
Pāṇḍitya: Visualizing Sanskrit Intellectual Networks

Tyler Neill
Brooklyn, NY

tyler.g.neill@gmail.com

Abstract

Pāṇḍitya is an interactive web-based visualization tool for mapping and exploring rela-
tionships between Sanskrit authors and their works. Built on the structured data of the
Pandit Prosopographical Database of Indic Texts, it offers scholars and students an in-
tuitive and extensible open-source interface for dynamically investigating commentarial
networks, which are an essential aspect of Sanskrit intellectual history. Originally devel-
oped as an offline tool (Pandit Grapher), Pāṇḍitya has been re-imagined as an accessible
online resource leveraging modern web technologies for everyday scholarly use. Beyond
visualizing these networks, Pāṇḍitya also links to online Sanskrit e-texts through its sister
project SETI, and may eventually be extended to illustrate additional phenomena such
as parallel passages.

1 Introduction

1.1 Problem and Solution
Sanskrit intellectual history is vast and deeply intertextual, making it challenging to gain a holis-
tic view of relationships between works and authors, even after years of study. Pandit—a digital
humanities project that curates, organizes, and shares structured data on South Asian literary
and intellectual history through an interactive, scholar-driven prosopographical database (Bron-
ner and others, 2024)—provides a strong foundation for addressing this challenge. Until very
recently (see § 1.3), Pandit’s wiki-like website lacked any intuitive, at-a-glance representation of
these relationships. Pāṇḍitya fills this gap by layering on an interactive network visualization,
enabling users to trace scholarly relationships with ease and engage more deeply with the mate-
rial. By bridging structured data and human comprehension, Pāṇḍitya serves as both a research
aid and a pedagogical tool, enabling more effective exploration of Sanskrit intellectual history
while lowering barriers for newcomers.

1.2 Related Network Visualization Projects
Interactive visualizations of network data are increasingly common in the humanities, but autho-
rial and commentarial relationships are rarely complex enough to necessitate such an approach.
Likewise, network visualizations have not traditionally been used for organizing access to digital
literary canons. Instead, most digital humanities projects have focused on other domains:

1. Social networks, often reconstructed through documented correspondence, family ties, or
professional relationships, mirroring interest in modern social media analysis:

• Six Degrees of Francis Bacon, which maps early modern Britain’s (1500–1700) social
networks through textual analysis of primary sources (Warren and others, 2016).

• Mapping the Republic of Letters, which reconstructs Enlightenment intellectual net-
works through letter-writing archives (Edelstein and others, 2017).

2. Citation networks in modern academic work (scientometrics):



• Connected Papers, which positions papers in a 2D similarity space based on citation
patterns and semantic analysis (Tarnavsky Eitan and others, 2025).

• VOSviewer (Van Eck and Waltman, 2010) and CitNetExplorer (Van Eck and Walt-
man, 2014), which analyze large-scale scientific literature through co-citation, biblio-
graphic coupling, and co-authorship patterns .

3. Computed intertextuality phenomena, such as parallel passages and topic modeling:
• Open Knowledge Maps, which organizes academic papers into topic-based clusters

rather than direct citation networks (Kraker and others, 2025).
• Paper Machines, an open-source Zotero extension that enables researchers to analyze

bibliographic metadata and full texts using topic modeling and visualization tools (Jo
and Johnson-Roberson, 2012).

• The Viral Texts Project, which maps reprinting networks in 19th-century English-
language newspapers and magazines (Smith and others, 2015).

• BuddhaNexus, which traces intertextual connections across Sanskrit, Pali, Tibetan,
and Chinese using FastText embeddings, with a primary focus on Buddhist scriptures
(Nehrdich, 2020).

Perhaps the most closely related project is non-academic in nature. The Oracle of Bacon
is a playful exploration of movie actor networks based on the “six degrees of Kevin Bacon”
concept, which posits that any actor in (America-centric) show business can be connected to
Kevin Bacon within six hops or fewer (Reynolds and Tjaden, 2025). This project directly
inspired the v1 tool Pandit Grapher, as evidenced by the latter’s use of the phrase “bacon
hops.” Surprisingly, commercial streaming services, as well as subsidiary navigation platforms
like IMDb and JustWatch, have yet to adopt similar visualizations for content browsing.

1.3 Project History
The first version of the project, Pandit Grapher, required users to install Python, manually
execute scripts, and export data for visualization in Gephi (Neill, 2021). While potentially
useful for technically proficient users, this process was inaccessible to most Sanskrit scholars.

To address this barrier, the second iteration, Pāṇḍitya, was developed as a fully online and
interactive visualization tool. Built with D3.js for dynamic graph rendering and Flask as a
backend framework, Pāṇḍitya significantly lowers the technical barrier, making this sort of in-
teraction with Sanskrit scholarly networks more accessible and engaging. Users can explore
and customize visualizations in real-time using only a web browser, adjusting parameters and
filtering connections as needed. This transition from an offline, static workflow to an interac-
tive web-based tool greatly enhances its potential as a reference and research instrument. At
the same time, the v1 feature of exporting data for use with offline tools like Gephi will be
retained—currently only on the backend, but soon also on the front end—as it is particularly
useful for visualizing large and dense graphs with hundreds or thousands of nodes.

In late April 2025, the Pandit project independently introduced a graph visualization feature
on its entity pages, similar in concept to Pāṇḍitya. Notable advantages of the Pandit imple-
mentation include: (1) broader coverage of entity types with options for targeted filtering; and
(2) polished interface elements such as a collapsible sidebar, refined zoom controls, and helpful
tooltip displays. Alongside this official implementation, Pāṇḍitya will continue in its current
role as an independent, open-source platform well suited to experimentation, offering space for
rapid prototyping, alternate feature sets, and exploratory visualization work. Mutual acknowl-
edgment and ongoing collaboration between the two platforms can help ensure continued benefit
to the broader community.

1.4 Name Derivation
The name Pāṇḍitya derives from paṇḍita (“scholar”), which is basis for the Pandit project’s
own name. Pāṇḍitya’s grammatical status as a vṛddhi derivative (meaning “scholarship”) also



symbolizes its creative derivation from the predecessor project. The full name, Pāṇḍityatāraka,
can be taken to mean either “that which helps one cross (to the far shore of) Sanskrit scholarly
learning” or “a tool for navigating Pandit data.”

2 Data

References to files below correspond to the project’s GitHub repository at
https://github.com/tylergneill/panditya.

2.1 Source
Pāṇḍitya is built upon a structured subset of the Pandit database, derived from a snapshot
taken on December 23, 2024. This source dataset contains 67,529 entities and 163 fields
(data/2024-12-23-pandit-entities-export.csv).

2.2 Reduced Entity Model
The dataset was filtered to focus on works (Content type==Work), their authors (Content
type==Person), and selected additional information: alternate names (Aka and author Social
Identifiers), work Discipline, and basic dates (Highest year and Lowest year). Entirely
omitted were entity types such as Manuscript (of which there are 7,532), manuscript Extract
(5,911), and modern scholarship Print (35,686), along with their associated attributes. Addi-
tional fields within the Work and Person types, such as Genre classifications or various inter-
personal relationships, respectively, were also excluded for now.

The reduced dataset is modeled with the following simplified Python class structure (see
data_models.py for the full implementation):

class Entity:
def __init__(self, entity_id: str):

self.id: str = entity_id
self.type: str
self.name: str
self.aka: str
self.highest_year: Optional[int]
self.lowest_year: Optional[int]

class Work(Entity):
def __init__(self, entity_id: str):

super().__init__(entity_id)
self.type: str = "work"
self.author_ids: List[str]
self.base_text_ids: List[str]
self.commentary_ids: List[str]
self.discipline: Optional[str]
self.author_highest_year: Optional[int]
self.author_lowest_year: Optional[int]

class Author(Entity):
def __init__(self, entity_id: str):

super().__init__(entity_id)
self.type: str = "author"
self.social_identifiers: Optional[str]
self.work_ids: List[str]
self.disciplines: Optional[str]



This streamlined approach improves usability while preserving essential scholarly connections.
Users can still explore finer details through linked Pandit pages as needed.

2.3 Synthetic Attributes
Some clarification is needed for how certain of these attributes are newly constructed. Since
the dataset only specifies a work’s base text (via the field Commentary on (work ID)), its
commentaries must be inferred by reversing this relation, iterating through all works to associate
each with its corresponding commentaries. The resulting structure enables traversal of authorial
and commentarial relationships in any direction, allowing for the construction of subgraphs that
expand from arbitrary nodes.

Discipline is initially associated only with works—and even then, only sparsely. Based on
these, a synthetic disciplines list is generated also for each author, as applicable, including
counts of associated works per discipline (e.g., Maṇḍana Miśra’s disciplines value is “Mīmāṃsā
(3), Advaita Vedānta (1), Vyākaraṇa (1)”).

Dates are tracked for both works and authors. When a work lacks its own date information,
it may inherit the associated author’s range, labeled accordingly (e.g., author_highest_year).
In this way, the sparseness of date information for works can be partly overcome.

2.4 Obtaining and Processing Data
To support periodic updates to the underlying Pandit database, Pāṇḍitya is equipped with a
simple Extract-Transform-Load (ETL) pipeline that processes Pandit data. However, the data
must first be obtained from the Pandit database, which is less straightforward.

2.4.1 Exporting from Pandit Database
On the Pandit website’s “Advanced Search” page, a “Download CSV” button allows users to
download search results. When filtering by entity type via the left sidebar, this feature makes
it appear possible to export arbitrarily large sets of entities, such as all Persons or all Works.
However, such large requests do not currently complete on the project’s production server. With
the support of the Pandit team, work on Pāṇḍitya has so far proceeded on the basis of a full
export initiated by a team member with access to the internal development server and manually
transferred to me via Google Drive.

That said, automating updates via the production server still appears feasible through the
following approach:

1. Use the lightweight JSON API by appending the ?_format=json parameter to any node
URL (e.g., https://panditproject.org/node/89000?_format=json).

2. Periodically query all relevant entities (Works and Persons) known from prior data, check
the changed attribute’s timestamps for recent updates, and update records accordingly.

3. Leverage the sequential nature of numerical identifiers to detect newly published entities.

Such automation has not yet been implemented at the time of writing.

2.4.2 Extract
Out of the original 67,529 rows and 163 columns, only the following were retained:

• 12,700 rows with Content type “Work”, and 3,797 “Person” rows limited to individuals
listed as authors of at least one work.

• 14 columns with a primary focus on authorial and commentarial relationships:
– ID, Title, Author (person IDs), Authors (person), Commentary on (work ID),

Commentary on (work), Aka, Social identifiers, Discipline, Highest Year, and
Lowest Year, which are kept as-is.

– Attributed author (person ID) and Attributed author (person), which are cur-
rently merged into Author (person IDs) and Authors (person), respectively.



– Content type, which is ultimately dropped.

This filtering is automated with the script utils/extract.py, producing the output
data/2024-12-23-works-raw.csv.

2.4.3 Manual Cleaning
Before transformation, minor manual cleaning was required to remove a few spurious entities.
Details are documented in data/manual_cleaning.md, and the cleaned dataset is saved as
data/2024-12-23-works-cleaned.csv.

2.4.4 Transform
The next step, implemented in utils/transform.py, converts the cleaned dataset into struc-
tured Work and Author objects, organizing them into an in-memory lookup table that reflects
the entity model described in § 2.2.

2.4.5 Load
Finally, utils/transform.py saves the processed data in a human-readable and retrieval-
efficient JSON format (data/2024-12-23-entities.json). This dataset can then be loaded
by other code components using utils/load.py.

2.5 Component and Other Network Analysis
The module utils/analyze.py analyzes and categorizes network components, i.e., communities
of connected nodes, within the dataset, offering insights into how works and authors interconnect.
Table 1 summarizes the distribution of components, and full lists of component members are
available at https://panditya.info/notes/data.

Component Type Number of Components Total Nodes
Isolated Nodes (single works only) 3,005 3,005
Small Communities (2–4 entities) 1,608 3,605
Medium Communities (5–9 entities) 90 565
Large Communities (10–25 entities) 24 344
Second-Largest Community 1 73
Central Community 1 8,905

Table 1: Summary of network component analysis.

A detailed discussion of these and other connection patterns is beyond the scope of this paper.
However, the following key observations are noteworthy:

• The presence of a large central community based solely on accepted commentarial relation-
ships underscores the fundamental role of commentaries in Sanskrit intellectual history.

• If additional intertextual phenomena, such as parallel passages, were included, many more
so-called “isolated” works—especially those written by authors with only one or two extant
texts—would be found to engage in broader intellectual discourse.

• This network structure may evolve as further updates to Pandit incorporate new philological
findings.

Two additional practical takeaways from this analysis are:

• Isolated or nearly isolated items are relatively common.
• Conversely, participation in the central community is also widespread, making the visual-

ization of subgraphs with 6–7+ hops impractical for many inputs.

Beyond this component analysis, utils/analyze.py also explores preliminary metrics such
as centrality, influential nodes, and temporal patterns. These remain proofs of concept for now,
but future refinements could significantly enhance the tool’s analytical depth.



3 Web Application
Pāṇḍitya is built on a modular and scalable web architecture:

1. A Flask backend using flask_restx with Swagger-based API docs.
2. A REST API that serves entity metadata and builds graphs on demand.
3. A D3.js front end that dynamically renders and updates network visualizations in real time.
4. Version control for both code (GitHub) and containerized deployments (Docker Hub).
5. Deployment on a cloud server (Digital Ocean).

3.1 Flask App
The Flask app serves as the core backend, handling data requests and visualization processing:

• Loads entity data from the ETL pipeline.
• Exposes API endpoints (see § 3.2) used by the front end.
• Serves the main route (/) with HTML form and graph controls.
• Provides the /view route for external linking to specific graphs.
• Serves informational pages such as /about, /notes/technical, and so on.

3.2 Backend REST API
Key endpoints include:

• GET /api/entities/<type> – Retrieves works, authors, or all entities.
• GET /api/entities/labels – Maps ID numbers to human-readable labels.
• POST /api/graph/subgraph – Generates subgraphs from selected entities and hop counts

using simple breadth-first traversal, with optional exclusion of specified nodes.

For users who wish to interact directly with the API, the following is also available:

• /api/docs – Interactive Swagger docs with example queries.

3.3 Use of D3.js
D3.js’s forceSimulation models nodes as solid, mutually repelling objects connected by flexible
links. Four adjustable forces determine the dynamic layout and can be tuned in-browser:

• forceCollide – Controls how nodes resist overlapping with local neighbors. Higher values
increase virtual node size.

• forceManyBody (.strength) – Controls global node repulsion. Higher values increase re-
pulsion strength.

• forceLink (.distance) – Controls the spacing of connected nodes. Higher values increase
link distance.

• forceCenter (.strength) – Controls the tendency of nodes to return to the graph’s center.
Higher values increase centralization.

D3.js also provides built-in support for dragging and zooming, simplifying interactions. Ad-
ditionally, it facilitates the implementation of Pāṇḍitya’s node context menus (see §3.7).

3.4 GitHub Repository and Local Deployment
For local development, users can follow these steps:

• Clone the repository from GitHub: https://github.com/tylergneill/panditya.
• Set up a virtual environment using Python 3.11+.
• Install dependencies from the provided requirements files: requirements.txt,

requirements_etl.in, and requirements_offline.in.
• Start the server using the included Makefile: make run.



3.5 Versioned Deployment on Digital Ocean
Deployment is managed using Docker and Digital Ocean.

• New builds are created for both development and production releases (see GitHub PR
titles and descriptions for versioning details); each production release is also marked with
a corresponding Git tag.

• Images are pushed to Docker Hub and deployed as containers on the Digital Ocean server.
• Nginx and Gunicorn handle traffic management and load balancing.
• Daily backups of the Digital Ocean “Droplet” ensure system stability and data integrity.

The production deployment is accessible at https://panditya.info, running release 2.4.9
at the time of writing (Neill, 2025).

3.6 User Input Flow
Using the web form, users select works and/or authors via auto-complete drop-downs, which use
IAST and are sorted in Sanskrit alphabetical order. These selections are grounded in Pandit
data and disambiguated primarily by Pandit ID numbers.

Users should be aware of transliteration ambiguities. Pāṇḍitya currently relies on the mostly
precomposed IAST inherited from the Pandit database. As a result, search results may vary
when entering forms such as “Śaṃkara” (m with underdot), “Śaṁkara” (m with overdot),
“Śaṅkara” (velar nasal), “Śaṃkara” (decomposed diacritics, i.e., S ́ am ̣ kara), or simply
“samkara” or “sankara”. The Select2 JavaScript module used for dropdowns generally han-
dles these variants well, and Pāṇḍitya itself supplements search with auxiliary information such
as dates and alternate names, producing more verbose, disambiguated entries like “Śaṃkara
(85218) [710] [Śaṃkarācārya, Śaṅkara ācārya]”. Together, these measures are robust against
most orthographic variation, with the exception of decomposed diacritics. In the future, support
for a hub transliteration scheme such as SLP1 may improve consistency and search reliability
across edge cases. When in doubt, users can consult Pandit’s native search interface to help
identify the unambiguous ID number.

Once entities are selected, users then specify a hop count to determine graph expansion.
Optionally, users can also exclude specific entities from expansion to reduce clutter in highly
connected subgraphs.

For programmatic use cases, the /view route supports direct queries using these same inputs
as URL parameters, e.g., Bhagavadgitābhāṣya, suppressing expansion on Bhagavadgītā and
Śaṃkara: https://panditya.info/view?works=88637&hops=2&exclude_list=85218,42214.

3.7 Node Context Menu
After a graph is displayed, right-clicking a node reveals the following options:

1. More info – Lists additional fields when available: alternate names (aka), social
identifiers (for authors), dates, and discipline (for works) or disciplines (for au-
thors).

2. View on – Links to Pandit entity pages and relevant online e-text repositories (see § 4).
3. Recenter – Sets the selected node as the new center and regenerates the graph, expanding

outward by 1–3 hops.
4. Exclusions – Collapses the selected node, with future options for full removal and re-

expansion.

3.8 Force Controls
Sliders beneath the graph allow users to adjust each of the four D3.forceSimulation forces
(see §3.3). Additionally, a “Freeze” toggle temporarily disables all forces, enabling manual
rearrangement, which can facilitate close inspection and/or screenshots.



3.9 Screenshots

Figure 1: Searching for an entity using auto-complete drop-down

Figure 2: Generating basic graph



Figure 3: Adjusting force controls

Figure 4: Opening context menu with right-click (“More info”)



Figure 5: Using context menu to collapse prolific node

Figure 6: New graph with collapsed node



4 The Sanskrit E-Text Inventory (SETI)
In order to enable hyperlinks from Pāṇḍitya work node context menus to online Sanskrit e-texts,
a separate but related effort, the Sanskrit E-Text Inventory (SETI), aggregates metadata from
multiple repositories and aligns it with Pandit identifiers. Currently included repositories are
GRETIL, Digital Corpus of Sanskrit (DCS), SARIT, The Sanskrit Library (and TITUS), sister
projects Vātāyana and Pramāṇa NLP, and the Muktabodha collection of digitizations from the
Kashmir Series of Texts and Studies (KSTS).

This complementary data layer surfaces throughout Pāṇḍitya: in the ETL pipeline’s trans-
form step, in the REST API (/api/seti routes), and in the D3 front end. For work nodes
highlighted in gold, the context menu’s “View on” option reveals available e-text collections,
which are further differentiated into one to three levels of access, ranging from web read-
ing platforms to raw GitHub data. Component collections and their contained e-texts can
also be programmatically queried and compared via /api/seti GET routes: by_collection,
by_collection/overlap, by_collection/unique, and by_work. In addition, the HTML route
/seti/by_collection/<collection>/visualize behaves like /view (see § 3.6), returning a
preloaded graph visualization in the browser—here, for entire collections at once. For exam-
ple, https://panditya.info/seti/by_collection/SARIT/visualize shows the SARIT col-
lection. Note, however, that only items present in both the source collection and the Pandit
database can be visualized in Pāṇḍitya.

This integration of Pāṇḍitya and SETI constitutes a powerful navigation tool and highlights
both the breadth of online Sanskrit resources and the structural role of shared identifiers. Further
details, including a system design diagram, numerical coverage overview, and access to the public
master spreadsheet, are available at panditya.info/seti and in the accompanying blog post.

Figure 7: Viewing Dharmakīrti e-texts via SETI and the “View on” context menu option



Figure 8: Visualizing SARIT

5 Conclusion and Future Directions
With its targeted use of interactive visualization, Pāṇḍitya bridges a tangible gap between
structured data and human comprehension. It enhances access to the underlying Pandit dataset,
empowering users to more effectively explore and understand Sanskrit intellectual relationships.
Its three main use cases at present include:

1. A gamified reference tool for students and scholars, encouraging deeper engagement with
Sanskrit works and authors.

2. A mechanism for improving Pandit data by highlighting inconsistencies and missing con-
nections, while also fostering greater interest in the project.

3. An electronic catalog tool for finding and navigating to Sanskrit e-texts online.

Future expansions may include:

• Building additional features on top of Pandit data, such as quick search for related works
by both discipline and date, or visualization of family trees.

• Feeding insights from SETI back into Pandit in the form of new entities and connections,
thereby increasing visualization coverage within Pāṇḍitya.

• Illustrating intertextual network analysis, using weighted edges to represent textual inter-
actions as computed by projects like BuddhaNexus (Nehrdich, 2020) and Vātāyana (Neill,
2022), with links to interactive intertextuality reports where available.

Beyond these enhancements, several known development priorities remain:

• Strengthening Pandit-Pāṇḍitya integration to streamline data refreshes.
• Improving navigation with more flexible input methods (e.g., transliteration options) and

alternative modalities like alphabetical browsing.
• Implementing error-checking to prevent the creation of overly large subgraphs.
• Exposing v1 export functionality through the front-end interface.

With its rapid development cycle and adaptable design, Pāṇḍitya aims to serve as a vital tool
for the Sanskrit scholarly community. It complements the Pandit project from which it derives,
opening new paths for engaging with the vast intellectual heritage of the Sanskrit tradition.



Acknowledgments
Pāṇḍitya gratefully acknowledges Pandit as its source and follows it in adopting the Cre-
ative Commons BY-NC-SA 4.0 license, viewable at https://creativecommons.org/licenses/
by-nc-sa/4.0/deed.en.

References
Yigal Bronner et al. 2024. Pandit Prosopographical Database of Indic Texts. Available at https:

//www.panditproject.org/. Accessed: 2025-04-30.

Dan Edelstein et al. 2017. Historical Research in a Digital Age: Reflections from the Mapping the
Republic of Letters Project. The American Historical Review, 122(2):400–424, April. Published: 30
March 2017.

Guldi Jo and Chris Johnson-Roberson. 2012. Paper Machines. Available at http://papermachines.
org/. Accessed: 2025-01-31.

Peter Kraker et al. 2025. Open Knowledge Maps. Available at https://openknowledgemaps.org/.
Accessed: 2025-01-31.

Sebastian Nehrdich. 2020. A Method for the Calculation of Parallel Passages for Buddhist Chinese
Sources Based on Million-scale Nearest Neighbor Search. Journal of the Japanese Association for
Digital Humanities, 5(2):132–153.

Tyler G. Neill. 2021. Pandit Grapher. https://doi.org/10.5281/zenodo.14768846.

Tyler G. Neill. 2022. Intertextual Readings of the Nyāyabhūṣaṇa on Buddhist Anti-Realism. Disser-
tation, Universität Leipzig, December. Available at https://nbn-resolving.org/urn:nbn:de:bsz:
15-qucosa2-826296.

Tyler G. Neill. 2025. Pāṇḍitya. https://doi.org/10.5281/zenodo.15307376.

Patrick Reynolds and Brett Tjaden. 2025. The Oracle of Bacon. Available at https://oracleofbacon.
org/. Accessed: 2025-01-31.

David A. Smith et al. 2015. Computational Methods for Uncovering Reprinted Texts in Antebellum
Newspapers. American Literary History, 27(3):417–445.

Alex Tarnavsky Eitan et al. 2025. Connected Papers. Available at https://www.connectedpapers.
com/. Accessed: 2025-01-31.

N. J. Van Eck and L. Waltman. 2010. Software Survey: VOSviewer, a Computer Program for Bibliometric
Mapping. Scientometrics, 84(2):523–538.

N. J. Van Eck and L. Waltman. 2014. Citnetexplorer: A New Software Tool for Analyzing and Visualizing
Citation Networks. Journal of Informetrics, 8(4):802–823.

Chris Warren et al. 2016. Six Degrees of Francis Bacon: A Statistical Method for Reconstructing
Large Historical Social Networks. Digital Humanities Quarterly, 10(3). Available at http://www.
sixdegreesoffrancisbacon.com/. Accessed: 2025-01-31.


