Compound Type Identification in Sanskrit

Sriram Krishnan!?, Pavankumar Satuluri®, Amruta Barbadikar?,
T S Prasanna Venkatesh? and Amba Kulkarni®
! Department of Sanskrit Studies, University of Hyderabad
2 Central Sanskrit University, Ganganath Jha Campus, Prayagraj ® IIT Roorkie
4 Ramakrishna Mission Vivekananda College, University of Madras
sriramk80gmail.com, apksh.uoh@nic.in

Abstract

Compounds are formed based on the principle of samarthya (semantic compatibility to
compose components). Sanskrit compounds are binary compositions which can be com-
posed further to form a nested constituency of compound structure. Analysing a com-
pound requires us to find the correct structure as well the compound types. Compound
analysis has long been approached in two stages: constituency analysis and compound
type identification. In this work, we propose a methodology to analyse the compounds
by first identifying the compound types based on morphological, syntactic and semantic
clues from Astadhyayi. We implement it within the dependency parser framework of
Samsadhani, where the types are identified first and then the constituency structure is
established using a constraint solver.

1 Introduction

One of the most distinguishing features of Sanskrit is its profound use of compounds (samasa),
which allows concise expression of complex ideas. Compounds are formed by combining two
or more words into a single lexical unit, often omitting case markers and other grammatical
indicators, thus creating a compact structure to convey meaning. These are categorized into
four major types on the basis of the semantic relationships between their components. The
description of these semantic relations is found in Astadhyayi, the seminal grammatical text
of Sanskrit. The four major types of compounds are Awvyayibhava, Tatpurusa, Bahuvrihi and
Dvandva. These compound types have further sub-types defined based on both the syntactic
and semantic nature of their components. In total, 59 sub-types of these four major types have
been observed in Kumar (2012).

Astadhyayr meticulously codifies the process of compound generation, providing precise rules
for their semantic classification and syntactic construction. The semantic and syntactic com-
patibility between the components of a compound, referred to as ‘Samarthya’, ensures that the
words forming a compound are meaningfully connected and contribute to a unified sense. The
category of the compound-word thus formed can be determined based on its meaning and the
grammatical rules that specify the syntactic arrangement of the component words, as well as
the case, gender, and number of the final compound. The procedure for generating compounds
is clearly outlined, ensuring uniformity in their formation.

When it comes to the analysis of a compound word, there are several challenges due to the
inherent complexity of their structure. The first problem we face in analyzing a compound is
the segmentation. The compound in Sanskrit is always written as a single word without any
space or hyphen between its constituents. Further, the close proximities of the phonemes of
two consecutive components also lead to phonological changes in them introducing ambiguities
during splitting, thereby worsening the situation further for analysis.

The second problem is the ambiguity at the constituency level when the number of components
is more than two. When there are more than two components in a compound, the number of
ways in which a compound with n 4+ 1 components can be subgrouped is a Catalan number C,,



(Huet, 2009), which is defined as:

. — 1 <2n>
n+1\n

The Catalan number for a 4-component compound is 5. This indicates that there are 5 distinct
ways to form valid nested structures for a 4-component compound. For example, in a compound
‘a-b-c-d’, the five possible constituencies are:

(1) <<ab>c>d (2)<a<be>>d (3) <ab><cd> (4)a<<bc>d> (5)a<b<cd>>

In Sanskrit we observe such lengthy compounds in ample amount. Since C), grows exponentially,
determining the accurate constituency for multi-component compounds throws a challenge.

The last problem is to identify the semantic relation between the components, i.e. the com-
pound type identification. A primary difficulty arises from the ambiguity in interpretation of
the relation, as a single compound can often have multiple plausible meanings. For instance,
the compound sivapriyah could mean “dear to Siva” ($ivasya priyah) or “one who loves Siva”
($ivam priyah yasya), depending on the context. Without sufficient contextual information,
determining the precise compound type becomes challenging.

In this paper, we present an approach to handle the task of compound type identification.
Section 2 summarizes the efforts towards developing Sanskrit compound type identifiers and
towards the end provides details about the approach followed in this paper. Section 3 discusses
how the dependency parsed structure differs from the constituency parsed structure with respect
to compound analysis and also provides the reasons why we shift towards the dependency-based
approach. Section 4 provides details on how the various lexical, syntactic and morphological clues
obtained from Astadhyayi and other resources, have been incorporated in our type identifier,
along with the justification for considering the Dvandva analysis separately. Our implementation
of the compound type identifier is provided in section 5 and the observations on the evaluation
of the type identifier is in section 6. Finally, section 7 discusses the issues and possible future
directions.

2 Existing Approaches

Recent advancements in automatic compound type analysis for Sanskrit have led to the devel-
opment of various methodologies aimed at addressing the complexity of Sanskrit compounds.
This section highlights some of the notable works in this domain, discussing their methodologies
and the type of analysis employed.

Kumar (2012) employed a combination of Paninian grammatical rules and statistical methods
for compound type identification. As part of this approach, a statistical constituency parser was
developed to generate constituency structures, which serve as input for the type identification
module. This module integrates both rule-based and statistical methods to classify compounds.
However, the model is limited to handle only two-component compounds and struggles with
more complex types, such as Dvandva compounds. For the statistical constituency parser and
the compound type identification tasks, the SHMT dataset was used.! This dataset contains
compounds from various texts like Bhagavad Gita, Caraka-samhita, Panca-tantra, etc. that
were annotated with the constituency and compound type information.

Satuluri (2015) discusses various semantic, ontological and other information needed for the
generation of compounds. This study and the observations there in are very much useful from
the analysis point of view as well.

Krishna et al. (2016) proposed a classification framework for the compound type identifica-
tion task. It combines features extracted from rules in Astadhyayt, taxonomy information and
semantic relations inferred from Amarakosa ontology (Nair and Kulkarni, 2010), and linguistic

!Sanskrit Hindi Machine Translation Consortium Dataset developed under the funding from DeiTY (Depart-

ment of Electronics and Information Technology), Govt. of India (2008-12), available at https://sanskrit.
uohyd.ac.in/scl/GOLD_DATA/tagged_data.html.



structural information from the data using Adaptor grammar (Johnson et al., 2006). The rules
from Astadhyayr were divided into four types: rules with lexical lists, rules with morphological
properties, rules with semantic properties of the components, rules with semantic relations be-
tween the components. The ontological relations between various words from Amarakosa were
extracted. The SHMT dataset (32,000 compounds) was used for the classification task.

Sandhan et al. (2019) proposes a neural approach that classifies compounds without consid-
ering broader context. It employs deep learning techniques, utilizing features extracted from
Sanskrit text. The model, trained on annotated corpora, relies on sequence-based architectures
such as recurrent neural networks (RNNs) and transformers. By focusing on the internal struc-
ture of compounds and word embeddings, this approach offers scalability and adaptability to
large datasets. However, it faces challenges in disambiguation, particularly when contextual
understanding is essential. The same SHMT dataset as above was used for this task.

Sandhan et al. (2022) proposed a hybrid approach (SACTI), integrating rule-based linguistic
features with deep learning techniques to improve compound classification. The system combines
handcrafted linguistic features—such as compound segmentation and phonetic similarity—with
a novel multi-task learning architecture to enhance accuracy. Additionally, it partially incor-
porates constituency-based analysis to capture hierarchical relationships within compounds,
improving the identification of compositional structures. This approach conducted their experi-
ments on the 4 coarse-grained types and 15 fine-grained types, restricting to binary compounds
(upto 48,132 compounds) collected from the SHMT dataset. This dataset was revised addition-
ally to include the context.

‘DepNeCTT’ (Sandhan et al., 2023) employs a dependency-based framework to analyze com-
pound structures, incorporating syntactic dependency parsing alongside neural classifiers. Its
dependency-based approach is particularly efficient in representing grammatical relationships,
making it well-suited for analyzing the structural dependencies of Sanskrit compounds. A novel
approach towards Nested Compound Type Identification was introduced focusing on identifying
nested spans within a multi-component compound and interpreting their implicit semantic rela-
tionships. While the same SHMT dataset was used here, the primary focus was on compounds
with more than two components, and on binary compounds with context. The dataset contains
for each of the compounds, the segmented components, nested spans, context and semantic re-
lations among the nested spans. Here 86 fine grained compound types were used along with the
usual 4 broad types. A total of 17,656 compounds with context from philosophical, literary and
Ayurvedic texts were collected for the task, and 1,189 compounds from Puranas were considered
for an out of vocabulary dataset.

Our research approach integrates some of the elements from the aforementioned methods. We
primarily rely on Astadhyayi rules as the foundational framework, supplementing them with a
supportive database and linguistic heuristics wherever necessary. Our goal is to handle all types
of multi-component compounds, including Dvandva compounds. We propose a compound type
identifier which is integrated with the dependency parser of Samsadhani. The type identifier is
implemented to handle all the types except Dvandva for which a standalone Dvandva analysis
module is incorporated. We prioritize dependency parsed structure over the constituency for
various reasons, which are discussed in detail in the next section.

3 Dependency-based Compound Analysis

Sanskrit compounds exhibit intricate internal structures where multiple components combine to
form complex words. The underlying principle to form compounds is the semantic compatibility
between components, called samarthya. The sense in which the composition happens across two
semantically compatible components is expressed through the semantic relations or compound
types. While compound formations are predominantly binary compositions (except for Dvandva
and Bahupada-Bahuvrihi), due to the productive nature of compounds, we can build a nested
structure of compounds by successive binary composition of the components with these relations.



The semantic relations are thus crucial to identify the correct nested structure (Sandhan et al.,
2023).

Analyzing these structures requires a systematic approach to identify relationships among
components. Two primary frameworks—constituency and dependency—offer different perspec-
tives on compound analysis. In multi-component compounds, there can be more the one possible
spans according to various combinations of intermediate nested compounds. Figure 1 shows two
possible spans for a three-component compound in constituency analysis.

abc abc
ab bc
(a)<<a-b>-c> b)<a-<b-c>>

Figure 1: Possible constituency spans for a three-component compound a-b-¢

3.1 Constituency Parsed Structure

In this approach, compounds are analyzed by constructing a hierarchical structure that repre-
sents their internal syntactic composition. Each constituent (sub-compound) is represented as
an intermediate node, capturing the nested relationships within the compound. However, this
method introduces additional nodes that may not be necessary for compound type identifica-
tion, increasing computational complexity. For example, in figure 2a, the compound sumitra-
ananda-vardhanah (one who increases the happiness of Sumitra) is represented with a noun
phrase structure (having a left associative parse), introducing hierarchical levels that may not
contribute directly to type identification. Similarly, figure 2b shows the structure of the right-
associative three-component compound ‘utsanna-kula-dharmah’ (deprived of ancestral duties
and traditions).

utsanna-kula-dharmah

\

sumitra-ananda- vardhanah kula-dharmah

(a) Span 1: < <sumitra-ananda>T6-vardhanah>T6

sumitra-ananda-vardhanah

(b) Span 2: <utsanna-<kula-dharmah>Bs3>T6

Figure 2: Possible spans for Constituency analysis with examples

3.2 Dependency Parsed Structure

Dependency-based analysis, in contrast, establishes direct relationships between components
without the need for additional intermediate nodes. Each component of the compound is linked
to the head based on grammatical / syntactic / semantic relations, making it easier to mark



the type of compound based on dependency-like relations. For instance, in figure 3b, for the
compound ‘utsanna-kula-dharmah’ (deprived of ancestral duties and traditions), the components
‘dharma’ and ‘kula’ are directly linked to their heads, and the relationship can be labeled
according to its semantic function. Also, figure 3a shows the left associative span. The directed
labels (T6, Bs3, etc.)? help us in identifying the heads of the intermediate and the external

compounds.

(a) Span 1: < <sumitra-ananda>T6-vardhanah>T6

(b) Span 2: <utsanna-<kula-dharmah>Bs3>T6

Figure 3: Dependency analysis of compounds with examples

3.3 Equivalence between Constituencey and Dependency Parsed Structures

Typically, it is observed that the Awyayibhava compounds are left-headed (purvapada-
pradhana).® Tatpurusa compounds are right-headed (uttarapada-pradhana) and in the case of
Bahuvrihi, none of the components is the head. And finally, in the case of Dvandva compounds,
both (all) components are of prime importance. So in dependency structure, we mark the rela-
tions between these components as in figure 4. The Dwvandva compounds are represented as a
plain string joining all the components such as rama__laksmanau, with the underscore (_), since
both of them have equal status.

Al

(a) <yatha-uddesyam>A1l

’ E

(b) <raja-purusah>T6

(¢) <pita-ambarah>Bs6

Figure 4: Dependency-based representations of compound types with the arrows marking the
head.

The advantage of the dependency representation is that intermediate nodes are no more
needed. That is, there will be exactly as many nodes as there are components. Hence one can
use the same algorithm of the dependency parser to parse compound structures as well. The
second advantage is that one can now use the morphological and other constraints specified in

2T6 stands for Sasthi- Tatpurusa and Bs3 stands for Trtiwyartha-Bahuvrihi. The list of all the labels (com-
pound types) along with the tagging guidelines are available at: https://sanskrit.uohyd.ac.in/scl/GOLD_
DATA/Tagging_Guidelines/samaasa_taggingl6mari2-modified.pdf.

3Here purvapada refers to purvapada-artha. Similarly for uttarapada and anyapada.

4We do not prove the equivalence between the constituency and dependency structures here, since it is outside
the scope of this paper. A separate manuscript is getting ready proving the equivalence of these structures and
how to convert one to the other automatically.



the grammar rules of compound formation to identify the potential components that can be
related and the possible compound types. Then use a constraint solver to prune out the types
which do not satisfy the yogyata and sannidhi. Thus, the samarthya between components can
be established from the compound types which were obtained using the principles of akarnksa,
yogyata and sannidhi. Finally, a ranking algorithm should be incorporated to rank the various
constituencies obtained. In this paper, we confine ourselves to only the akarksa module.

4 Clues for Dependency-based Compound Analysis

Panini’s Astadhyayi provides both semantic and syntactic scenarios for the construction of
compounds from words. These scenarios can be considered as clues or constraints during the
analysis of a compound. The syntactic clues pertain to the order of the components, deletion
of case, assignment of svara, etc. This also includes the nature of syntactic combinations of the
components, primarily attributed to the rule sup supa (2.1.4) with later grammarians introducing
the possibilities of other syntactic combinations like (sup-tin, sup-nama, sup-dhatu, etc.).> On
the other hand, a majority of the semantic clues are available across the first two parts of the
second adhyaya of Astadhyayi. Kumar (2012) extracted all the possible semantic clues from these
rules and elaborated them in detail providing in each case whether the clues can be incorporated
for the task of compound type identification or not.

Kumar (2012) developed first a statistical constituency parser which generates the con-
stituency structure. This structure is fed to the compound type identification module where
both the rule-based and statistical identifiers help in predicting the type of the compound. In
the present work, since both constituency analysis and compound type identification are ad-
dressed simultaneously in the same step, this calls for a revised set of clues that addresses both
these tasks. Thus we first revisit all these clues extracted from Astadhyayi and perform a val-
idation check with various examples along with observations on possible clues for constituency
analysis as well. In this process, the clues are categorized into groups similar to Krishna et al.
(2016) where the categorization was based on the syntactic and semantic nature of the clues. In
our approach, the clues are reordered in such a way that the syntactically similar clues are put
together in a group. And within each group, the clues which have more precise information are
addressed first and those with more generic information are pushed to the last.

Our approach differs from Kumar (2012) in two aspects:

1. The constituency structure in Kumar (2012) was established based on co-occurrences of
the components to figure out the affinity of a component to be composable with another
component. The compound types were identified only for the compounds observed in the
constituency structure. In our case, we establish all possible compound types between each
pair of the components, and then using constraints prune out the incompatible types. In
this process, the dependency structure is constructed.

2. The clues from Astadhyayi were categorized according to the compound types in Kumar
(2012). These are now re-organized into categories based on both syntactic and semantic
nature of the clues.

4.1 Revisiting the clues from Astadhyayr

Kumar (2012) proposed 55 semantic clues corresponding to each sutra from Astadhyayi. Clues
from 21 sutras were not implemented as extra semantic information was required. And it was
noted that for 7 rules, an implementation was not possible at all for various other reasons. We
took all of these cases and prepared a revised set of 88 conditions from the 83 rules of Kumar
(2012).

5 supam supa tina namna dhatund’tha tinam ting
subanteneti vijiieyah samasah sadvidho budhaih — Karika 28 of Vaiyakaranabhusanasara



The clues are first divided into two types based on the number of constituents: two or three.
Compound formations are typically binary with some exceptions like [taretara-Dvandva and
Bahupada-Bahuvrihi. But some of the clues give specific information pertaining to both con-
stituency and the compound type, for certain compounds with three components. 7 of the 88
conditions require three components and these are addressed together in a group.® The clues
pertaining to binary combinations are divided into two: those containing semantic conditions
(76), and conditions for exceptional compounds (5). The remaining 76 conditions are further
divided into groups based on either the morphosyntactic nature of their constituents or the type
of the compound:

1. ktanta (where either the first or the second or both components have the kta suffix),
non-ktanta Tatpurusa (where neither component has the kta suffix),

Karmadharaya (which are not covered in the first two cases),

Avyayibhava,

Duvigu- Tatpurusa,

residual Tatpurusa,

Bahuwvrihi,

Nan-Tatpurusa, and

© %o N o e WD

Sasthi-Tatpurusa

Within each of the groups, the clues are ordered in such a way that the more precise informa-
tion is checked first and the less precise information later. Clues which prescribe a specific set of
words in either iic (in initio composite) or ifc (in fini composite) or both are given higher pref-
erence. Then the syntactic and morphological clues like kta, yat, gender, number, avyaya, etc.
This is followed by semantically and ontologically tagged lexicon grouped into various lists such
encountered. Finally, the rest of the conditions follow. The morphosyntactic clues deploy the
akanksa constraint and help in establishing the possible compound types. Yogyata has not yet
been extensively dealt with but the above semantically tagged word lists denoting a particular
entity or concept, provide some help in determining whether yogyata is present or not. Thus,
the first level of establishing samarthya is done using these constraints and to disambiguate
between the observed types, we need a dedicated constraint solver in the second level.

4.2 Clues from the Heritage Segmenter

Sanskrit Heritage Segmenter (SH)7 is a lexicon-directed segmentation engine that produces
the segmentation along with the morphological analysis and the part of speech category for
each of the possible segments produced. The part of speech categories, called phases, follow
closely the Paninian system of derivation and inflection mechanisms. For instance, according
to Astadhyayi,® a word is either a subanta (noun) or a tirianta (verb). Subantas are pratipadikas
(stems) inflected with sup suffixes and tiniantas are dhatus inflected with the tin suffixes. The
phases are addressed based on the inflectional and derivational suffixes used, type of the stem
or root (noun, pronoun, verb), compound components, preverbs, etc. (Huet, 2024). The phases
are represented using various colors in the graphical interface. For example, deep sky blue for
nouns, light blue for pronouns, red for verbs, mauve for indeclinables, yellow for iics, etc. Out
of the 54 phases constructed in SH, 15 are of interest for the current task of compound analysis
and are enlisted in Table 1.
SAll the groups are presented in a tabular format in Appendix A.

"https://sanskrit.inria.fr
8 suptintam padam 1.4.14



Phase Type Color Example

Tic first part of compounds yellow  rama-alayah

liv, Tive, Iivy  inchoatives (cvi verbal compounds) — orange sukli-karoti

Liif ifc of iic kaki kumbha-kara-putrah

Ifc second part of compounds cyan kumbha-karah

Indifc indeclinable forms usable as ifcs mauve bhisma-drona-pramukhatah
A, An privative nan-compound formations yellow a-prapya

Ai, Ani initial privative nan-compounds yellow  ao-Kirti-karam

lik, Iikc, Iikv  krdanta iics yellow  kasta-$ritah

liy Avyayibhavas pink upa-krsnam

Table 1: Phases of Sanskrit Heritage Segmenter usable for compound analysis

The following inferences can be observed from the phases provided by SH:

1.

The Awvyayibhava iics can be detected using the phase liy.

. Given a compound, we can detect whether it can have a bahuvrihi interpretation using the

phase Ifc. But we would require the context to confirm if it is Bahuwvrihi or not. Generally,
the final part of the compounds are inflected with the sup-suffix and would come under the
regular Noun phase. The phase (Ifc) corresponds to specific cases of inflections on the final
components when compounds like pita-ambarah, kumbha-karah are formed. ambarah is not
a valid form of the neuter stem ambara, but the gender is inherited from the surrounding
noun phrase head. Generated stems like -kara are restricted to the role of ifcs. In case of
compounds like pita-ambaram, the machine will mark three possible relations viz. Tatpurusa
or a Bahuvrihi reading with ambaram as neuter in either nominative or accusative case, and
a Bahuvrihi reading with ambaram as masculine accusative. The presence of a substantive
with the same case-gender-number information will propose the Bahuvrihi solution with
higher confidence. The dependency parser will rank these solutions considering the complete
sentence.

. In a multi-component compound setup, the phase liif helps in addressing the constituency

of the compound.

. With the phase Iiv, the cvi-compounds can be detected.

. Ai and Ani help in disambiguating whether the initial compound is a privative or not in a

multi-component compound setup with the initial component being the negative compound

Wa”

particle “a” or “an”.

Additionally, the privatives are mostly lexicalized except when they form absolutive com-
pounds. And some of the aluk compounds (like patresamita) and compounds with retroflexion

effects (for eg. durvavana) are also lexicalized in SH.

4.3 Analysing Dvandva Compounds

The Dvandva (or copulative) is a special type of compound, where all the components compose

together to denote a collection. This is an exception to the general notion of binary composition
during compound formation. In Astadhyayi, Dvandva compounds are defined by the rule carthe

dvandvah.? Dvandva can be classified into two types: itaretara and samahara.

9 Astadhyayr 2.2.29



1. itaretara: when a conjunction of mutually compatible entities is intended (plaksasca nya-
grodhasca plaksa-nyagrodhau),'°

2. samahara: when an aggregation of similar entities is intended (sa7nijnia ca paribhasa ca
tayoh samaharah sanjia-paribhasam).'t

In the case of Itaretara-Dvandva, all the components are considered equally important and
they are considered individually. The number of the overall compound depends on the number of
entities present and the gender depends on the gender of the last component. For example, rama-
laksmana-bharata-satrughnah. In the case of Samahara-Dvandva, the components are considered
as a group and not individually. The overall gender of the compound is in neuter. And the
number is singular. For example, pani-padam. There is another type of Dvandva called Ekasesa-
Dvandva compounds which are special cases where only one of the components will remain in
the final compound, with gender and number addressed similarly to itaretara. For example,
pitarau (mata ca pita ca). Some grammarians consider ekasesa as a separate vrtti,'? and not
under the purview of samasa.

We observe that morphological analysis, specifically the gender and number of the overall
compound, helps in detecting a Dvandva compound. Sometimes, the final component could have
certain indicators like the stem adi. For example kaka-kurma-adinam. With such a stem, the
set of previous entities can be considered as a Dvandva compound. Additionally, the samarthya
in the Dvandva components lies with their similar ontological structure:

kaka — (padartha, dravyam, prthvi, calasajiva, manusyetara, jantu, paksi)'3
kurma — (padartha, dravyam, prthvi, calasajiva, manusyetara, jantu, ubhayacara)

Both have common parent nodes until jantu and thus have a higher tendency of mutual
compatibility to become Dwvandva. For this, we need a semantically and ontologically annotated
data with more specific features to handle Dvandva compounds.

Morphological clues do help to an extent, but with this difficulty in incorporating ontological
clues for identifying the samarthya for Dvandva between the components, an alternate approach
is required to address Dvandva compounds. We can thus build sets of words where each set
contains stems which have the samarthya to form Dvandva compounds with any other stem in
the same set. We create two such lists: (1) sets of words where the order needs to be preserved
(frozen compounds or nitya-samasas) and (2) sets of words where order does not matter. Thus
stems from a similar domain are collected together from a list of Dvandva compounds extracted
from the SHMT dataset.

Finally, Dvandva analysis has to be done separately and prior to the analysis of other com-
pound types because of three reasons:

e The n-ary nature of Dvandva as opposed to the binary,

e The approach involves comparison with a collection of stems in a particular domain and
does not cater to either the morphological or syntactic clues, and thus cannot be integrated
with the clues mentioned earlier for other compounds,

e In a nested compound structure, Dvandva compounds can be found more frequently in the
inner nested structure, and the Dvandva composition of other compounds like Tatpurusa,
Bahuvrihi is very rare in usage.

YO militanam anvayah

Y samuhah

12 krt-taddhita-samasa-ekasesa-sanadyanta are the five vrttis.

13Extracted from the Amarakosa knowledge web: https://sanskrit.uohyd.ac.in/scl/amarakosha/index.
html



5 Implementation of the Compound Analyser

In the present work, as the compound analysis task is integrated with the dependency analysis
environment, it adheres to the same procedure deployed in the dependency parser with the
following modifications:

1. Segmentation (with compound boundaries marked)

2. Morphological analysis for all words and compound components
3. Dvandva Analysis

4. Identifying the relations

5. Constraint solver (partially implemented)

The segmentation is obtained from SH, which also marks the compound boundaries. In the
current setup, phase-level clues from SH are not taken into account. The segmented sentence is
then passed to Samsadhani’s morphological analysis engine that produces all possible morpho-
logical analysis for each of the segments. It marks all the iics as samasa-purva-pada.

Generally, the words with the possible morphological analyses are sent to the dependency
parser, which builds a set of dependency relations between every word, based on the $abdabodha
theories. But we insert the Dwvandva analysis module here which takes in the words and their
corresponding morphological analysis and whenever a series of components match any of the
existing Dwvandva compound components lists collected earlier, these components are merged
together (with an underscore) to represent a single entity. This resolves the representation
issues of the Dvandva compounds and also makes sure that in the next stage, the constraint
solver does not overgenerate the relations with the components of the Dvandva compounds. The
results of the Dvandva module are passed onto the parser. The clues for detecting and analysing
compound types and the constituency are integrated into this parsing engine which involves
picking up the components based on their syntactic category followed by running through the
clues to identify the possible compound types. The graph marking the relations between various
components is generated as follows.

1. For every triplet of compound components, it runs through the clues for deciding the con-
stituency and identifying the compound type and assigns relations wherever possible,

2. For every pair of compound components:

(a) if the first component is a or an, then it assigns Nan-Tatpurusa,

(b) the list of exceptional compounds is checked (this contains the special cases like aluk
compounds, closed and open sets of compounds like mayuravyamsaka),

(c) conditions pertaining to the clues are checked in the following order: Avyayibhava,
ktanta, non-ktanta Tatpurusa, Karmadharaya, Dvigu-Tatpurusa, residual Tatpurusa,
Bahuvrihi and finally Sasthi- Tatpurusa

(d) if none of the relations is obtained, then Sasthi- Tatpurusa is assigned by default

The set of relations is then passed to a constraint solver that resolves various conflicts that
occur between the predicted relations. In the current setup, for the constituency analysis, it is
assumed by default that the compounds with more than two components have left associativity.
The compound types are ranked and simple constraints of proximity and every node having only
one incoming arrow are applied.



6 Evaluation

For the present implementation, we collected a list of compounds proposed as examples for each
of the samasa-vidhayaka-sutras from Kasika and Siddhantakaumudi. These were predominantly
two-component compounds with a few three component compounds. These examples were
used as development sets along with the rules. Also, all the compounds of Bhagavad Gita
were collected and used for testing. Here we describe the performance of the dependency-based
compound type identification module on these two test sets. We elaborate on where the identifier
fails and what needs to be done for improving the analyser.

As the compound type identifier is integrated into the dependency parser, it requires a com-
plete sentence so that an overall dependency tree is obtained. But this implementation does
not consider context into account. This helps us understand where exactly context plays an
important role and for what type of compounds, context is critical. To account for this, each of
the examples is provided with an auxiliary verb like (asti, bhavati, etc.) depending on the case
and number of the overall compound. The ground truth and the results are obtained as JSON
objects for ease of comparison.

Metrics: The macro-averaged label score (LS), labeled attachment score (LAS) and unlabeled
attachment score (UAS) are considered for evaluating all the compounds. Additionally, the
precision, recall and F1-score values are recorded for each of the coarse compound types.

6.1 Error Analysis on Astadhyayi examples

311 compounds from Astadhyayi were considered for evaluation. The relations were predicted
correctly for 194 compounds, with the macro-averaged LAS being 62.38%. A manual error
analysis was done on the remaining 117 examples and here are the observations. There were
five kinds of issues present:

1. multiple relations: This is the most common issue where multiple relations are assigned
based on several conditions and the constraint solver does not know how to disambiguate
between them. 56 examples are affected because of this issue. For example, go-hitam is
a Caturthi- Tatpurusa compound but the possible relations are Sasthi- Tatpurusa, Caturthi-
Tatpurusa, Trtwya-Tatpurusa, Karmadharaya, but Trtiya- Tatpurusa is produced as the final
relation. There are two possible solutions to resolve such cases: (1) stricter conditions are
to be placed based on observations to disambiguate at the level of type identification, or (2)
the constraint solver should contain some measure to rank the possible relations obtained.

2. no morphological analysis: This corresponds to 30 examples where Samsadhani’s mor-
phological analysis fails to analyse one of either iic or ifc and the parser does not produce
any result. For example, (kasta-samikrtam). One solution is to update the morphological
analyser to accept such missing forms.

3. incorrect morphological analysis: 19 cases have this issue where the expected morpho-
logical analysis is not available in the possible morphological analyses. For example, the
compound sukha-apetah is a Panicami-Tatpurusah compound in the ground truth but it is
analysed as a Sasthi- Tatpurusah compound because apeta is not analysed as a ktanta. Even
here, the morphological analyser can be improved by incorporating such forms.

4. missing tagged lexicon: The semantically and ontologically tagged lexicon is of limited
size. For example, for the compound parica-nadam, nadam was missing in the nadi _vact
list. These correspond to 10 examples and there is a need to update such lexicon.

5. incompleteness of algorithm: In some rare cases, the set of conditions put forth based
on the clues are insufficient and we have to bring in more clues for addressing this issue. 2
compounds have been affected by this issue. For example, uccaih-krtya needs a condition
that checks that the ifc has a Iyap suffix instead of a kta suffix. This condition needs to be
added.



6.2 Bhagavad Gita Examples

Bhagavad Gita possesses a huge number of compounds across its 700 verses. We collected a
total of 1,580 compounds from the SHMT dataset, averaging two compounds per verse. An
analysis was done on the distribution of the compound types and it was observed that there are
2,052 compound formations, including the inner compounds of a nested compound structure. Of
these, 526 are Bahuvrihi and 349 are Sasthi- Tatpurusa resulting in a combined 885 instances.™
The distribution of the number of components per compound is shown in table 2.

Number of components Number of compounds

2 1,229
3 253
4 84
5 9

6 1

7 4

Table 2: Component-wise distribution of Bhagavad Gita compounds

Out of these, 88 compounds had issues with morphological analysis, i.e., at least one of the
components could not be recognized by the morphological analyser. Of the remaining 1,492
compounds, 550 were predicted with the correct compound types with the correct constituency.
756 compounds had a partial match, i.e, at least one of the relations was correctly matched. In
the ground truth analysis of the compounds, only the coarse grained annotations were present
for Avyayibhava and Karmadharaya types and the evaluation was done on these types alone.
The macro-averaged LS, UAS and LAS scores are recorded in table 3. The confusion matrix for
the overall coarse classification is presented in table 4 and the precision, recall and F1-score for
each of the types is shown in table 5.

Number of Morph-issue Compounds Fine Coarse

components P P LS UAS LAS LS UAS LAS
2 78 1,151 0.41 0.94 0.41 0.63 094 0.59
3-7 10 341 049 088 0.45 0.74 0.88 0.67
2-7 88 1,492 0.42 0.92 0.41 0.65 0.92 0.61

Table 3: Label Scores (LS), Unlabeled Attachment Scores (UAS) and Labeled Attachment Scores
(LAS) of Bhagavad Gita compounds

A sample set of unanalysed compounds were considered for error analysis and here are the
observations:

e Since the conditions for Bahuvrihi compounds in the implementation were only for certain
exceptional subtypes of Bahuwvrihi, most of these went unanalysed. In addition to these
exceptional compounds, Bahuvrihi was also identified when a change in the (inherent)
gender is observed in the final component.

e 41 Dwvandva compounds were not analysed because of two reasons:

— Some of the Dvandva compounds had a Bahuvrihi or Tatpurusa compound embedded
within.

141n the SHMT dataset, the compound types were manually annotated based on the context but in this imple-
mentation, we are not considering context while detecting a particular type.



- AB BV D TP

AB' 17 0 0 6
BV? 0 126 2 398
D3 0 8 205 33
T™* 0 221 12 1024
1 AB - Avyayibhavah

2 BV - Bahuvrihih

3 D - Dvandvah

4 TP - Tatpurusah

Table 4: Coarse-level confusion matrix for Bhagavad Gita compounds

Precision Recall F1l-score Number of instances

Avyayibhavah 1.00 0.74 0.85 23
Bahuvrihih 0.35 0.24 0.29 526
Dvandvah 0.93 0.83 0.88 246
Tatpurusah 0.71 0.81 0.75 1257
micro avg 0.67 0.67 0.67 2052
macro avg 0.75 0.66 0.69 2052

weighted avg 0.64 0.67 0.65 2052

Table 5: Coarse-level Precision, Recall and F1-Score for Bhagavad Gita compounds

— In the case of multiple morphological analyses for a component, the first stem was
considered.!?

e Similar to the Astadhyayi examples, the analyser failed to disambiguate between various
predicted types due to the lack of a good constraint solver. The conflict mainly lies between
Trtiya- Tatpurusa, Sasthi-Tatpurusa and Karmadharaya.

e For the Karmadharaya compounds, we need a good lexicon with their ontological categories
such as jati, guna, dravya, etc.

e In some cases, the gold annotations were found to be incorrect, especially for nested com-
pounds. For example, an-eka-janma-samsiddah should have been annotated as:
< < < an-eka > Tn > - janma > K - samsiddhah > T7,
but is annotated in the gold as:
< < < an - eka > K > - janma > K - samsiddhah > T7.

o The course-level evaluation showed that more than 85% of the Avyayibhava and Dvandva
compounds were identified correctly, although, they constitute 13% of the overall com-
pounds. The low precision for Tatpurusa compounds indicates a significant number of
non- Tatpurusa compounds identified as Tatpurusa.

e The weighted average score is less than both the macro and micro average scores indicating
that the performance of the analyser is low on classes with more instances, although the
scores are not significantly far apart.'6

15This is mainly to avoid over-generation of the Dvandva possibilities. For all other compound types, all possible
morphological analyses were considered.

1The macro-average score is the arithmetic mean of the per-class score. The weighted average score is calculated
by taking the mean of all per-class scores while considering each class’ number of instances. The micro average
computes the global average score similar to the accuracy.



6.3 Evaluation of SH results

Based on the clues from SH discussed earlier, it can be observed that Avyayibhave and Bahuvrihi
compounds can be detected using the phases of SH. In order to check the performance, a list
of Avyayibhava (136) and Bahuvrihi (2,126) compounds was collected from the SHMT dataset.
Fach of the compounds was run on the SH engine to produce the segments along with their phase
and morphological analyses. The segments and the phases were compared with the ground truth
segments and phases and the observations are recorded in table 6. In addition to this test set,
the Avyayibhava (21) and Bahuvrihi (18) compounds from the Astadhyayr examples were also
run on the SH engine and the observations are recorded.

SHMT Astadhyayr

Avyayibhava Bahuvrihi  Avyayibhava  Bahuvrihi
Total Compounds 136 2,126 21 18
Unrecognized 14 213 4 3
Correct Segmentation 83 1,358 11 11
Correct Phase 58 637 8 )
Incorrect Segmentation 39 555 6 4
Incorrect Phase 25 721 3 6

Table 6: Performance of SH on Avyayibhava and Bahuvrihi compounds from SHMT dataset and
Astadhyayr examples

Considering the 25 Avyayibhava compounds from SHMT dataset, where SH was able to seg-
ment it correctly but couldn’t detect it as an Avyayibhava, we observed that some of the com-
pounds with yatha or prati in the iic are misjudged. Some of the other examples are nana-
vidham, sama-aksam, dasa-ananah, madhya-yatram, etc. Considering the Astadhyayr exam-
ples, the compounds dvi-muni, sapta-gangam, panca-nadam were segmented correctly but not
detected as Awvyayibhava, suggesting that the sankhyapurva-nadyuttarapada and sankhyapurva-
vamsyottarapada types of Avyayibhava compounds are not detected by SH.

Considering the 8 Bahuvrihi compounds from the Astadhyayi examples where SH could seg-
ment it correctly but not decide whether it can be Bahuwvrihi or not, we observed that the
compounds having words indicating directions in both the components (Digvacaka-Bahuvrihi)
are not detected. For example, daksina-purva, purva-uttara, etc. although the gender of the
ifc has been identified as feminine correctly. And another set of compounds which have nu-
merals in either of the components are not detected. For example, tricaturah, asanna-vimsah,
adhika-vimsah, etc.

7 Inferences and Discussion

The present work is an attempt to build a rule-based compound analyser, where instead of doing
constituency analysis first followed by the type identification we identify all possible types of
compounds between the components and then apply the constraints to get the possible analyses
that are finally ranked based on the ranks of various types. These ranks are obtained based on
the involved ontological constraints and also the statistics of the annotated tagged data available.

Contextual Analysis: The current implementation does not consider the context at all.
Hence many Bahuvrihi compounds were not detected at all, as they are required to be in
a modifier-modified (visesana-visesya) relation with another word in the same context, while
the sentences we gave as an input had a single compound with a verb. With the help of
contextual analysis, we will be able to define possible relations between the overall compound
and other words in the sentence. For example, the Avyayibhava compounds are predominantly
kriyavisesana for their corresponding verbs in the sentence, with a few exceptions like pare-
gangat, madhye-gangam, etc. where the corresponding wvibhakti can be used for assigning the



dependency relation with the verb. For mostly all other compounds the depencency relation is
assigned based on the morphological clues from the last component of the compound. In the
present context we have not yet implemented the asamartha compounds and thus cases such as
sapena astangamitamahima would not be analysed properly.

Constraints: The evaluation results showed that majority of the compounds had multiple
types predicted and a constraint solver is required to disambiguate them. The inferences from
the examples of Bhagavad Gita observed in section 6.2 can be used here for disambiguating
mainly between Bahuvrihi, Sasthi- Tatpurusa and Karmadharaya. More observation is required
on various other examples to bring about such inferences. For instance, the Sasthi- Tatpurusa
compounds require a specific sambandha like pita-putra-sambandha for the compound pandu-
putranam. Such relations can be obtained from the ontology and Named Entity Recognizers.
Also, for narrowing down to the expected type, we can consider the predominance of relations
based on the occurrences like Sasthi-Tatpurusa > Bahuvrihi > Karmadharaya. A constraint
solver thus has two tasks: (1) to disambiguate between multiple types for a compound, and (2)
to disambiguate between different spans of a nested structure.

References

V. V. Bhandare. 1995. Structural and semantic aspects of the dvandva compound. Annals of the
Bhandarkar Oriental Research Institute, 76(1/4):89-96.

Sushant Dave, Arun Kumar Singh, Prathosh A. P., and Brejesh Lall. 2021. Neural compound-word
(sandhi) generation and splitting in sanskrit language. In CODS-COMAD 2021: 8th ACM IKDD
CODS and 26th COMAD, Virtual Event, Bangalore, India, January 2-4, 2021, pages 171-177. ACM.

Pawan Goyal and Gérard Huet. 2016. Design and analysis of a lean interface for Sanskrit corpus
annotation. Journal of Linguistic Modeling, 4(2):117-126.

Gérard Huet and Amba Kulkarni. 2014. Sanskrit linguistics web services. In Proceedings of COLING
2014, the 25th International Conference on Computational Linguistics: System Demonstrations, pages
48-51.

Gérard Huet. 2003. Lexicon-directed segmentation and tagging of Sanskrit. In XIIth World Sanskrit
Conference, Helsinki, Finland. Final version in Themes and Tasks in Old and Middle Indo-Aryan
Linguistics, Eds. Bertil Tikkanen and Heinrich Hettrich., pages 307-325, Delhi, August. Motilal Ba-
narsidass.

Gérard Huet. 2009. Sanskrit Segmentation. In Proceedings of the South Asian Languages Analysis
Roundtable XX VIII, October.

Gérard Huet. 2024. Hoisting the colors of Sanskrit. In Arnab Bhattacharya, editor, Proceedings of the
7th International Sanskrit Computational Linguistics Symposium, pages 39-51, Auroville, Puducherry,
India, February. Association for Computational Linguistics.

Mark Johnson, Thomas Griffiths, and Sharon Goldwater. 2006. Adaptor grammars: A framework for
specifying compositional nonparametric bayesian models. In B. Schélkopf, J. Platt, and T. Hoffman,
editors, Advances in Neural Information Processing Systems, volume 19. MIT Press.

S. D. Joshi. 1968. Patanjali’s vyakarana-mahabhadsya. samarthahnika (p 2.1.1).

Amrith Krishna, Pavankumar Satuluri, Shubham Sharma, Apurv Kumar, and Pawan Goyal. 2016.
Compound type identification in Sanskrit: What roles do the corpus and grammar play? In Dekai Wu
and Pushpak Bhattacharyya, editors, Proceedings of the 6th Workshop on South and Southeast Asian
Natural Language Processing (WSSANLP2016), pages 1-10, Osaka, Japan, December. The COLING
2016 Organizing Committee.

Amba Kulkarni and Devanand Shukl. 2009. Sanskrit morphological analyser: Some issues. Indian
Linguistics, 70(1-4):169-177.

Amba Kulkarni. 2019. Sanskrit Parsing based on the theories of Sabdabodha. IIAS, Shimla and D K
Printworld.



Amba Kulkarni. 2021. Sanskrit parsing following indian theories of verbal cognition. ACM Transactions
on Asian and Low-Resource Language Information Processing, 20(2):1-38, April.

Anil Kumar. 2012. Sanskrit Compound Processor. Ph.D. thesis, University of Hyderabad, Hyderabad.

Sivaja S. Nair and Amba Kulkarni. 2010. The knowledge structure in amarakosa. In Girish Nath
Jha, editor, Sanskrit Computational Linguistics, pages 173-189, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Bhagyalata Pataskar. 1996. Some observations about the compound structure of Astadhyayi. Annals of
the Bhandarkar Oriental Research Institute, 77(1/4):121-131.

Jivnesh Sandhan, Amrith Krishna, Pawan Goyal, and Laxmidhar Behera. 2019. Revisiting the role of
feature engineering for compound type identification in Sanskrit. In Pawan Goyal, editor, Proceedings
of the 6th International Sanskrit Computational Linguistics Symposium, pages 28—44, IIT Kharagpur,
India, October. Association for Computational Linguistics.

Jivnesh Sandhan, Ashish Gupta, Hrishikesh Terdalkar, Tushar Sandhan, Suvendu Samanta, Laxmidhar
Behera, and Pawan Goyal. 2022. A novel multi-task learning approach for context-sensitive compound
type identification in Sanskrit. In Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim, James Puste-
jovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng Ji, Sadao
Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm, Zhong He, Tony Kyungil
Lee, Enrico Santus, Francis Bond, and Seung-Hoon Na, editors, Proceedings of the 29th International
Conference on Computational Linguistics, pages 4071-4083, Gyeongju, Republic of Korea, October.
International Committee on Computational Linguistics.

Jivnesh Sandhan, Yaswanth Narsupalli, Sreevatsa Muppirala, Sriram Krishnan, Pavankumar Satuluri,
Amba Kulkarni, and Pawan Goyal. 2023. DepNeCTI: Dependency-based nested compound type
identification for Sanskrit. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Findings of the
Association for Computational Linguistics: EMNLP 2023, pages 13679-13692, Singapore, December.
Association for Computational Linguistics.

Pavan Kumar Satuluri. 2015. Sanskrit Compound Generation: With a Focus on the Order of Operations.
Ph.D. thesis, University of Hyderabad, Hyderabad.

Preeti Shukla, Amba Kulkarni, and Devanand Shukl. 2013. Geeta: Gold Standard Annotated Data,
Analysis and its Application. In Proceedings of the 10th International Conference on Natural Language
Processing, CDAC, Noida, India, December. NLP Association of India.



Appendices

A Clues for identifying the types

Num iicl (a) iic2 (b) | ifc (c) Infc%')fﬁg%ion Type Rule Examples
1 ktanta a/ an | ktanta - <a—<b—c>Tn>K2 | 2.1.60 krta-a-krtam
2 ktanta pradi ktanta - <a—<b—c>Tp>K2 | 21.60 krta-apa-krtam
3 avayava-vact | ahoratra | ktanta avayararvact |- o _p> K —e>T7 | 2.1.60 pum}a—alzna—krtam,
aho-ratra apara-ratra-krtam
4 - a/ an - - <a—<b—c>Tn>K2| 2.1.60 kraya-a-krayika
5 - a/ an - - <a—<b—c>Tn> K2 | 2.1.60 | mana-un-manika
6 dik-vaci - - - <<a—-b>T—-c>B 2.1.51 | purva-sala-priyah
7 sankhya-vacty - - - <<a—b>Td—c>B | 2.1.51 | panca-gava-dhanah

Table 7: Conditions for deciding constituency and assigning types for 3-component compounds

List ‘ Type ‘ Rule ‘ Examples
1 T7 2.1.47 udake-visirnam, bhasmani-hutam
2 T7 2.1.48 patre-samitah, udumbara-masakah
3 T7 2.1.44 aranye-tilakah, vane-kaserukah
4 T 2.1.72 | mayura-vyamsakah, chatra-vyamsakah
5 A3 | 2.1.17 tisthadgu, ayati-gavam

Table 8: Conditions for exceptional compounds

Num iic ifc Inf(l)%")r(;clg%ion Type | Rule Examples
1 Srenyadi ktanta - K 2.1.59 | sreni-krtah, eka-krtah
2 ktanta ktanta - K1 2.1.49 snata-anuliptah
3 - patita - T2 2.1.24 naraka-patitah
4 - patita - TH 2.1.38 svarga-patitah
5 - sritadit - T2 | 2.1.24 kasta-$ritah
6 - hita, raksita - T4 2.1.36 go-raksitam
7 - bhita - T5 2.1.37 vrka-bhitam
8 - apeta, etc.? - T5 2.1.38 sukha-apetah
9 svayam ktanta - T2 2.1.25 svayam-vilinam
10 khatva ktanta - T2 2.1.26 khatva-rudhah
11 sami ktanta - T2 2.1.27 sami-krtam
12 tatra ktanta - T7 2.1.46 tatra-krtam
13 kalavact ktanta - T2 2.1.28 ahah-sankrantah
14 stokadi® ktanta durartha words T5 2.1.39 Sreni-krtah
15 prapta, apanna - - T2 2.2.04 prapta-jivikah
16 - ktanta karana verbs T5 2.1.32 ah/z—hat-ah

root from %amna verbs : parasu-chinnah

17 - Wlpor(c)lfs r%%% a%' aal{‘}e%/gt karana verbs T3 2.1.33 kaka-peya

B $rita, atita, gata, atyasta, prapta, apanna

2 apeta, apodha, mukta, apatrasta

2 stoka, antika, dura, krcchra

Table 9: Conditions for group 1 ktanta



Num iic ifc Inf(l?l')tcﬁg%ion Type | Rule Examples
1 kalavacty yat-ending word in the sense of rna T7 2.1.43 masa-deyam
2 kalavacy - T2 2.1.29 | muhurta-sukham
3 - purvadi unartha words T3 2.1.31 masa-purvah
4 - annavaci words annavact words T3 2.1.34 dadhi-odanah
5 - bhaksyavact words bhaksyavact words T3 2.1.35 gud-dhanah
6 - bhaya, bhiti, bhi TS 2.1.37 vrka-bhayam
7 - Soundadi words Soundadi words T7 2.1.40 aksa-Soundah
8 - sitddha, suska, pakva, bandha - T7 2.1.41 cakra-bandhah
9 - dhvaksavact words dhvaksavacit words T7 2.1.42 | tirtha-dhvaksah
10 - gunavacana words gunavacana words T3 2.1.30 | Sankula-khandah
10 - tadartha, artha, bali, sukha tadartha words T4 2.1.30 yupa-daru

Y parva, sadrsa, sama, anartha, kalaha, nipuna, misra, $laksna

Table 10: Conditions for group 2 non-ktanta

Num iic ifc Inf(})%‘}rcrtlg%ion Type | Rule Examples
1 yuvan, yuvati khalatit - K2 2.1.67 | yuva-khalatih, yuva-jaraty
2 kumara Sramanadi - K 2.1.70 kumara-sramana
3 cka, etc.? - - T 2.1.49 eka-sati, sarva-devah
4 parvadi - - K1 2.1.58 purva-purusah
5 sat, etc.t - - K1 2.1.61 maha-purusah
6 katara, katama - - K1 2.1.63 katara-kathah
7 kim - - K1 2.1.64 kim-raja
8 papa, anoho : - K2 | 2154 papa-napital
9 - }Jrndarcik.a - K2 2.1.62 go-vrndaraka

naga, kurjara

10 catuspada-jativacaka garbhini - K2 2.1.71 go-garbhini
11 varnavacaka varnavacaka - K3 2.1.69 lohita-sarangah
12 jativacaka pota, etc.’ - K2 2.1.65 agni-stokah
13 jativacaka prasamsavacaka - K2 2.1.66 go-matallika
14 krtya, tulyartha ajativacaka tulyartha words K 2.1.68 | tulya-svetah, sadrsa-mahan
15 - vyaghradi - Kb 2.1.56 purusa-vyaghrah
16 dravyavact quna - K4 | 2-1-55 Sastri-syama
17 guna, sanna, kriya jativacaka - K1 2-1-57 nila-utpalam
18 - kutsita words - K2 2-1-53 vaiyakarana-khasucih

Y khalati, palita, valina, jarati, jaran

2

eka, sarva, jaratl, purana, nava, kevala

3 parva, apara, prathama, carama, jaghanya, samana,madhya, madhyama, vira

4 sat, mahat, parama, uttama, utkrsta

5 pota, yuvati, stoka, katipaya, ghrsti, dhenu, vasa, vehat, baskayanz, pravaktr, $rotriya, adhyapaka, dhirta

Table 11: Conditions for group 3 karmadharaya



Num iic ifc Inf(})%?%g%ion Type Rule Examples
1 - prati - A2 2.1.09 supa-prati
2 aksa, Salaka pari - A2 2.1.10 aksa-pari
numerals
3 pradi - - Al 2.1.06 adhi-stri, upa-kumbham
4 yavat - - Al 2.1.07 yavat-amatram
5 apa, pari, bahis - - Al 2.1.12 bahir-gramam
6 a - - Al 2.1.13 a-kumaram
7 abhi, prati - - Al 2.1.14 prati-agni
8 an - - Al 2.1.16, 2.1.16 | anu-vanam, anu-gangam
9 pare, madhye - - A7 2.1.62 pare-gangat
10 numerals vamsyavacty - A6 2.1.19 dvi-muni
11 numerals nadwact - A6 2.1.20 sapta-gangam
Table 12: Conditions for group 4 Avyayibhava
Num iic ifc Infg?r(rtlg%ion Type | Rule Examples
1 ardha - - T1 2.2.02 ardha-pippalt
dvitiya, trtiya - -
2 caturtha, turya, turiya - - T 2.1.13 dvitiya-bhiksa
3 ] ditrya, triga - T6 | 2203 | bhiksa-dvitiyam
caturtha, turya, turiya
4 ku - - T 2.2.18 ku-purusah
5 pradi - - T 2.2.18 pra-acaryah
6 purvadit - - T 2.2.01 purva-kayah
7 - yajakadi - T6 2.2.09 | brahmana-yajakah
8 digvact - named entity T 2.1.50 | purva-isukamasami
9 taddhitanta-digvaci? - - T 2.1.51 paurva-salah
10 kalavact - - T 2.2.05 masa-jatah
11 15at gunavacana - T 2.2.07 1sat-kadarah
12 words denoted by gati - - T 2.2.18 urari-krtam
13 - bound morphemes? - U 2.2.19 kumnbha-karah
14 - krida-jivika - T6 | 2.2.17 danta-lekhakah
Y parva, apara, adhara, uttara
2 digvact with taddhita suffix
3 like kara
Table 13: Conditions for group 6 Tatpurusah
Num iic ifc Inf(%'}?rtlg%ion Type | Rule Examples
1 asanna, dura, adhika sankhyavacy - B 2.2.25 | asanna-dasah
2 digvaci digvaci - B 2.2.26 | daksina-purva
3 sa non-neuter gender - B 2.2.28 sa-putrah
4 indeclinables sankhyavacy - B 2.2.25 upadasah

Table 14: Conditions for group 7 Bahuvrihi



