
PartslD: A Dialogue-Based System for Identifying Parts for Medical
Systems

Amit BAGGA, Tomek STRZALKOWSKI, and G. Bowden WISE
Information Technology Laboratory

GE Corporate Research and Development
1 Research Circle

Niskayuna, USA, NY 12309
{ bagga, strzalkowski, wisegb } @crd.ge.com

Abstract

This paper describes a system that
provides customer service by allowing
users to retrieve identification numbers of
parts for medical systems using spoken
natural language dialogue. The paper also
presents an evaluation of the system
which shows that the system successfully
retrieves the identification numbers of
approximately 80% of the parts.

Introduction

Currently people deal with customer service
centers either over the phone or on the world
wide web on a regular basis. These service
centers support a wide variety of tasks including
checking the balance of a bank or a credit card
account, transferring money from one account to
another, buying airline tickets, and filing one's
income tax returns. Most of these customer
service centers use interactive voice response
(IVR) systems on the front-end for determining
the user's need by providing a list of options that
the user can choose from, and then routing the
call appropriately. The IVRs also gather
essential information like the user's bank
account number, social security number, etc.
For back-end support, the customer service
centers use either specialized computer systems
(example: a system that retrieves the account
balance from a database), or, as in most cases,
human operators.

However, the IVR systems are unwieldy
to use. Often a user's needs are not covered by
the options provided by the system forcing the
user to hit 0 to transfer to a human operator. In

addition, frequent users often memorize the
sequence of options that will get them the
desired information. Therefore, any change in
the options greatly inconveniences these users.
Moreover, there are users that always hit 0 to
speak to a live operator because they prefer to
deal with a human instead of a machine.
Finally, as customer service providers continue
to rapidly add functionality to their IVR
systems, the size and complexity of these
systems continues to grow proportionally. In
some popular systems like the IVR system that
provides customer service for the Internal
Revenue Service (IRS), the user is initially
bombarded with 10 different options with each
option leading to sub-menus offering a further 3-
5 options, and so on. The total number of nodes
in the tree corresponding to the IRS' IVR system
is quite large (approximately 100) making it
extremely complex to use.

Some customer service providers have
started to take advantage of the recent advances
in speech recognition technology. Therefore,
some of the IVR systems now allow users to say
the option number (1, 2, 3 etc.) instead of
pressing the corresponding button. In addition,
some providers have taken this a step further by
allowing users to say a keyword or a phrase
from a list of keywords and/or phrases. For
example, AT&T, the long distance company,
provides their users the following options:
"Please say information for information on
placing a call, credit for requesting credit, or
operator to speak to an operator."

However, given the improved speech
recognition technology, and the research done in
natural language dialogue over the last decade,
there exists tremendous potential in enhancing

29

these customer service centers by allowing users
to conduct a more natural human-like dialogue
with an automated system to provide a
customer-friendly system. In this paper we
describe a system that uses natural language
dialogue to provide customer service for a
medical domain. The system allows field
engineers to call and obtain identification
numbers of parts for medical systems using
natural language dialogue. We first describe
some work done previously in using natural
language dialogue for customer service
applications. Next, we present the architecture
of our system along with a description of each of
the key components. Finally, we conclude by
providing results from an evaluation of the
system.

1. Previous Work

As mentioned earlier, some customer service
centers now allow users to say either the option
number or a keyword from a list of
options/descriptions. However, the only known
work which automates part of a customer service
center using natural language dialogue is the one
by Chu-Carroll and Carpenter (1999). The
system described here is used as the front-end of
a bank's customer service center. It routes calls
by extracting key phrases from a user utterance
and then by statistically comparing these phrases
to phrases extracted from utterances in a training
corpus consisting of pre-recorded calls where
the routing was done by a human. The call is
routed to the destination of the utterance from
the training corpus that is most "similar" to the
current utterance. On occasion, the system will
interact with the user to clarify the user's request
by asking a question. For example, if the user
wishes to reach the loan department, the system
will ask if the loan is for an automobile, or a
home. Other related work is (Georgila et al.,
1998).

While we are aware of the work being
done by speech recognition companies like
Nuance (www.nuance.com) and Speechworks
(www.speechworks.com) in the area of
providing more natural language dialogue-based
customer service, we are not aware of any
conference or journal publications from them.
Some magazine articles which mention their

work are (Rosen 1999; Rossheim 1999;
Greenemeier 1999 ; Meisel 1999). In addition,
when we tried out a demo of Nuance's systems,
we found that their systems had a very IVRish
feel to them. For example, if one wanted to
transfer $50 from one account to another, the
system would first ask the account that the
money was coming from, then the account that
the money was going to, and finally, the amount
to be transferred. Therefore, a user could not
say "I want to transfer $50 from my savings
account to my checking account" and have the
system conduct that transaction.

In addition to the works mentioned above,
there have been several classic projects in the
area of natural language dialogue like
TRAINS/TRIPS project at Rochester (Allen et
al., 1989, 1995, 1996), Duke's Circuit-Fixit-
Shoppe and Pascal Tutoring System (Biermann
et al., 1997; 1995), etc. While the Circuit-Fixit-
Shoppe system helps users fix a circuit through a
dialogue with the system, the TRIPS and the
TRAINS projects allow users to plan their
itineraries through dialogue. Duke's Pascal
tutoring system helps students in an introductory
programming class debug their programs by
allowing them to analyze their syntax errors, get
additional information on the error, and learn the
correct syntax. Although these systems have
been quite successful, they use detailed models
of the domain and therefore cannot be used for
diverse applications such as the ones required
for customer service centers. Other related work
on dialogue include (Carberry, 1990; Grosz and
Sidner, 1986; Reichman, 1981).

2. PartslD: A System for Identification
of Parts for Medical Systems

Initially, we were approached by the medical
systems business of our company for help in
reducing the number of calls handled by human
operators at their call center. An analysis of the
types of customer service provided by their call
center showed that a large volume of calls
handled by their operators were placed by field
engineers requesting identification numbers of
parts for various medical systems. The ID
numbers were most often used for ordering the
corresponding parts using an automated IVR
system. Therefore, the system we have built

30

Figure 1. PartslD System Architecture

W
I Parser l

~ User

D i a l o g u e M a n a g e r

F . , .

pros entetion

helps automate some percentage of these calls
by allowing the engineer to describe a part using
natural language. The rest of this section
describes our system in detail.

2.1 D a t a

The database we used for our system was the
same as the one used by the operators at the call
center. This database consists of the most
common parts and was built by the operators
themselves. However, the data contained in the
database is not clean and there are several types
of errors including mis-spellings, use of non-
standard abbreviations, use of several different
abbreviations for the same word, etc.

The database consists of approximately
7000 different parts. For each part, the database
contains its identification number, a description,
and the product (machine type) that it is used in.
The descriptions consist of approximately
60,000 unique words of which approximately
3,000 are words which either are non-standard
abbreviations or are unique to the medical
domain (example: collimator).

Due to the large size of the database, we
did not attempt to clean the data. However, we
did build several data structures based on the
database which were used by the system. The
primary data structures built were two inverted
hash tables corresponding to the product, and the
part description fields in the database. The
inverted hash tables were built as follows:
1) Each product and part description field

was split into words.

2) Stop-words (words containing no
information like: a, the, an, etc.) were
filtered.

3) Each remaining word was inserted as the
index of the appropriate hash table with
the identification number of the part
being the value corresponding to the
index.

Therefore, for each non-stop-word word used in
describing a part, the hash table contains a list of
all the parts whose descriptions contained that
word. Similarly, the products hash table
contains a list of all parts corresponding to each
product word.

2.2 S y s t e m Architecture

The architecture of the system is shown in
Figure 1. The system was designed in a manner
such that it could be easily ported from one
application to another with minimal effort other
than providing the domain-specific knowledge
regarding the new application. Therefore, we
decided to abstract away the domain-specific
information into self-contained modules while
keeping the other modules completely
independent. The domain-specific modules are
shown in the dark shaded boxes in Figure I.
The remainder of this section discusses each of
the modules shown in the system architecture.

2.2.1 The Speech Recognition System (ASR)
Since customer service centers are meant to be
used by a variety of users, we needed a user-
independent speech recognition system. In

31

addition, since the system could not restrict the
manner in which a user asked for service, the
speech recognition system could not be
grammar-based. Therefore, we used a general
purpose dictation engine for the system. The
dictation system used was Lernout & Hauspie's
VoiceXPress system (www.lhs.com). Although
the system was general purpose, we did provide
to it the set of keywords and phrases that are
commonly used in the domain thereby enabling
it to better recognize these domain-specific
keywords and phrases. The keywords and
phrases used were simply the list of descriptions
and product names corresponding to each part in
the database. It should be noted that the set of
domain-specific keywords and phrases was
provided to the speech recognition system as a
text document. In other words, the training was
not done by a human speaking the keywords and
phrases into the speech recognition system. In
addition, the speech recognition system is far
from perfect. The recognition rates hover
around 50%, and the system has additional
difficulty in identifying product names which
are most often words not found in a dictionary
(examples: 3MlaserCam, 8000BUCKY, etc.).

2.2.2 Parser and the Lexicon

The parser is domain-driven in the sense that it
uses domain-dependent information produced by
the lexicon to look for information, in a user
utterance, that is useful in the current domain.
However, it does not attempt to understand fully
each user utterance. It is robust enough to
handle ungrammatical sentences, short phrases,
and sentences that contain mis-recognized text.

The lexicon, in addition to providing
domain-dependent keywords and phrases to the
parser, also provides the semantic knowledge
associated with each keyword and phrase.
Therefore, for each content word in the inverted
hash tables, the lexicon contains entries which
help the system determine whether the word was
used in a part description, or a product name. In
addition, the lexicon also provides the semantic
knowledge associated with the pre-specified
actions which can be taken by the user like
"operator" which allows the user to transfer to
an operator, and "stop," or "quit" which allow
the user to quit the system. Some sample entries
are:

collimator => (description_word, collimator)
camera => (product_word, camera)
operator => (user action, operator)
etc.

The parser scans a user utterance and
returns, as output, a list of semantic tuples
associated with each keyword/phrase contained
in the utterance. It is mainly interested in "key
words" (words that are contained in product and
part descriptions, user action words, etc.) and it
ignores all the other words in the user utterance.
The parser also returns a special tuple containing
the entire input string which may be used later
by the context-based parser for sub-string
matching specially in cases when the DM has
asked a specific question to the user and is
expecting a particular kind of response.

2.2.3 The Filler and Template Modules

The filler takes as input the set of tuples
generated by the parser and attempts to check
off templates contained in the templates module
using these tuples, The set of templates in the
templates module contains most of remaining
domain-specific knowledge required by the
system. Each template is an internal
representation of a part in the database. It
contains for each part, its ID, its description, and
the product which contains it. In addition, there
are several additional templates corresponding to
pre-specified user actions like "operator," and
"quit." A sample template follows:

tl__I = (

'product' = > 'SFD',
'product__ids' = > 2229005"
'product_descriptions' => 'IR RECEIVER PC
BOARD CI104 BISTABLE MEMORY')

For each tuple input from the parser, the
filler checks off the fields which correspond to
the tuple. For example, if the filler gets as input
(description_word, collimator), it checks off the
description fields of those templates containing
collimator as a word in the field. A template is
checked off iff one or more of its fields is
checked off. In addition, the filler also
maintains a list of all description and product
words passed through the tuples (i.e. these words

32

have been uttered by the user). These two lists
are subsequently passed to the dialogue
manager.

Although the filler does not appear to be
very helpful for the current application domain,
it is an important part of the architecture for
other application domains. For example, the
current PartslD system is a descendant from an
earlier system which allowed users to process
financial transactions where the filler was
instrumental in helping the dialogue manager
determine the type of transaction being carried
out by the user (Bagga et al., 2000).

2.2.4 The Dialogue Manager (DM)
The DM receives as input from the filler the set
of templates which are checked off. In addition,
it also receives two lists containing the list of
description words, and product word uttered by
the user. The DM proceeds using the following
algorithm:
1) It first checks the set of checked off

templates input from the filler. If there is
exactly one template in this set, the DM asks
the user to confirm the part that the template
corresponds to. Upon receipt of the
confirmation from the user, it returns the
identification number of the part to the user.

2) Otherwise, for each description word uttered
by the user, the DM looks up the set of parts
(or templates) containing the word from the
descriptions inverted hash table. It then
computes the intersection of these sets. If
the intersection is empty, the DM computes
the union of these sets and proceeds treating
the union as the intersection.

3) If the intersection obtained from (2) above
contains exactly one template, the DM asks
the user to confirm the part corresponding to
the template as in (1) above.

4) Otherwise, the DM looks at the set of
product words uttered by the user. If this set
is empty, the DM queries the user for the
product name. Since the DM is expecting a
product name here, the input provided by the
user is handled by the context-based parser.
Since most product names consist of non-
standard words consisting of alpha-numeric
characters (examples: AMX3,
8000BUCKY, etc.), the recognition quality
is quite poor. Therefore, the context-based

parser ranks the input received from the user
using a sub-string matching algorithm that
uses character-based unigram and bigram
counts (details are provided in the next
section). The sub-string matching algorithm
greatly enhances the performance of the
system (as shown in the sample dialogue
below).

5) If the set of product words is non-empty, or
if the DM has successfully queried the user
for a product name, it extracts the set of
parts (templates) containing each product
word from the product words inverted hash
table. It then computes an intersection of
these sets with the intersection set of
description words obtained from (2) above.
The resulting intersection is the joint product
and description intersection.

6) If the joint intersection has exactly one
template, the DM proceeds as in (1) above.
Alternatively, if the number of templates in
the joint intersection is less than 4, the DM
lists the parts corresponding to each of these
and asks the user to confirm the correct one.

7) If there are more than 4 templates in the
joint intersection, the DM ranks the
templates based upon word overlap with the
description words uttered by the user. If the
number of resulting top-ranked templates is
less than 4, the DM proceeds as in the
second half of (6) above.

8) If the joint intersection is empty, or in the
highly unlikely case of there being more
than 4 top-ranked templates in (7), the DM
asks the user to enter additional
disambiguating information.

The goal of the DM is to hone in on the part
(template) desired by the user, and it has to
determine this from the set of templates input to
it by the filler. It has to be robust enough to deal
with poor recognition quality, inadequate
information input by the user, and ambiguous
data. Therefore, the DM is designed to handle
these issues. For example, description words
that are mis-recognized as other description
words usually cause the intersection of the sets
of parts corresponding to these words to be
empty. The DM, in this case, takes a union of
the sets of parts corresponding to the description

333333

words thereby ensuring that the template
corresponding to the desired part is in the union.

The DM navigates the space of possibilities
by first analyzing the intersection of the sets of
parts corresponding to the description words
uttered by the user. If no unique part emerges,
the DM then checks to see if the user has
provided any information about the product that
the part is going to be used in. If no product was
mentioned by the user, the DM queries the user
for the product name. Once this is obtained, the
DM then checks to see if a unique part
corresponds to the product name and the part
description provided by the user. If no unique
part emerges, then the DM backs off and asks
the user to re-enter the part description.
Alternatively, if more than one part corresponds
to the specified product and part description,
then the DM ranks the parts based upon the
number of words uttered by the user.
Obviously, since the DM in this case uses a
heuristic, it asks the user to confirm the part that
ranks the highest. If more than one (although
less than 4) parts have the same rank, then the
DM explicitly lists these parts and asks the user
to specify the desired part. It should be noted
that the DM has to ensure that the information it
receives is actually what the user meant. This is
especially true when the DM uses heuristics, and
sub-string matches (as in the case of product
names). Therefore, the DM occasionally asks
the user to confirm input it has received.

2.2.5 The Sub-String Matching Algorithm
When the dialogue manager is expecting a
certain type of input (examples : product names,
yes/no responses) from the user, the user
response is processed by the context-based
parser. Since the type of input is known, the
context-based parser uses a sub-string matching
algorithm that uses character-based unigram and
bigram counts to match the user input with the
expectation of the dialogue manager. Therefore,
the sub-string matching module takes as input a
user utterance string along with a list of
expected responses, and it ranks the list of
expected responses based upon the user
response. Listed below are the details of the
algorithm :
1) The algorithm first concatenates the words

of the user utterance into one long string.

This is needed because the speech
recognition system often breaks up the
utterance into words even though a single
word is being said. For example, the
product name A M X l l 0 is often broken up
into the string 'Amex 110'.

2) Next, the algorithm goes through the string
formed in (1) and compares this character by
character with the list of expected responses.
It assigns one point for every common
character. Therefore, the expected response
'AMX3' gets three points for the utterance
'Amex110'.

3) The algorithm then compares the user
utterance with the list of expected responses
using 2 characters (bigrams) at a time. It
assigns 2 points for each bigram match. For
the example shown in (2), there are two
bigram matches: the first is that the
utterance starts with an 'A' (the previous
character is this case is the null character),
and the second is the bigram 'AM'.

4) The algorithm now compares the length of
the user utterance string and the expected
response. If the length of the two strings is
the same, then it assigns 2 points to the
expected response.

5) Finally, the algorithm calculates the number
of unique characters in the expected
response, and the user utterance string. If
these characters are the same, then it assigns
4 points to the expected response.

The expected response which has the highest
number of points is the most likely one. If two
or more expected responses have the same
number of points, then the system asks the user
to confh'm the correct one.

While we have not evaluated this sub-
string matching algorithm independently, a brief
evaluation in the context of the system resulted
in about 90% accuracy.

2.2.6 The Presentation Module

The presentation module works in one of two
possible modes: over the phone, and over the
web. This module takes as input a string
generated by the question-generation module
and presents this string to the user in the
appropriate mode of communication. If the
speech option for the system is turned on, the
speech-based output is generated using Lernout

"~ld.
34

and Hauspie's RealSpeak text-to-speech system.
Although the system currently cannot use both
modes of communication simultaneously, we
plan to incorporate this feature sometime in the
future.

2.2. 7 Robustness o f the System

As with any dialogue system, it is extremely
important for the system to be robust. Our
system has the following two features which
make it extremely robust:
1) The user can, at any given moment,

say operator to transfer to an
operator, quit~stop to exit, and
back~restart to start afresh.

2) When expecting a response from the
user, if the system does not receive an
expected input, it repeats the question
at most twice before transferring
control to an operator.

3. Sample Dialogues

This section gives examples of two sample
dialogues that occur during the testing of the
system. The system's response is indicated by
"S>", the user's response by "U>", and the
recognition of the user's response by "V>".

S> Welcome to the PartslD Center. Please tell
me the part that you want the ID for.
U> I need the ID for PCB Control.
V> I need the I the for PCB home thrown.

S> What product do you need this for?
U> COMPAX 40E
V> home fax for a O0 E

S> Is COMPAX 40E the product name that you
said?
U> yes
V> gas

S> Do you want the ID for PCB Display SID or
the PCB Control?
U> The second one.
V> The second home.

S> Do you need the ID for PCB Control used in
product COMPAX 40E?
U> yes
V> yes

S> The ID for PCB Control used in product
COMPAX 40E is 2168983. Do you wan to exit
or f ind the ID for another part ?
U> look up another part.

S> Welcome to the PartslD Center. Please tell
me the part that you want the ID for.
U> I need cable data for cradle 2M long.
V> I needed cable date them for cradle to be
loan.

S> Do you need this part for a ANGIXM2004,
or a AFM ?
U> AFM
V> a fan

S> Is AFM the product name that you said?
U> yes
V> yes

S> Do you want the ID for Cable Data for
Cradle 2M long ?
U> yes
V> yes

S> The ID for Cable Data for Cradle 2M long
used in product A F M is 45438628. Do you wan
to exit or f ind the ID for another part?
U> look up another part.

4. Evaluation and Results

The goal of our evaluation was to ensure that the
system helped a user successfully identify parts
irrespective of the performance of the speech
recognition engine for the user. In other words,
we wanted to see if the system was robust
enough to conduct transactions with a diverse
mix of users. We tested the system with 4
different users two of whom had foreign accents.
For each user, we randomly selected 20 parts
from the database. The results are summarized
in Table 1.

These results show that the system was
quite successful in handling requests from users
with a variety of accents achieving varying
recognition rates. Out of the 80 parts tested,
only twice did the user feel that he/she had to
transfer to an operator. The system successfully
retrieved the identification numbers of 79% of
the parts while transferring 19% of the cases to a
human operator because of extremely bad

:$5

User Parts
successfully

identified
15

Calls system
transfers to

operator
3

Calls user
transfers to

operator
2

System
prompts per

call
3.7

Relevant words
recognized per

part
2.5

18 2 0 3 2.35
13 7 0 2.5 1.65
17 3 0 2.9 2.7

Table 1: Summary of Results

recognition. We are planning on conducting a
more elaborate test which a larger set of users.

Conclusions

In this paper we have described a robust system
that provides customer service for a medical
parts application. The preliminary results are
extremely encouraging with the system being
able to successfully process approximately 80%
of the requests from users with diverse accents.

Acknowledgements

We wish to thank the GE Medical Systems team
of Todd Reinke, Jim Tierney, and Lisa
Naughton for providing support and funding for
this project. In addition, we also wish to thank
Dong Hsu of Lernout and Hauspie for his help
on the ASR and the text-to-speech systems.
Finally, we wish to thank the Information
Technology Laboratory of GE CRD for
providing additional funding for this project.

References

Allen, J. F. et al. (1995) The TRAINS Project: A
case study in building a conversational planning
agent. Journal of Experimental and Theoretical AI,
(7) 7-48.

Allen, J. F., Miller, B. W.; Ringer, E. K.; and
Sikorski, T. (1996) A Robust System for Natural
Spoken Dialogue. 34th Annual Meeting of the
ACL, Santa Cruz, 62-70.

Bagga, A., Stein G. C., and Strzalkowski, T. (2000)
FidelityXPress: A Multi-Modal System for
Financial Transactions. Proceedings of the 6 a~
Conference on Content-Based Multimedia
Information Access (RIAO'00).

Biermann, A.W.; Rodman, R.; Rubin, D.; and
Heidlage, J.R. (1985) Natural language with
discrete speech as a mode for human to machine

communication. Communication of the ACM
18(6): 628-636.

Biermann, Alan W.; Guinn, Curry I.; Fulkerson, M.:
Keim, G.A.; Liang, Z.; Melamed, D.M.; and
Rajagopalan, K. (1997) Goal-orientedMultimedia
Dialogue with Variable Initiative. Lecture Notes in
Artificial Intelligence 1325; Springer-Verlag, New
York; pp. 1-16.

Carberry, S. (1990) Plan Recognition in Natural
Language Dialogue. Cambridge, Mass.: The MIT
Press.

Chu-Carroll, J, and R. Carpenter. (1999) Vector-
Based Natural Language Call Routing. Journal of
Computational Linguistics, 25(30), pp. 361-388.

Georgila, K., A.Tsopanoglou, N.Fakotakis and
G.Kokkinakis. (1998) An Integrated Dialogue
System for the Automation of Call Centre Services.
ICLSP'98, 5th International Conference on Spoken
Language Processing, Sydney, Australia.

Grosz, B.J. and Sidner, C.L. (1986) Attentions,
intentions, and the structure of discourse.
Computational Linguistics 12(3): 175-204.

Greenemeier, L. (1999) Voice-Recognition
Technology Builds a Following. Information
Week, December 13.

Meisel, W. (1999) Can Speech Recognition Give
Telephones a New Face? Business
Communications Review, November 1.

Reichman, R.. (1981) Plain-speaking: A theory and
grammar of spontaneous discourse. PhD thesis,
Department of Computer Science, Harvard
University, Cambridge, Massachusetts.

Rosen, C. (1999) Speech Has Industry Talking.
Business Travel News, November.

Rossheim, J. (1999) Giving Voice to Customer
Service. Datamation, November 1.

36

