpus by simply repeating the same text
twice. As expected, precision increased. The
system produced 178 flags, 60 of which were
correct (39.7%). This compares well with the
40% precision reported for instance for ReGra.

In addition to the problem of unkown proper
names, false flags are related to unrecognised
acronyms and compounds (typically forms con-
taining acronyms or dashes), and a not very pre-
cise treatment of capitalisation. Only 13 false
flags are due to wrong grammar analyses caused
either by the fragment approach or by the gram-
mar's limited coverage. In particular, genitive
phrases, which are not treated at the moment,
are responsible for most of these false alarms.

In conclusion, we consider the results ob-
tained so far promising, and the problems re-
vealed by the evaluation tractable within the
current system design. In particular, future
development should focus on treating stylistic
matters such as capitalisation and punctuation
which have not been in focus in the current
prototype. The coverage of the grammar, in
particular the treatment of genitive phrases,
should also be further developed. The data pro-

260

vided by the evaluation reported on in this pa-
per, however, are much too limited to base fur-
ther development on. Therefore, more exten-
sive testing and debugging should also be car-
ried out.

In addition, two aspects of the system that
have only be touched on in this paper would
be worth further attention: one is the mecha-
nism for the treatment of split-ups and run-ons,
which as mentioned earlier is not well-integrated
at the moment; the other is the weight adjust-
ment process, which is done manually at the
moment, and for which the adoption of a semi-
automatic tool could be considered.

R e f e r e n c e s

A. Bernth. 1997. EasyEnglish: a tool for im-
proving document quality. In Proceedings of
• the Fifth Conference on Applied Natural Lan-
guage Processing.

A. Bolioli, L. Dini, and G. Malnati. 1992.
JDII: Parsing Italian with a robust constraint
grammar. In Proceedings of COLING:92,
pages 1003-1007.

Flora Ram~rez Bustamante and Fer-
nando S£nchez L@on. 1996. GramCheck: A
grammar and style checker. In Proceedings
of COLING-96, pages 175-181, Copenhagen,
Denmark.

Peter Molb~ek Hansen. 1999. Grapheme-to-
phoneme rules for the Danish component
of the SCARRIE project. In Hanne E.
Thomsen and Sabine'Kirchmeier-Andersen,
editors, Datalingvistisk Forenings drsmcde
1998 i Kcbehavn, Proceedings, number 25 in
LAMBDA, pages 79-91. Inst i tut for datal-
ingvistik, Handelshcjskolen i Kcbenhaven.

Anna S£gvall Hein. 1998. A chart-based frame-
work for grammar checking: Initial studies.
In Proceedings of Nodalida-98.

T o m ~ Holan, Vladislav Kubofi, and Mar-
tin Pl£tek. 1997. A prototype of a gram-
mar checker for Czech. In Proceedings of
ANLP'97.

Karen Kukich. 1992. Techniques for automati-
cally correcting words in text. A CM Comput-

_ ing Surveys, 24(4):377-439.
Ronaldo Teixeira Martins, Ricardo Hasegawa,

Maria Volpe Nunes, Gisele Monthila, and Os-
valdo Novais De Oliveira Jr. 1998. Linguistic
issues in the development ofReGra: a gram-

mar Checker for Brazilian Portuguese. Natu-
ral Language Engineering, 4(4):287-307, De-
cember.

Patrizia' Paggio and Bradley Music. 1998. Eval-
uation in the SCARRIE project. In Pro-
ceedings of the First International Conference
on Language Resources ~ Evaluation, pages
277-282. Granada, Spain.

Patrizia Paggio. 1999. Treatment of grammat-
ical errors and evaluation in SCARRIE. In
Hanne E. Thomsen and Sabine Kirchmeier-
Andersen, editors, Datalingvistisk Forenings
drsmCde 1998 i KCbehavn, Proceedings, num-
ber 25 in LAMBDA, pages 65-78. Insti-
tut for datalingvistik, Handelshcjskolen i
Kcbenhaven.

Claus Povlsen. 1998. Three types of gram-
matical errors in Danish. Technical report,
Copenhagen: Center for Sprogteknologi.

Olga Rambell. 1997. Error typology for auto-
matic proof-reading purposes. Technical re-
port, Uppsala: Uppsala University. :

Brigitte van Berkel and Koenra~d De Smedt.
1988. Triphone analysis: a combined method
for the correction of orthographical and ty-
pographical errors. In Proceedings of the 2nd
conference on Applied Natural Language Pro-
cessing, pages 77-83. ACL, Austin.

T h e o Vosse. 1991. Detection and correction
of morpho-syntactic errors in shift-reduce
parsing. In R. Heemels, A. Nijholt, and
K. Sikkel, editors, Tomita's Algorithm: Ex-
tensions and Applications, number 91-68 in
Memoranda Informatica, pages 69-78. Uni-
versity of Twente/

Theo Vosse. 1992. Detecting and correcting
morpho-syntactic errors in real texts. In Pro-
ceedings of the Third Conference on Applied
Natural Language Processing, pages 111-118,
Trento, Italy.

Theo G. Vosse. 1994. The Word Connection -
Grammar-based Spelling Error Correction in
Dutch. Ph.D. thesis, Rijksuniversiteit at Lei-
den: the Netherlands. ISBN 90-75296-01-0.

261

