
IKML: A Markup Language for Collaborative Semantic
Annotation of Indic Texts

Chaitanya S Lakkundi
chaitanya.lakkundi@gmail.com

Gopalakrishnan Rajaraman
gopal.rajaraman@gmail.com

Sai Rama Krishna Susarla
sai.susarla@gmail.com

Siddhanta Knowledge Foundation, Chennai

Abstract

Bhāratīya śāstra texts employ highly structured and well-defined patterns of discourse
derived from Nyāya and Mīmāṃsā concepts. Though they are written in a flat text style,
making their knowledge structure explicit greatly helps in understanding and interpreting
their meaning. It also helps in building automated tools to mine these texts for insights,
and in building computational models of śāstras. However, transforming śāstra texts into
knowledge structures cannot yet be automated, as there is not enough annotated data
to train machine-learning tools.
In this paper, we describe a novel markup language to help this process, called IKML
(Indic Knowledge Markup Language) and a web user interface for collaborative semantic
annotation of content using IKML, called e-Bhashya.
IKML offers a new way to represent śāstra texts and annotate them with knowledge
metadata at multiple levels of abstraction in a collaborative manner. IKML is designed for
easy collaborative editing by śāstra scholars, version control, graphical visualization and
scripted processing. It employs best practices of popular languages such as YAML, XML
and JSON and is auto-convertible to these languages. This makes IKML representation
of śāstra texts amenable for processing by scripting and visualization tools for large-scale
knowledge mining. The key guiding principles for IKML design are brevity, readability,
extensibility, and minability.
IKML supports simultaneously representing an Indic language book as a scanned im-
age document, OCR-extracted text, proof-corrected text, sentence and word-split ver-
sion, grammar-tagged version, discourse-tagged version and a knowledge network using
tantrayuktis, tātparya liṅgas, saṅgatis and nyāya sambandhas as well as augmentation
with user notes, translations and comments. IKML supports tagging semantic relation-
ships at multiple levels: between granthas/treatises, vibhāgas/sections, vākyas/sentences
and viṣayas/concepts.

1 Introduction
Bhāratīya knowledge is embedded in millions of manuscripts, some printed and mostly hand-
written, in diverse fields, technical, religious, social. To mine such knowledge using the latest
AI technologies such as ChatGPT, a big hurdle is making them available in the form of pro-
cessable text in Indic languages. Indic languages are very different grammatically from English,
but have a common, rich grammatical structure derived from Sanskrit. Annotating these texts
grammatically (splitting the sandhis and samāsas) will greatly help in automating the further
linguistic process and semantic knowledge extraction. However, this step is highly ambiguous
and cannot be fully automated. The second major hurdle is the unfamiliarity of today’s technol-
ogists with the language and discursive style used in these texts. This can be overcome only by
involving traditional śāstra experts in the interpretation, and enabling them to annotate texts
with authentic śāstra-compliant notes.

True utilization of Indic knowledge for modern innovation is possible only after making Indic
textual heritage accessible and intelligible as above.

2 Outline of the Paper
The rest of the paper is organized as follows. First, we formally describe the problem we
are trying to address, followed by a set of requirements that any solution must meet. Then
we examine existing work to see how well they address the problem. Next, we describe the
architecture of our solution including its data model and service organization which are our
main contributions to the field. Next, we give an overview of our new Indic Knowledge Markup
Language (IKML) language that we designed for the purpose along with example snippets. We
describe the security and access control architecture, followed by our current implementation
of the architecture. Next, we discuss specific end-user services in Indic knowledge education
and research that our platform enables. We then present our evaluation of how the architecture
meets the requirements stipulated earlier. Finally, we outline the value of the platform for
various players in Indian Knowledge System (IKS) space, and conclude.

3 Problem Statement
Our objective is to develop a scalable architecture for multi-layered semantic annotation and
knowledge mapping of Indic language content.

Figure 1: Knowledge Transformation Pipeline

The above figure illustrates an end-to-end knowledge transformation pipeline needed to fully
unleash the value of Indic textual heritage. This involves converting scanned images of Indic
books to processable text, its linguistic analysis, conversion to knowledge models and finally
deploying those models in consumable applications.

3.1 Design Requirements
In this section, we outline a set of requirements that an annotation solution must meet to address
the problem effectively. This will help in evaluating existing solutions and in identifying gaps to
be filled.

3.1.1 Versatility
The solution should accommodate a variety of use cases spanning the entire knowledge processing
spectrum - media, text, syntax, concepts, discourse, knowledge.

• Image-to-text mapping

• Syntax and grammatical tagging

• Concept tagging and networking

• Discourse analysis from the perspective of multiple śāstras

• Knowledge mining

• Community commentary

3.1.2 Portability
Due to its need to be used over long-term over decades in the face of technology churn, the
solution must allow portability of its data as well as tools as they evolve. It cannot be locked
into specific data formats or tools.

3.1.3 Extensibility
The solution must allow the data to be manipulated by both humans and machines seamlessly.
For flexibility in adoption of technology, the data should be auto-convertible to/from popular
formats, and allow the use of powerful database and visualization tools. The solution must
provide an open platform to facilitate third-party app development and integration.

3.1.4 Security
The solution must offer social media user authentication, multi-layered access control to allow
multiple organizations to participate while protecting and monetizing their assets.

3.1.5 Scalability
The solution must scale to millions of users, thousands of content curators, billions of documents,
hundreds of organizations, dozens of languages and scripts.

4 Related Work

We discuss three types of existing work related to Indic knowledge processing: Indic book
repositories, Linguistic processing tools and Indic knowledge management platforms. Our effort
belongs to the third category and adds value to existing content as well as accommodating other
tools.

There are numerous online repositories of heritage Indic language content including digitally
scanned books and texts (archive.org, scribd, sanskritdocuments.org, Gita Supersite1, ebharati-
sampat.in, Wikisource, Digital Library of India2, Jain e-library3 to name a few). There are also
manuscript collections yet to be deciphered.

In the second category, numerous computational linguistics tools have been developed for
Indic language processing45678910. The bulk of these tools deal with grammatical analysis but
not with higher order knowledge tagging, representation and mining. Very few frameworks exist
for applying these tools on large content repositories such as the above.

There also exist efforts at devising content encoding format to capture the semantics of Indic
content. One of the prominent formats is the Text Encoding Initiative (TEI) (Ide, 1994)(Ide
and Véronis, 1995)(Cummings, 2013). It was established in 1988 to standardize the process
of annotating resources. In 1994, the TEI proposed a set of guidelines deriving some of its
principles from the Standard Generalized Markup Language (SGML). Most of the texts available

1https://www.gitasupersite.iitk.ac.in/
2https://ndl.iitkgp.ac.in/
3https://jainelibrary.org/
4https://sanskrit.uohyd.ac.in/
5https://sanskrit.inria.fr/
6http://sanskrit.jnu.ac.in/index.jsp
7https://www.cfilt.iitb.ac.in/wordnet/webswn/wn.php
8https://sanskritlibrary.org/
9https://sanskrit.iitk.ac.in/

10https://sambhasha.ksu.ac.in/

https://archive.org
https://sanskritdocuments.org
https://ebharatisampat.in
https://ebharatisampat.in
https://www.gitasupersite.iitk.ac.in/
https://ndl.iitkgp.ac.in/
https://jainelibrary.org/
https://sanskrit.uohyd.ac.in/
https://sanskrit.inria.fr/
http://sanskrit.jnu.ac.in/index.jsp
https://www.cfilt.iitb.ac.in/wordnet/webswn/wn.php
https://sanskritlibrary.org/
https://sanskrit.iitk.ac.in/
https://sambhasha.ksu.ac.in/

on websites such as GRETIL11, SARIT12, TITUS13 use this encoding format. At its inception,
it significantly facilitated NLP tasks by providing clear annotations for paragraphs, segments,
links, references, and more. However, as the standard gained traction and new features were
introduced, the number of tags expanded, with the current total reaching 588 elements14 and
275 distinctly-named attributes.

This extensive list of tags can make it challenging for users to remember and recall specific
tags. Specialized taggers (Scharf, 2018) have also been developed with the aim of addressing
this issue. While the taxonomy provided by TEI offers valuable documentation for derivative
works, we believe that its current complexity can be overwhelming for newcomers.

Additionally, for large-scale, collaborative annotation of the thousands of available Sanskrit
texts by śāstra scholars, it is essential to offer a compact, readable and intuitive syntax closer
to their conventions.

The START15 (Sanskrit Teaching, Annotation, and Research Tool), developed by researchers
at the University of Hyderabad (Nelakanti et al., 2024), integrates various tools including a
morphological analyzer, segmenter, and dependency parser, to create an E-Reader for accessing
Sanskrit literature. Users can import texts and annotate them with information such as anvaya,
sandhi splits, and morphological tags. Future releases of the tool are expected to support data
export in formats such as CONLL-U16.

To the best of our knowledge, the primary objective of the START tool is to establish a
platform focused on E-Reading through data annotation. However, it does not adhere to a
specific text-based format, instead relies on MongoDB for storing data, emphasizing instead
the use of its platform interface. This approach may complicate usability and accessibility for
users and researchers. Additionally, the platform currently lacks the capability for users to add
knowledge-level tags such as tantrayuktis and represent it in a meaningful way for interaction
with the text.

Neural approaches are also being used by many researchers for annotation and other NLP
tasks (Gupta et al., 2020)(Krishna et al., 2023). Efforts such as SanskritShala (Sandhan et
al., 2023) use neural networks to handle annotation tasks and offer an interface that enables
annotators to correct the system’s predictions. Lately, newer AI models are also being fine-tuned
for Sanskrit NLP tasks (Nehrdich et al., 2024).

E-bharatisampat17 is an online digital library that hosts various Sanskrit texts and enables
OCR and proof-reading using its platform. However, the platform is limited to proof-reading.
It does not support annotating the text.

Ambuda.org18 is a new addition to the E-Reader platform landscape, featuring a clean and
user-friendly interface for reading Sanskrit texts. It includes sandhi split and parse data from
Digital Corpus of Sanskrit19 (Hellwig, 2010 2021) and integrates multiple dictionaries for quick
reference. The platform also supports OCR, proofreading and tagging (POS) capabilities. Users
can also export data in plain text or XML format. However, as of now, Ambuda.org does not
support specialized annotations.

Sangrahaka (Terdalkar and Bhattacharya, 2021) is a tool for annotating and querying knowl-
edge graphs using the Neo4j DB backend (Terdalkar et al., 2023). This platform supports
multiple types of annotations at knowledge level and has a detailed user interface. Although

11https://gretil.sub.uni-goettingen.de/
12https://sarit.indology.info/
13https://titus.uni-frankfurt.de/indexe.htm
14https://tei-c.org/release/doc/tei-p5-doc/en/html/REF-ELEMENTS.html
15https://sanskrit.uohyd.ac.in/start/
16https://universaldependencies.org/format.html
17https://www.ebharatisampat.in/
18https://ambuda.org/
19http://www.sanskrit-linguistics.org/dcs/index.php

https://gretil.sub.uni-goettingen.de/
https://sarit.indology.info/
https://titus.uni-frankfurt.de/indexe.htm
https://tei-c.org/release/doc/tei-p5-doc/en/html/REF-ELEMENTS.html
https://sanskrit.uohyd.ac.in/start/
https://universaldependencies.org/format.html
https://www.ebharatisampat.in/
https://ambuda.org/
http://www.sanskrit-linguistics.org/dcs/index.php

any specific annotation format isn’t supported, the platform supports directly querying Neo4j
DB using custom query templates. The relations can also be visualized using graphs. Antar-
lekhaka (Terdalkar and Bhattacharya, 2023) is another tool by the same authors to exclusively
perform annotation tasks in their custom format.

Vedavaapi (Susarla and Challa, 2019) has developed an end-to-end architecture for Indic
Knowledge processing. It made two design decisions: 1) using MongoDB as primary data store,
and 2) embedding relations as attributes of objects instead of as first-class objects themselves.
These decisions hurt its portability and extensibility. Vedavaapi had to build its own text search
infrastructure instead of piggybacking on web search engines to index its content. Secondly,
adding new knowledge tags by users wasn’t possible as schema is baked into Vedavaapi software
architecture. Several other frameworks also have these limitations.

Our solution is designed based on lessons learnt from these existing efforts.

5 Why a new Markup Language
There exist several languages that provide the expressive power needed for multi-layered knowl-
edge representation that we envision. They include XML, JSON, GraphML etc. Just like high-
level programming languages offer compact and natural abstractions for programmers compared
to assembly language, the purpose of IKML is to offer convenient higher level abstractions for
Indic Knowledge representation than existing markup languages. Its purpose is to augment
rather than replace other languages. We evaluate the suitability of various languages for our
task, using the following criteria.

5.1 Compact, Readable and Intuitive Syntax
We need a language that is easy to read and edit by humans who may not be programmers. XML
is too verbose and cluttered as it employs significant metadata text that is non-user content. So
are its variants such as GraphML, TEI, and to a lesser extent, JSON. YAML is more compact
and readable as it employs indentation for nesting and avoids beginning and end tag markers.

IKML adopts YAML’s syntax style but also avoids quoting user content and tag names for
compactness and readability. Consequently, the content formatted in IKML is smaller in size
compared to the same text in JSON, YAML, and XML.

5.2 Customizable and Validated Schema
Since we cannot anticipate all annotations ahead of time, we need the ability to specify schema
and content in the same language to make content self-describing. To ensure development of
tools for visualization and processing of content, we need builtin-support for schema validation
as well. YAML falls short in this feature. IKML supports schema description in the same syntax
as annotations.

5.3 Convenient Śāstric Abstractions for Experts
We need the ability to predefine śāstra-specific concepts as annotations for śāstra experts to use.
IKML’s schema definition with predefined values for tag attributes helps in this regard.

5.4 Non-hierarchical Knowledge Structures
Most markup languages only support hierarchical nesting of tags. However, knowledge struc-
tures tend to be non-hierarchical where relations between entities can impose a graph structure
including cycles. The relation types are also diverse. To support them, IKML offers two features:
1) auto-assignment of globally unique ID to every annotation, and 2) relation to be treated as a
first-class annotation (with its own globally unique ID) that refers to its endpoints via their IDs.
Together, these features enable arbitrary annotations or text segments to be linked to express
non-hierarchical relations. While currently, we use only pairwise relations, IKML allows more
than 2 entities per relation to support hypergraphs.

6 E-Bhashya Architecture
In this section, we present E-bhashya, our proposed solution for collaborative human+machine
annotation of Indic documents meeting the requirements outlined earlier.

6.1 Features at a Glance
• Google search for the entire library content for free.
• Book access based on subscription.
• Users can make comments and notes that others can see and respond to. Enables online

communities around libraries.
• Śāstric analysis of content.

6.2 Data Model
At the core of e-Bhashya architecture is a data model for unified representation of both data and
metadata at multiple levels of abstraction. In this model, entities are represented as a hierarchy
of nested tags with attributes to capture tag properties. The schema of the tag hierarchy can
also be described in the same data model, making it self-describing and extensible by users for
multiple purposes.

A tag can have multiple instances of a subtag to express collections. But a tag can have only
one instance of an attribute. If the same attribute is specified multiple times for a tag, the last
value prevails.

To keep our data format tool- and database-neutral and enable web search, we chose to go
for a flat text representation of all data and metadata. While we could have used any popular
language for this representation such as JSON, YAML or XML, we devised a new markup
language for specific reasons: our data representation should be readable, compact, editable by
humans and amenable to intuitive change-tracking and version control using off-the-shelf tools
like Git.

We have devised a new markup language called the Indic Knowledge Markup Language
(IKML). IKML adopts best practices from multiple existing languages and is auto-convertible
to them for portability and ease of processing. It adopts an indentation-based syntax to express
nesting relations like YAML. It uses tags like XML but avoids its verbosity of explicit start and
end delimiters by going for indentation instead. That way, a tag’s name needs to be specified
only once. We give an overview of IKML syntax in a subsequent section.

In the following sections, we describe e-Bhashya’s objects, which can all be expressed using
IKML tag hierarchy model.

6.3 Object Types
At a high level, our data architecture supports building digitized online libraries of Indic doc-
uments with role-based access control at multiple granularities. A library is a collection of
granthas or books with common access control settings. A grantha is a multilingual document
- either text or multimedia. It can be divided into multiple sections, each called a vibhāga.
Vibhāgas are of two types: those that constitute a physical layout view (pages, blocks and
paragraphs) and a logical layout view (chapters, sections, sentences and words). Annotations
can be associated with any vibhāga. Annotations are logically grouped by śāstra, and represent
concepts specific to that śāstra (e.g., vyākaraṇa, nyāya, mīmāṃsā, tantrayukti, sāhitya, nāṭya).
All these objects are assigned globally unique ids (GUID), enabling them to be referenced,
accessed and shared over social media individually via URL.

Objects can be connected via śāstrically labeled relations called sambandhas in addition to
their inherent nesting (parent-child) relation. Sambandha is also a first-class object having its
own GUID. We currently support pairwise relations, but can extend to multi-object relations
later as need arises for hypergraphs.

6.4 Object Networking

Sambandhas enable networking objects into a variety of rich knowledge maps at multiple levels
of abstraction. We support three specific maps. A vākya map shown in Fig. 2 connects the
sentences of a discourse via semantic relations called tantrayuktis to reflect the grantha’s thought
flow as intended by its author (vivakṣā). It facilitates exploring and summarizing a text only
to a desired level of detail. A viṣaya map as shown in Fig. 4 connects words representing
technical concepts of a grantha via Nyāya-śāstra-recognized sambandhas. It represents the
ontology network of a grantha. The cypher queries used to create a viṣaya map are illustrated
below 6.4.1. A vibhāga map shown in Fig. 3 displays the physical and logical layout of
an object via the nesting hierarchy of parent-child relations (e.g., adhyayas, shlokas and their
padas).

Figure 2: Vākya Map of Tarkasaṅgraha

6.4.1 Cypher Queries to Create Viṣaya Map
Viṣaya map is a graph of interrelations between technical terms of a śāstra grantha. It is derived
from user-supplied annotation of nyāya sambandhas between words of vākyas denoting those
terms.

We extract smb tags denoting Nyāya sambandhas between vākyas, and build a new graph
with their src_phrase and target_phrase values as nodes.

WITH "https://api.siddhantakosha.org/ikmldata?gpath=libraries/smap-granthas/
Tarkasangraha-Moola/sambandhas-ikml.txt&fmt=neo4j" AS URL,
"libraries/smap-granthas/Tarkasangraha-Moola/sambandhas-ikml.txt" as GPATH

CALL apoc.load.json(URL) YIELD value WHERE value.`.srcid` IS NOT NULL AND
value.`.nyaya_sambandha` IS NOT NULL AND value.`.targetid` IS NOT NULL

MERGE (src:VSN content:value.`.src_phrase`, gpath: GPATH) MERGE (tar:VSN
content:value.`.target_phrase`, gpath: GPATH)

CREATE (src)-[smb:VISHAYA_SMB nyaya_sambandha: value.`.nyaya_sambandha`,
id:value.id]->(tar);

MATCH (n:VSN)-[smb:VISHAYA_SMB]->(m) WHERE n.gpath STARTS WITH
"libraries/smap-granthas/Tarkasangraha-Moola" RETURN n,smb,m;

Figure 3: Vibhāga Map of Rasārṇava grantha.

6.5 Agents for Access Control
An agent is one who can be given access to an object in a specified role that indicates the
operations allowed. Our architecture recognizes two types of agents: user and team. A user
denotes an individual with his/her email id as a unique identifier. A team is a collection of
users. A user can be part of multiple teams. Team membership is like a badge. A user is allowed
access to an object if one of the teams he/she belongs to has that access.

All of the entities above are described using IKML tags. Hence IKML is the uniform persistent
data format for everything in e-Bhashya.

6.6 Service Architecture
An annotated Indic document is represented as a plain text document in IKML format split
into one or more files with “.ikml” extension. We use GIT version-controlled repository to store
IKML files and track changes. The schema of IKML files is also described as an IKML file under
a special tag called ikml_schema. We import the tag tree of an IKML file into Neo4j graph
database to leverage the full power of its graph query language on IKML content.

Fig. 5 shows the architecture of e-Bhashya platform built to provide web-based graphical
visualization, navigation and editing of Indic documents stored in an IKML file hierarchy on a
cloud server.

Figure 4: Viṣaya Map of Tarkasaṅgraha for the phrase वायम ्

We have a frontend Wordpress website running e-Bhashya as an embedded application. The
application consists of a Javascript frontend interacting with a Python Flask backend server
providing RESTful API access to IKML doc repository. The backend API server interacts with
a Neo4j server, which caches IKML data as a graph for powerful visualization as concept maps.
The Wordpress server provides user login and authentication facilities for e-Bhashya service
using OpenAuth protocol via social-media accounts.

All these servers run in dedicated Docker containers. They can be scaled independently to
handle load via deployment in Kubernetes clusters, where each service has multiple docker
instances.

6.7 Web Search of e-Bhashya Content with Access Control
The Wordpress server also provides web access for search engine crawlers to index the IKML doc
repository, so the entire e-Bhashya content including docs and their annotations is searchable
with standard search engines like Google. We enforce access control on the searched content by
serving it via API-based URLs. We distinguish between search engine crawl requests and other
user requests using the user-agent field of the incoming HTTP request message.

6.8 Third-party Applications
E-Bhashya also offers an open platform for third-party applications to be developed and inte-
grated into its service. These applications can have a Python Flask backend and a Javascript
frontend that interact via a conduit wrapper API of e-Bhashya. E-Bhashya provides authenti-
cation and access control services transparently to applications so they can focus on their core
functionality. We have developed several applications using this facility: tag statistics display,
automatic word splitter, scanned PDF importer and an OCR proofreading editor.

6.9 Access Control
User access to objects is regulated via Access control lists (ACLs) assigned to objects. An
ACL is an IKML tag specifying an agent (user or team) and the allowed role, which indicates
the operations allowed. Multiple ACLs can be assigned to an object, and they apply to all
children. An ACL overrides those assigned to ancestor objects, enabling powerful expression of
rules and exceptions. When a user tries to access an object, the API server allows the operation

Figure 5: E-Bhashya Architecture

if it matches the first ACL in the object’s ancestor chain. Roles are explained in section 8.

7 Overview of IKML
In this section, we outline the IKML syntax and its salient features. Each line of an IKML
document looks as follows:

[tag attr1=val1 ..] text
IKML defines tags within square brackets [] to describe a document content semantically.

E.g., [va] denotes a vākya. Each tag and its content is given in its own line. A tag can have as
its children (denoted by indentation with 2 spaces),

• attributes that give further information about tag content. They are specified within []
prefixed by a dot “.”. E.g. [.vibhakti]

• Other tags which denote sub-annotations of the content. E.g., [pa] enumerates each pada
of the vākya separately. Repetition of same subtag multiple times denotes a collection.

An attribute can also be specified inline with the tag, e.g., [va label=”vākya”]. There are some
predefined attributes

• label: descriptive phrase for a tag
• rel_id: auto-filled serial number for multiple repetitions of same tag within its parent tag.
• rel_prefix: string to be prefixed with rel_id.
• id: auto-generated globally unique identifying string for the tag instance.

– id=<parent_tag.id>.<rel_prefix>-<rel_id>
– E.g. tarka.v-10 denotes 10th vākya of tarka book

• option: possible preset values of an attribute can be defined using its “option” sub-
attribute.

New tags can be defined along with their allowed sub tag hierarchy in a special tag called
ikml_schema. A special tag called [include] <file path or URL> can be used to include
IKML files in each other. This enables large documents to be modularly split into multiple

IKML files. Another special tag called [inline] is similar to include, but transparently makes
the inlined file’s content part of its parent file.

Content for a tag can be given after the tag in Unicode text without quotes. Leading and
trailing white space is ignored.

7.1 IKML Schema
The IKML schema currently in use is attached in Appendix A.

7.2 Sample IKML Snippet
A sample snippet of Tarkasaṅgraha text in IKML format is listed in Appendix B.

8 E-Bhashya Access Roles

E-Bhashya service offers a multi-tier subscription model via roles. The following agent roles are
supported:

• Public (no login needed): All content will be indexable by search engines, and show up in
standard web search results. Access to matched content will be login-protected with custom
views based on user privileges.

• Guest (free access with social media OAuth2 login): By default, anybody can login with
their social media id. They will be auto-registered with GUEST privileges. In this role,
users can view some books marked for free consumption and leave comments, but not
modify existing content except deleting their own comments.

• Subscriber (paid annual individual subscription): a subscriber has access to specific li-
braries. Can add private annotations to books in those libraries and share them with
public. They won’t be visible to other users directly.

• Contributor (upon invitation only): a contributor can edit all content of libraries for
which his team has access.

• Team Admin: The portal supports the concept of a team that can represent an institution
or a group of individuals. A team can have one or more subscribers with team admin
roles. This role allows them to control team membership, and access privileges to books
owned by the team.

• Super Admin: has full read/write access to all content and can change roles of users.

The table below lists the operations allowed for various roles. In the table below, CRUD
denotes Create, Read, Update and Delete operations. Each cell indicates which operations are
allowed for users in a given role on content of given type.

Role Own content Other content Own Annotations Other Annotations
Public R R
Guest R CRUD R
Subscriber CRUD R CRUD R
Contributor CRUD RU CRUD RUD
Team admin CRUD CRUD CRUD CRUD
Super admin CRUD CRUD CRUD CRUD

A library can be given access to other teams or public at large for specified roles.

9 Śāstra-compliant Notes
E-Bhashya platform offers a structured approach to annotating texts based on well-formed
śāstric conventions. These annotations can be machine-generated, manually-supplied, or manual
corrections of auto-generated content - appropriately marked as such for clarity. Annotations can
also be nested arbitrarily, enabling powerful expression. E-Bhashya allows API-based crawling
and annotation of its content. This allows machine-learning tools to mine and augment E-
Bhashya content.

• Vyākaraṇa Annotations: this involves splitting compound words into their components
by both sandhi and samāsa. Users can also add vyākaraṇa properties to words, such as
liṅga, vacana, vibhakti etc. They can also add higher order śābda bodha commentary.

• Sāhitya Annotations: this involves annotating a text with Sāhitya śāstra-based properties
such as chandas, alaṅkāra, bhāva, rasa, rīti, vṛtti, pāka etc.

• Nāṭya śāstra Annotations: This involves annotating a text or media clip with Nāṭyaśās-
tra concepts found in the clip such as mudrās, abhinaya, bhāva or rasa depicted.

• Nyāya Annotations: this involves tagging elements mentioned in a text and their inter-
relations based on Nyāya classification of padārthas and sambandhas.

• Tantrayukti Annotations: this involves tagging sentences of a text’s discourse by the
tantrayukti used to enable accurate interpretation. Relations among multiple vākyas can
also be tagged with sambandha tantrayuktis. This allows the semantic structure of a
discourse to be visualized and texts navigated as a graph / network by concepts. This
enables summarizing a book conceptually.

E-Bhashya platform provides a powerful way to network sentences, books and concepts as
well as to visualize and navigate books as networks.

10 Unstructured Notes
E-Bhashya platform allows generic user notes on any part of its books down to a single word.

• Translations
• Student notes and comments
• Expert opinions
• Question banks

11 Implementation and Status
We have implemented E-Bhashya service as part of an online library of Indic books and śāstra
treatises, called Siddhantakosha.org. It is hosted on a cloud server as a collection of Docker
containers backed by a GIT-controlled IKML file hierarchy.

We have created three libraries:

• e-Kosha consists of 1000 old scanned printed books whose pdfs have been converted to
IKML text and made searchable by content on Google.

• smap-granthas consists 23 seminal Sanskrit śāstra granthas in full Devanagari text, aug-
mented with vākya and viṣaya maps.

• imported books is a library of scanned printed pdf books stored elsewhere and imported
into our platform as IKML text.

We have released an open-source Python package called ikml_doc for ikml document pro-
cessing at pypi.org/project/ikml-doc with instructions on example usage. E-Bhashya uses this
package internally.

https://siddhantakosha.org/
https://pypi.org/project/ikml-doc/

11.1 E-Bhashya User Interface

The Web UI as shown in Fig. 6 consists of a tag navigation pane on the left, a tag attribute
viewer and editor pane on the right, an IKML document viewer in the middle. The UI offers
multiple views of an IKML document or section: as a clickable graph, as navigable tags or as
raw IKML source. All edits to IKML, when saved, result in GIT commits on behalf of currently
logged in user, allowing easy change tracking and undoing of erroneous updates.

So far, we have engaged dozens of remotely distributed Sanskrit students and scholars to
do collaborative vākya splitting of two major śāstra texts: Rasārṇava (108 chapters and 6000
shlokas), and Bṛhat saṃhitā (1000+ chapters). The UI allows easy editing and navigation from
a Smartphone as well as a computer, making it convenient for anytime, anywhere access.

Figure 6: Grantha View showing Tarkasaṅgraha text.

11.2 E-Bhashya API

The API server runs at api.siddhantakosha.org and exports the following endpoints.

GET /ikmldata Get IKML Data in various formats (JSON, IKML,
XML)

POST /ikmldata Save IKML Data
GET /schema Get Schema of a particular Tag name
GET /tpath/{tpath} Get Child Tags of a particular Tag path
GET /apps List Specs of registered third-party Apps
GET /app/{app_name}/{app_cmd} Execute an App’s backend API with appropriate

parameters

11.3 Third-party Applications

Here are a few applications built on e-Bhashya.

http://api.siddhantakosha.org/

11.4 Statistics
When this app is invoked on an IKML tag, it gives a count of all tags in its hierarchy. Below
is the output for a library of Śāstra granthas currently available on E-Bhashya platform. As
it states, we have 23 śāstra granthas totaling 37932 vākyas of which 4249 have been split by
Sandhi and samāsa. Tantrayuktis have been identified for 10700 vākyas. There are a total of
238124 padas, and 13570 vākya and Nyāya Sambandhas have been tagged.

Tag Name Count
grantha 23
va 37932
pa 238124
pa_top_level 225452
tantrayukti.vākya 10700
mimamsa 272
vyakarana.split 4249
smb 13570
su 3985
sh 5774

Table 1: Statistics of SMAP-Granthas Library

11.5 Pada splitter
Given a vākya that has been marked with delimiters indicating sandhi and samāsa components
(either manually or via a vākya splitter tool), this app auto-generates the padas as child tags of
the vākya, replacing existing padas if any.

For instance,
[va ...] abcdef ghj
 [vyakarana]
 [.src] manual
 [.split] a-b-c+d+e-f g-h+j
 [pa] a-b-c+d+e-f
 [.src] auto
 [pa] a-b-c
 [pa] a
 [pa] b
 [pa] c
 [pa] d
 [pa] e-f
 [pa] e
 [pa] f
 [pa] g-h+j
 [pa] g-h
 [pa] g
 [pa] h
 [pa] j
The [pa] tags are added by this app.

11.6 Scanned PDF Book Importer
Given the URL of a scanned PDF of a book and an e-Bhashya library, this app imports its
contents into the library as an IKML grantha (PDF to JSON to IKML text). The app invokes
Google vision API to run OCR and extract its text and layout in JSON format, and then
converts it into IKML at paragraph granularity. Subsequently, it splits the book’s entire text
into sentences and adds them as subtags of the grantha.

[grantha]
 [.url] …
 [inline] ocr-layout-ikml.txt
 [page]
 [block]
 [paragraph] …
 [paragraph] …
 [block]
 …
 [page]
 [inline] vakyas-ikml.txt
 [va] …
 [smb]
 [.target_id] <src_paragraph_id>
 [va] …
We have used this app to import a popular dharma śāstra reference text called Dharma Sindhu,

which is now available only in scanned PDF format. We invoked Google OCR to extract text
into JSON format and converted it to IKML. Below is a screenshot of the result, which shows
the source URL.

Figure 7: Displays the ”Dharma Sindhu” Grantha, which was directly imported into e-Bhashya
from archive.org.

Here is a size comparison of the book in various formats.

Book format Size
Scanned PDF 81 MB
OCR output in JSON 340 MB

File Format Layout File (MB) Vakyas File (MB) Total (MB)
IKML 3.9 5.9 9.8
JSON 5.5 10.5 16.0
XML 4.1 6.7 10.8
YAML 4.6 7.6 12.2

Note: Layout file contains the extracted text along with physical layout of every
page of the book. Vakyas file contains all the extracted vākyas from the book.

This table shows that IKML representation has the smallest file size. It is ~1.6 times more
compact than JSON for the same text content - 9.8MB vs. 16MB. The OCRed version in IKML
format of an 81MB scanned PDF image file is 3.9+5.9 = 9.8MB, roughly an 8x reduction in
size.

12 End-user Services

We envision the following consumer services to use the E-Bhashya portal.

• Śāstric Analysis of Web Content

• Training Datasets for Indic Knowledge processing Tool Development

• Online Courses

• Online Proficiency Tests

• Research Aids

12.1 Śāstric Analysis of Web Content
Bhāratīya Śāstras provide an alternative scientific framework and perspective to understand the
contemporary world and current events. By analysis, we mean describing/labelling those events
in śāstra’s technical terminology and conceptual categories, and predicting their evolution based
on śāstric models. This will eventually devise śāstric solutions to current problems.

For example, current geopolitics can be analyzed and predicted from nīti, artha and dharma
śāstras. Music and dance can be tagged with Indic Aesthetics concepts. Social media conversa-
tions can be tagged with Nyāya-based logic.

We call this Śāstra Prayoga, and use it to facilitate training and evaluation of śāstra students
in śāstric thinking. To facilitate such śāstric annotation, we envision developing browser plugins
to help users tag any web-based content with śāstra tags provided by E-Bhashya. Such tags will
be stored in E-Bhashya platform and overlaid on public websites for viewing by other users.

12.2 Training Datasets for Indic Knowledge Processing
E-Bhashya API allows its entire collection to be programmatically accessed and augmented.
For instance, its sandhi and samāsa-split sentences can be used to train AI models, which can
be redeployed for further automated linguistic tagging. Its manually tagged sentences with
tantrayuktis can be used to develop automatic tantrayukti identification tools.

E-Bhashya architecture provides a way to seamlessly integrate human and machine intelligence
for reliable knowledge processing at scale, and bring śāstra application to the mainstream.

12.3 Online Courses
E-Bhashya allows a rich and hands-on training mechanism for students of Bhāratīya knowl-
edge. It exposes students to a larger portion of text via self-study and guided assignments than
traditional teaching methods.

The Vākya map enables concept-based exploration of śāstra texts at progressively increasing
levels of detail comfortable to the reader. This is in contrast to a flat discourse, which can be
overwhelming.

Teaching a śāstra text using E-Bhashya platform involves giving reading assignments to stu-
dents, training and assessing the student’s ability to apply śāstric concepts practically. Teachers
can pose questions on a larger portion of a text, and students can submit answers directly on
the platform as their annotations. This allows peer learning, collaborative team projects and
multi-textual comparative studies along with project reports that can be built on by future
students over time.

This level of rich engagement with Bhāratīya knowledge can spur innovation, but is not
possible with traditional pedagogy.

12.4 Online Proficiency Tests
E-Bhashya allows thorough examination of a candidate’s prowess in a śāstra, not only in theory
but also in application.

We envision Śāstra Proficiency Tests to be conducted on E-Bhashya platform. Students can be
asked to submit their commentary as annotations on any śāstra text including its adhikaraṇas,
vākyas or concepts. They can be asked to apply śāstra paribhāṣā to characterize contemporary
content.

12.5 Research Aids
E-Bhashya converts a text into a network of individuaĺly referenceable semantic constructs (e.g.,
sentences, concepts, sections etc) via its tag data model. This enables seamless networking and
comparative study of concepts across multiple treatises. For example, one can quickly reference
explanation of a technical term used in a main text in its bhashya.

We believe this use of technology is crucial to navigate the vast volume of Indic knowledge
corpus, and dramatically reduces the time to develop new insights.

13 Evaluation
In this section, we examine how well e-Bhashya design meets the requirements we have stipulated
for a transformative Indic knowledge engineering solution.

13.1 Versatility
The unified data representation of IKML coupled with its amenability to machine processing
enables us to cover a variety of use cases unlike related solutions.

13.2 Portability
Our design choice of text-based representation of primary application data and metadata enables
us to leverage a wide variety of existing technologies for search, visualization and linguistic
processing without getting locked in.

13.3 Extensibility
Our solution is designed from the ground-up for seamless integration of human and machine
input. Our API enables third-party extension of our functionality as demonstrated above.

13.4 Security
Our API-based access control with ACLs allows a variety of institutional deployments of Indic
libraries to coexist and share each other’s resources while protecting their assets.

13.5 Scalability
The independently scalable server components enable elastic scaling of resources with load.
However, we are yet to evaluate the scalability of our platform in practice.

14 Scope for Collaboration
Our solution is designed from the ground up with an open architecture to facilitate collaboration
between diverse players in the Indic Knowledge ecosystem. Instead of reinventing the wheel, it
is essential to harness existing content, tools, technologies and talent to augment them with new
value.

Śāstra scholars can use our platform to come up with new intuitive presentation of Indic
knowledge for modern consumption. Tool developers can apply their tools on large datasets by
porting them to our platform. Content repository owners and publication houses can add new
search, visualization and mining capabilities to their content via our platform while retaining its
ownership. AI and ML experts can use our platform as a source of training data for new Indic
knowledge mining tools.

15 Conclusions and Future Work
In this paper, we have described the architecture and implementation of a web platform built
for scale called e-Bhashya for creating searchable, annotatable digital libraries of Indic texts. At
its core lies a novel markup language called IKML.

We have already gained experience in using the platform for unique visualization of śāstra
treatises as knowledge maps, and are planning to augment several existing Indic document
repositories with śāstra-compliant notes and training in śāstra prayoga.

References
[Ajotikar and Scharf2020] Tanuja P Ajotikar and Peter M Scharf. 2020. Development of a TEI standard

for digital Sanskrit texts containing commentaries. In Devendranath Pandeya, Dipesh Katira, and
Janakisharan Acharya, editors, Proceedings of the International Conference Bhāṣyaparamparā Jñā-
napravāhaśca, pages 462–476, Veraval. Shree Somnath Sanskrit University.

[Ajotikar and Scharf2023] Tanuja P Ajotikar and Peter M Scharf. 2023. Development of a TEI stan-
dard for digital Sanskrit texts containing commentaries: A pilot study of bhaṭṭti‘s rāvaṇavadha with
mallinātha‘s commentary on the first canto. In Amba Kulkarni and Oliver Hellwig, editors, Pro-
ceedings of the Computational Sanskrit & Digital Humanities: Selected papers presented at the 18th
World Sanskrit Conference, pages 128–145, Canberra, Australia (Online mode), January. Association
for Computational Linguistics.

[Ajotikar et al.2024] Tanuja P Ajotikar, Ketaki Kaduskar, and Peter M Scharf. 2024. Using TEI for dig-
ital Sanskrit editions containing commentaries: A study of kālidāsa‘s raghuvaṁśa with mallinātha‘s
sañjīvanī. In Arnab Bhattacharya, editor, Proceedings of the 7th International Sanskrit Computa-
tional Linguistics Symposium, pages 52–66, Auroville, Puducherry, India, February. Association for
Computational Linguistics.

[Cummings2013] James Cummings, 2013. The Text Encoding Initiative and the Study of Literature,
chapter 25, pages 451–476. John Wiley & Sons, Ltd.

[Goyal and Huet2016] Pawan Goyal and Gérard Huet. 2016. Design and analysis of a lean interface for
sanskrit corpus annotation. Journal of Language Modelling, 4(2):145–182.

[Gupta et al.2020] Ashim Gupta, Amrith Krishna, Pawan Goyal, and Oliver Hellwig. 2020. Evaluating
neural morphological taggers for Sanskrit. In Garrett Nicolai, Kyle Gorman, and Ryan Cotterell,
editors, Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics,
Phonology, and Morphology, pages 198–203, Online, July. Association for Computational Linguistics.

[Hellwig2010 2021] Oliver Hellwig. 2010–2021. Dcs - the digital corpus of sanskrit. http://www.
sanskrit-linguistics.org/dcs/index.php.

http://www.sanskrit-linguistics.org/dcs/index.php
http://www.sanskrit-linguistics.org/dcs/index.php

[Ide and Véronis1995] Nancy Ide and Jean Véronis. 1995. Text encoding initiative: Background and
contexts, volume 29. Springer Science & Business Media.

[Ide1994] Nancy Ide. 1994. Encoding standards for large text resources: The text encoding initiative. In
COLING 1994 Volume 1: The 15th International Conference on Computational Linguistics.

[Krishna et al.2023] Amrith Krishna, Ashim Gupta, Deepak Garasangi, Jeevnesh Sandhan, Pavankumar
Satuluri, and Pawan Goyal. 2023. Neural approaches for data driven dependency parsing in Sanskrit.
In Amba Kulkarni and Oliver Hellwig, editors, Proceedings of the Computational Sanskrit & Digital
Humanities: Selected papers presented at the 18th World Sanskrit Conference, pages 1–20, Canberra,
Australia (Online mode), January. Association for Computational Linguistics.

[Kulkarni et al.2010] Malhar Kulkarni, Chaitali Dangarikar, Irawati Kulkarni, Abhishek Nanda, and
Pushpak Bhattacharyya. 2010. Introducing sanskrit wordnet. In Proceedings on the 5th global wordnet
conference (GWC 2010), Narosa, Mumbai, pages 287–294.

[Nehrdich et al.2024] Sebastian Nehrdich, Oliver Hellwig, and Kurt Keutzer. 2024. One model is all you
need: ByT5-Sanskrit, a unified model for Sanskrit NLP tasks. In Yaser Al-Onaizan, Mohit Bansal, and
Yun-Nung Chen, editors, Findings of the Association for Computational Linguistics: EMNLP 2024,
pages 13742–13751, Miami, Florida, USA, November. Association for Computational Linguistics.

[Nelakanti et al.2024] Anilkumar Nelakanti, Amba Kulkarni, and Nakka Shailaj. 2024. Start: Sanskrit
teaching; annotation; and research tool–bridging tradition and technology in scholarly exploration. In
Proceedings of the 7th International Sanskrit Computational Linguistics Symposium, pages 113–124.

[Sandhan et al.2023] Jivnesh Sandhan, Anshul Agarwal, Laxmidhar Behera, Tushar Sandhan, and Pawan
Goyal. 2023. Sanskritshala: A neural sanskrit nlp toolkit with web-based interface for pedagogical
and annotation purposes. arXiv preprint arXiv:2302.09527.

[Scharf and Chauhan2023] Peter M Scharf and Dhruv Chauhan. 2023. Rāmopākhyāna: A web-based
reader and index. In Proceedings of the Computational Sanskrit & Digital Humanities: Selected papers
presented at the 18th World Sanskrit Conference, pages 146–154.

[Scharf2018] Peter Scharf. 2018. TEITagger: Raising the standard for digital texts to facilitate interchange
with linguistic software. In Proceedings of the Computational Sanskrit & Digital Humanities: Selected
papers presented at the 17th World Sanskrit Conference, pages 229–257.

[Susarla and Challa2019] Sai Susarla and Damodar Reddy Challa. 2019. A platform for community-
sourced Indic knowledge processing at scale. In Pawan Goyal, editor, Proceedings of the 6th Interna-
tional Sanskrit Computational Linguistics Symposium, pages 68–82, IIT Kharagpur, India, October.
Association for Computational Linguistics.

[Terdalkar and Bhattacharya2021] Hrishikesh Terdalkar and Arnab Bhattacharya. 2021. Sangrahaka: A
tool for annotating and querying knowledge graphs. In Proceedings of the 29th ACM Joint Meet-
ing on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 1520–1524.

[Terdalkar and Bhattacharya2023] Hrishikesh Terdalkar and Arnab Bhattacharya. 2023. Antarlekhaka:
A comprehensive tool for multi-task natural language annotation. In Liling Tan, Dmitrijs Milajevs,
Geeticka Chauhan, Jeremy Gwinnup, and Elijah Rippeth, editors, Proceedings of the 3rd Workshop
for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 199–211, Singapore,
December. Association for Computational Linguistics.

[Terdalkar et al.2023] Hrishikesh Terdalkar, Arnab Bhattacharya, Madhulika Dubey, S Ramamurthy, and
Bhavna Naneria Singh. 2023. Semantic annotation and querying framework based on semi-structured
ayurvedic text. In Amba Kulkarni and Oliver Hellwig, editors, Proceedings of the Computational
Sanskrit & Digital Humanities: Selected papers presented at the 18th World Sanskrit Conference, pages
155–173, Canberra, Australia (Online mode), January. Association for Computational Linguistics.

Appendix A.
Here is the schema of tags described in IKML. Under each tag, the schema lists allowed child
tags. [.option] tag is used to list allowed preset values of an attribute.

Schema-ikml.txt
[ikml_schema]
 [.lang] Sanskrit
 [.script] Devanagari
 [include] shaastra-schema-ikml.txt
 [include] vyakaraṇa-schema-ikml.txt
 [include] nyaya-schema-ikml.txt
 [include] mimamsa-schema-ikml.txt
 [root_tags]
 [va]
 [sh]
 [cm]
 [tr]
 [smb]
 [vibhaga]
 [.src label="annotation source"]
 [.option] auto
 [.option] manual
 [.option] endorsed
 [.option] corrected
 [.role label="Access Role"]
 [.option] public
 [.option] subscriber
 [.option] contributor
 [.option] admin
 [.option] superadmin
 [library label="Book Collection"]
 [grantha]
 [team role=".."] team_name
 [user label="User"] email
 [.name] name
 [.phone] phone
 [team label="Institution"] team_name
 [user role=".."] email
 [sahitya label="Sahitya annotation"]
 [.vritti]
 [pa label="Pada"]
 [.rel_prefix] p
 [vyakarana]
 [cm]
 [smb]
 [su label="Sutra"]
 [.rel_prefix] su
 [adhyaya label="Chapter"]
 [.rel_prefix] ady
 [vibhaga label="Section"]
 [.rel_prefix] sec
 [vibhaga]

 [va]
 [vishaya label="Concept"]
 [.rel_prefix] c
 [vishaya]
 [va label="Vakya"]
 [.rel_prefix] v
 [pa]
 [tr]
 [cm]
 [smb]
 [vyakarana]
 [nyaya]
 [sahitya]
 [mimamsa]
 [tantrayukti]
 [tr label="translation" lang="English"]
 [cm label="comment" userid=""]
 [sh label="shloka"]
 [.rel_prefix] sh
 [.image label="image url"]
 [va]
 [smb]
 [tr]
 [cm]
 [vyakarana]
 [nyaya]
 [sahitya]
 [mimamsa]
 [tantrayukti]
 [grantha label="grantha"]
 [.title] ..
 [.stitle label="short title"] ..
 [.author label="author"] ..
 [.publisher label="publisher"] ..
 [page rel_prefix="pg"]
 [.pgnum label="page number"]
 [.image]
 [block rel_prefix="b"]
 [paragraph rel_prefix="pr"]
 [va]
 [sh]
 [va]
 [sh]
 [smb label="Sambandha"]
 [.rel_prefix] r
 [.srcid]
 [.targetid]
 [.src_phrase]
 [.target_phrase]
 [nyaya]
 [tantrayukti]

Appendix B.
Here is the IKML source of a snippet of the Tarkasaṅgraha text. All the id attributes and
rel_id attributes are auto-generated.

[va id=l.smaps.TarkaSM.v-10 rel_id=10] तत गधवती पिृथवी ।
 [.src] manual
 [vyakarana id=l.smaps.TarkaSM.v-10.1 rel_id=1]
 [.src] manual
 [.split] तत गधवती पिृथवी ।
 [tantrayukti id=l.smaps.TarkaSM.v-10.2 rel_id=2]
 [.vakya] पदाथ र्ः Term definition
 [pa id=l.smaps.TarkaSM.v-10.p-1 rel_id=1] तत
 [.src] auto
 [pa id=l.smaps.TarkaSM.v-10.p-2 rel_id=2] गधवती
 [.src] auto
 [pa id=l.smaps.TarkaSM.v-10.p-3 rel_id=3] पिृथवी
 [.src] auto
[va id=l.smaps.TarkaSM.v-11 rel_id=11] सा िविवधािनयाऽिनया च ।
 [.src] manual
 [vyakarana id=l.smaps.TarkaSM.v-11.1 rel_id=1]
 [.src] manual
 [.split] सा िव-िवधा िनया+अिनया च ।
 [tantrayukti id=l.smaps.TarkaSM.v-11.2 rel_id=2]
 [.vakya] िनदेशः detailed enumeration of uddesha
 [pa id=l.smaps.TarkaSM.v-11.p-1 rel_id=1] सा
 [.src] auto
 [pa id=l.smaps.TarkaSM.v-11.p-2 rel_id=2] िव-िवधा
 [.src] auto
 [pa id=l.smaps.TarkaSM.v-11.p-2.p-1 rel_id=1] िव
 [.src] auto
 [pa id=l.smaps.TarkaSM.v-11.p-2.p-2 rel_id=2] िवधा
 [.src] auto
 [pa id=l.smaps.TarkaSM.v-11.p-3 rel_id=3] िनया+अिनया
 [.src] auto
 [pa id=l.smaps.TarkaSM.v-11.p-3.p-1 rel_id=1] िनया
 [.src] auto
 [pa id=l.smaps.TarkaSM.v-11.p-3.p-2 rel_id=2] अिनया
 [.src] auto
 [pa id=l.smaps.TarkaSM.v-11.p-4 rel_id=4] च
 [.src] auto

	Introduction
	Outline of the Paper
	Problem Statement
	Design Requirements
	Versatility
	Portability
	Extensibility
	Security
	Scalability

	Related Work
	Why a new Markup Language
	Compact, Readable and Intuitive Syntax
	Customizable and Validated Schema
	Convenient Śāstric Abstractions for Experts
	Non-hierarchical Knowledge Structures

	E-Bhashya Architecture
	Features at a Glance
	Data Model
	Object Types
	Object Networking
	Cypher Queries to Create Viṣaya Map

	Agents for Access Control
	Service Architecture
	Web Search of e-Bhashya Content with Access Control
	Third-party Applications
	Access Control

	Overview of IKML
	IKML Schema
	Sample IKML Snippet

	E-Bhashya Access Roles
	Śāstra-compliant Notes
	Unstructured Notes
	Implementation and Status
	E-Bhashya User Interface
	E-Bhashya API
	Third-party Applications
	Statistics
	Pada splitter
	Scanned PDF Book Importer

	End-user Services
	Śāstric Analysis of Web Content
	Training Datasets for Indic Knowledge Processing
	Online Courses
	Online Proficiency Tests
	Research Aids

	Evaluation
	Versatility
	Portability
	Extensibility
	Security
	Scalability

	Scope for Collaboration
	Conclusions and Future Work

