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Abstract

Upamā alaṅkāra, a prominent figure of speech in Sanskrit literature, comprises of four
components: Upamāna (standard of comparison), Upameya (object of comparison), Sād-
hāraṇadharma (shared attribute), and Upamādyotaka (comparator). It is broadly classi-
fied into Pūrṇopamā (complete simile) and Luptopamā (elliptical simile), with the former
containing all four components and the latter omitting one or more. This paper employs
large language models (LLMs), specifically Llama-3.1 7B, with a prompt-based strategy
to classify instances as Pūrṇopamā, Luptopamā, or none, and to extract the components
for Pūrṇopamā cases. Using datasets from the Rāmāyaṇa and Raghuvaṃśa, the approach
demonstrates promising results for both classification and component extraction tasks,
showcasing the potential of LLMs in computational philology and Sanskrit literary anal-
ysis. 1

1 Introduction
Amongst the various disciplines of knowledge coded in the Sanskrit language, Kāvyaśāstra is an
important study discipline that encompasses systematic analysis of various elements of poetry
such as alaṅkāra, rasa, rīti, guṇa, etc. There has been significant in-depth analysis of the element
alaṅkāra, which is translated as “figures of speech”. These alaṅkāra-s are broadly classified into
the following three sub-types: Śabdālaṅkāra- Figures of sound; Arthālaṅkāra -Figures of meaning;
and Ubhayālaṅkāra - Figures of both sounds and meaning.

One of the most prominent arthālaṅkāra-s is Upamā alaṅkāra, similar to Simile in the English
language, which is extensively employed across diverse domains in Sanskrit literature. This
usage primarily seems to be either for embellishment, as in the case of kāvya-s, or to explicate
a point using examples, as in śāstra-s.

However, the interpretation of Upamā alaṅkāra is found to be quite a complicated task. While
rhetorical texts provide clear theoretical definitions, their practical application in literature often
exhibits significant complexity. This complexity arises due to Sanskrit’s morphological richness,
free word order, employment of multiple adjectives, etc. This variability increases the cognitive
load for learners and readers and complicates computational analysis, making it imperative
to develop systems that can address these challenges related to interpreting Upamā alaṅkāra
effectively.

The key steps in the analysis of Upamā alaṅkāra are:

1. Creation of construe (anvaya) to derive meaning.

2. Upamā alaṅkāra component identification.

3. Identification of sub-type of Upamā alaṅkāra: Pūrṇopamā or Luptopamā.

4. Identification of sub-type of Pūrṇopamā and identification of sub-type of Luptopamā
1Link to code and data: https://github.com/himanshu-dutta/sanskrit-upma-alankar-analysis.git



Currently, analyzing such texts requires manual efforts, where domain experts are required to
invest considerable time and effort to study the literature which employs Upamā alaṅkāra. The
poetry/prose belonging to the Pūrṇopamā subclass has all four components lexically present,
making analysis of such texts through computational methodologies feasible. Further, employing
computational methodologies such as Large Language Models (LLMs) allows us to scale analysis
of Upamā alaṅkāra to the vast and rich Sanskrit literature. This serves as a motivation for us to
undertake a study which employs LLMs for the different tasks related to the analysis of Upamā
alaṅkāra in Sanskrit literature. More specifically, we identify two key tasks in the process of
analysis of Upamā alaṅkāra. We focus on:

• Upamā Subclass Classification: Distinguishing between Pūrṇopamā, Luptopamā or None.

• Pūrṇopamā Component Identification: Identifying the components of texts belonging to
Pūrṇopamā subclass.

By automating these processes, we devise an approach that not only enhances a reader’s ability
to comprehend Sanskrit literary texts but also serves as a valuable tool for independent learn-
ing and research. Furthermore, this work contributes to the broader Sanskrit Computational
Linguistics (SCL) field by providing scalable methodologies for analyzing literary constructs.

Our main contributions are:

• We present the first computational study, to the best of our knowledge, on the identification
and classification of Upamā alaṅkāra in Sanskrit literature. Our approach utilizes an LLM-
based pipeline to address both tasks, as detailed in Section 3.

• We introduce a curated evaluation dataset comprising of poetic excerpts from the Rāmāyaṇa
and Raghuvaṃśa (Kale (1957), Nandargikar (1957)). The dataset is specifically designed
for subtype classification of Upamā alaṅkāra and component identification in Pūrṇopamā
alaṅkāra, consisting of 128 examples annotated by domain experts.

• We evaluate state-of-the-art LLMs on these tasks, highlighting their capabilities and lim-
itations. Our work establishes a baseline for future research in computational analysis of
Upamā alaṅkāra.

2 Background and Literature Survey

2.1 Upamā alaṅkāra
Upamā alaṅkāra, one of the oldest and most prominent figures of speech in Sanskrit, traces its ear-
liest mentions in the Ṛgveda2. Its systematic study as a literary embellishment begins with the
Nāṭyaśāstra and is further developed by classical rhetoricians such as Bhāmaha, Daṇḍin, Udb-
haṭa, Rudraṭa, Mammaṭa, Panditarāja Jagannātha, etc. In this figure of speech, the central idea
is to compare one object with another due to both possessing a common characteristic. Herein,
a comparison takes place by measuring the object of comparison closely with the standard of
comparison. Such a comparison serves various purposes such as familiarizing with the unknown
entity, giving a nuanced explanation, narrating a situation as is, appreciation or degradation of
an object, etc. For instance,

1. sa devyā vyavasāyaṃ ca ghoraṃ ca śapathaṃ kṛtam|dhyātvā rāmeti niśśvasya chinna-
starurivāpatat|| 3

Translation- Reflecting on the determination of the queen and her dreadful vow, the king sighed
and cried, ’O Rama’ and then fell down like a tree severed. 4

2By conservative estimate the time period of the oldest text in Sanskrit i.e., Ṛgveda is considered as 1000 B.C.
3Valmīkīyarāmāyaṇa (2025) 2.12.54
4https://www.valmiki.iitk.ac.in/content?language=dv&field_kanda_tid=2&field_sarga_value=12&field_sloka_value=54



2. sa rājyaṃ guruṇā dattaṃ pratipadyādhikaṃ babhau| dinānte nihitaṃ tejaḥ savitreva
hutāśanaḥ|| 5

Translation- On receiving kingship from his father Raghu shone more brightly than before like
Firegod who shines forth brightly when the Sun invests his radiance in him at the close of a day.
6 The structure of Upamā alaṅkāra comprises four components:

1. Upameya – The object of comparison or topic.

2. Upamāna – The standard of comparison or vehicle.

3. Sādhāraṇadharma – The common property that is the basis for the comparison. Also
known as event or state.

4. Upamādyotaka – The word or marker that indicates the similarity or comparator.

While this figure of speech is expressed in multiple ways in various Alaṅkāraśastra texts, we
rely on the classification pattern proposed by Mammaṭa in Kāvyaprakāśa. We chose this pattern
of classification because it is in accordance with the theory of grammarians. The classification
is straightforward as it is done on morpho-semantic grounds. This classification divides Upamā
into two primary sub-types:

1. Pūrṇā (Complete) – The type which consists of all four components of Upamā mentioned
explicitly.

2. Luptā (Elliptical) – The type which omits explicit mention of one, two or three compo-
nents of Upamā.

The computational analysis of Upamā alaṅkāra is particularly challenging due to:

• Component Identification: Extracting the four components (Upamāna, Upameya, Sād-
hāraṇadharma, and Upamādyotaka) from sentences, especially in cases where components
are implied or omitted.

• Subtype Classification: Distinguishing between Pūrṇopamā and Luptopamā based on the
presence or absence of components.

• Contextual Dependencies: Understanding cultural and contextual nuances that influence
the interpretation of the comparison.

• Grammatical Ambiguities: Disambiguating between Upamāna and Upameya, which often
share the same grammatical case in Sanskrit’s free word order.

• These challenges necessitate a computational framework that integrates syntactic, semantic,
and contextual analysis to accurately process Sanskrit texts consisting of Upamā alaṅkāra.

2.2 Computational Background
In recent years, advancements in computational methods have significantly impacted Sanskrit
language analysis, seamlessly blending traditional linguistic frameworks with modern Natural
Language Processing (NLP) techniques. Early computational efforts, such as the Sanskrit Her-
itage Platform (Huet, 2005), utilized rule-based systems inspired by Pāṇinian grammar for
morphological analysis and syntactic parsing.

The introduction of Transformer models (Vaswani, 2017) marked a paradigm shift in NLP by
enabling the modeling of complex contextual relationships within the text through self-attention

5Raghuvaṃśa 4.1
6https://sanskritdocuments.org/sites/giirvaani/giirvaani/rv/sargas/04_rv.htm



mechanisms. Transformers are deep learning architectures that use a mechanism called self-
attention to weigh the importance of different words in a sentence, allowing for nuanced under-
standing of context, even across long text sequences. This capability makes them particularly
effective for linguistic analysis.

Large Language Models (LLMs), built upon Transformers, are pre-trained on massive amounts
of textual data from various sources, enabling them to generate human-like text and perform a
wide range of language-related tasks. Their ability to understand and produce text makes them
valuable for analyzing complex linguistic phenomena, including those in classical languages like
Sanskrit.

LLM Prompting (Brown et al. (2020), Sahoo et al. (2024)) is a technique for guiding LLMs
to perform specific tasks by crafting input queries or statements that define the context and
objectives. For example, a prompt can specify that the model should complete a translation,
summarize a text, or answer a question. Few-shot prompting builds on this by including a
small number of task-specific examples within the prompt itself, demonstrating the desired
output format. This approach is particularly useful for linguists who may lack extensive labeled
datasets, as it leverages the model’s ability to generalize from minimal input.

These innovations have begun to influence Sanskrit computational linguistics, opening new
avenues for integrating traditional linguistic principles with state-of-the-art machine learning
techniques.

2.3 Literature Survey
Linguistic Studies on Upamā Alaṅkāra: Upamā alaṅkāra has been a subject of discussion
in Sanskrit rhetorics from around 1st century until the present 21st century. The rhetoricians
have put forth their perspective on the perception of this particular figure of speech. Paṇditarāja
Jagannatha propounds a scholastic exposition of this figure of speech by discussing the verbal
understanding that is the result of various linguistic formations expressing Upamā. Modern
research focuses on the aesthetic analysis of Upamā as in Parik (2020). There are researches that
highlight comparative analysis of proposition of Upamā of various rhetoricians as in Tiwari(2023),
Joshi (2015). Traditional studies on Upamā alaṅkāra have focused on its role as an aesthetic
and rhetorical device.

Computational Approaches to Sanskrit Alaṅkāra Analysis: The complexities of San-
skrit, including sandhi (euphonic combination) and compound formations, have driven special-
ized computational approaches.

Efforts to integrate syntactic and semantic features into Sanskrit analysis include early works
like (Goyal et al., 2009), which combined rule-based and semantic-driven parsing, and (Kulkarni
and Das, 2012), introducing a discourse analysis framework to understand contextual dependen-
cies. (Goyal and Huet, 2013) further examined completeness in a Sanskrit reader for holistic
text comprehension.

Recent studies merge traditional linguistic frameworks with neural models. (Jadhav and
Kulkarni, 2024) utilized Immediate Constituent analysis for Upamā alaṇkāra in lexicography.
(Chaudhari et al., 2024) fine-tuned a generative pre-trained model for simile element extraction,
identifying Upameya, Upamāna, and Upamādyotaka. Similarly, (Jadhav et al., 2023) employed
dependency tree structures to analyze Upamāna, Upameya, Upamādyotaka, and Sādhāraṇad-
harma in examples from Kāvyaprakāṣa.

Research on Sanskrit figures of sound, such as Anuprāsa and Yamaka alaṇkāra, includes tools
by (Barbadikar and Kulkarni, 2024) and (Barbadikar and Kulkarni, 2023) for their identification
and classification. To the best of our knowledge no such tools exist for Upamā alaṇkāra.

While figurative language analysis is extensive in high-resource languages like English
(Chakrabarty et al. (2022), Shutova (2011), Lai and Nissim (2024), Qadir et al. (2016), He et al.
(2022), Liu et al. (2018)), comprehensive studies on simile subtype or component identification
in Sanskrit remain limited.



Current computational research on Sanskrit alaṇkāra-s faces challenges due to the lack of anno-
tated corpora and standardized tools. However, leveraging LLMs presents a promising direction,
as highlighted in the International Sanskrit Computational Linguistics Symposia (Bhattacharya,
2024).

3 Methodology

In this section, we present our computational approach to identifying and analyzing Upamā
alaṅkāra in Sanskrit sentences. Our methodology is divided into two main phases: (1) Clas-
sification of Upamā alaṅkāra subtypes, and (2) Identification of components for Pūrṇopamā.
Figure 1 illustrates the overall pipeline of our approach. The input to our system, sentence S,
is considered to be any poetry/prose in Sanskrit literature.

Figure 1: Pipeline Overview for Upamā alaṅkāra Extraction.

3.1 Phase 1: Upamā Alaṅkāra Classification

The first phase involves classifying the input sentence as Pūrṇopamā, Luptopamā, or None. We
utilize a few-shot prompting technique on an instruction-tuned LLM for this stage. The prompt
is constructed based on the description of Upamā alaṅkāra from Kāvyaprakāśa.

3.1.1 Algorithm for Classification

The classification process utilizes a systematic algorithm to determine the type of Upamā
alaṅkāra. A custom prompt is constructed to include definitions and annotated examples of
Pūrṇopamā and Luptopamā. This prompt is input into the LLM alongside the source Sanskrit
sentence S. The algorithm evaluates the presence of the four key components—Upameya, Up-
amāna, Sādhāraṇadharma, and Upamādyotaka—to make a classification. Sentences containing
all four components are labeled as Pūrṇopamā, while those missing at least one component
(other than Upameya) are categorized as Luptopamā. Sentences that fail to meet these criteria
are classified as None. The classification process follows these steps:



Algorithm 1 Upamā Alaṅkāra Classification Algorithm
Require: Sanskrit sentence S in romanized form.
Ensure: Classification result: Pūrṇopamā, Luptopamā, or None.

1: Construct a prompt with:

• Definitions of Pūrṇopamā and Luptopamā.

• Annotated examples.

2: Input S into the LLM using the constructed prompt.
3: Extract the output classification label.
4: if all four components (Upameya, Upamāna, Sādhāraṇadharma, Upamādyotaka) are present

then
5: return Pūrṇopamā.
6: else if at least one component is missing (excluding Upameya) then
7: return Luptopamā.
8: else
9: return None.

10: end if

3.1.2 Prompt Template for Classification
We use the following prompt template to prepare the input for the LLMs with the input sentence
for the classification task:
You are a highly knowledgeable language model specializing in classical Sanskrit poetics. Your task is
to classify a given prose passage in Sanskrit (Romanized) into one of four categories based on the
presence of the figure of speech called Upamā alaṅkāra.

Explanation of Upamā alaṅkāra:
Upamā alaṅkāra (simile) is a poetic device where a comparison is drawn between two entities. The
essential elements of Upamā alaṅkāra are:

- Upameya (Object of comparison): The entity being described.
- Upamāna (Standard of comparison): The entity being compared to.
- Sādhāraṇadharma (Common property/State/Event): The common quality between the two.

This common quality can be an object or an action. A noun or verb can denote this event in a
verse or sentence.

- Upamādyotaka (Comparator): Words like iva, yathā, tulya that indicate the comparison are called
comparators. For e.g. yathā, iva, vā, va, vat, sadṛśa, tulya, saṅkāśa, sannibha, upama, nīkāśa,

sama, ābha, nibha, pratīkāśa, prakhya, pratinidhi, savarṇa.

Classification Categories of Upamā alaṅkāra:

- Pūrṇopamā (Complete Simile): All four elements are present in the prose or poetry.
- Luptopamā (Ellided Simile): One or more elements, namely, the Upamāna, Upameya,

Upamādyotaka or sādhāraṇadharma are missing, but the comparison is implied.
- None: No elements of Upamā alaṅkāra are present.

Input-Output Format:
Input:

- A Romanized Sanskrit prose or poetry excerpt.
Output:

- reason: A text explanation of how the elements of Upamā alaṅkāra are identified or absent.
- label: One of the categories: Pūrṇopamā, Luptopamā, None.

Output Format:
{”reason”: ”<reason>”, ”label”: ”<label>”}

Example 1:
Input: ”Bhrātarau aśvinau iva rūpeṇa samupasthitayauvanau��”
Output: {

”reason”: ”All elements are present: Upameya: bhrātarau, Upamāna: aśvinau,
Sādhāraṇadharma: rūpeṇa, Upamādyotaka: iva.”,

”label”: ”Pūrṇopamā”
}



Example 2:
Input: ”Kāminīgaṇḍapāṇḍunā candreṇa prācīdik alaṅkṛtā”
Output: {

”reason”: ”The comparative word (Upamādyotaka) is missing, but the
comparison is implied.”,
”label”: ”Luptopamā”

}

Example 3:
Input: ”Vṛkṣaḥ sthiraḥ tiṣṭhati.”
Output: {

”reason”: ”No comparison elements are present.”,
”label”: ”None”

}

Give only the output in the specified format and nothing else.

Input: <Sentence S>
Output:

3.2 Phase 2: Upamā Component Identification

Algorithm 2 Component Identification Algorithm
Require: Sentence S classified as Pūrṇopamā.
Ensure: Identification of Upameya, Upamāna, Sādhāraṇadharma, Upamādyotaka.

1: Construct a prompt with:

• Definitions of each component.

• Annotated examples.

2: Input S into the LLM using the constructed prompt.
3: Extract component labels from the LLM output.
4: return Identified components in the format:

• Upameya: Extracted object of comparison.

• Upamāna: Extracted standard of comparison.

• Sādhāraṇadharma: Extracted shared attribute.

• Upamādyotaka: Extracted comparator word.

For sentences classified as Pūrṇopamā, the second phase focuses on identifying the four key
components of Upamā alaṅkāra: Upameya, Upamāna, Sādhāraṇadharma, and Upamādyotaka.
This phase is critical for understanding the structural and semantic intricacies of the figure of
speech, as outlined in classical Sanskrit literature. Similar to the classification phase, we again
utilize a few-shot prompting technique on an instruction-tuned LLM for this stage as well.

3.2.1 Algorithm for Component Identification
The identification process is guided by a structured algorithm that leverages the capabilities of
the LLM. A carefully constructed prompt, containing precise definitions and annotated examples
of each component, is used to guide the model in analyzing the input sentence. The algorithm
systematically extracts each component by aligning the model’s output with predefined roles.
For example, Upameya is identified as the object of comparison, while Upamāna represents the
standard of comparison. Similarly, Sādhāraṇadharma corresponds to the shared attribute, and
Upamādyotaka is the comparator word connecting the other elements. This systematic approach



ensures that the model provides a detailed breakdown of the components, contributing to a
nuanced analysis of the Upamā alaṅkāra. The identification process follows the steps presented
in algorithm 2.

3.2.2 Prompt Template for Component Identification
We use the following prompt template to prepare the input for the LLMs with the input sentence
for the component identification task:
You are a highly knowledgeable language model specializing in classical Sanskrit poetics.You will
be given a prose/poetry excerpt in Sanskrit (Romanized) which has presence of the figure of
speech called Upamā alaṅkāra. Your task is to identify the essential elements of Upamā alaṅkāra:
Upameya, Upamāna, Sādhāraṇadharma, and Upamādyotaka. Upamā alaṅkāra and its elements are
described below.

Explanation of Upamā alaṅkāra:
Upamā alaṅkāra (simile) is a poetic device where a comparison is drawn between two entities. The
essential elements of Upamā alaṅkāra are:

- Upameya (Object of comparison): The entity being described.
- Upamāna (Standard of comparison): The entity being compared to.
- Sādhāraṇadharma (Common property/State/Event): The common quality between the two.
This common quality can be an object or an action. A noun or verb can denote this event
in a verse or sentence.
- Upamādyotaka (Comparator): Words like iva, yathā, tulya that indicate the comparison
are called comparators. For e.g. yathā, iva, vā, va, vat, sadṛśa, tulya, saṅkāśa,
sannibha, upama, nīkāśa, sama, ābha, nibha, pratīkāśa, prakhya, pratinidhi, savarṇa.

Classification Categories of Upamā alaṅkāra:
- Pūrṇopamā (Complete Simile): All four elements are present in the prose or poetry.
- Luptopamā (Elided Simile): One or more elements, namely, the Upamāna, Upameya,
Upamādyotaka or sādhāraṇadharma are missing, but the comparison is implied.
- None: No elements of Upamā alaṅkāra are present.

Input-Output Format:

Input:
- A Romanized Sanskrit prose or poetry excerpt.

Output:
- Explanation: Reasoning based on which, the four elements are identified.
- The four elements: upameya, upamāna, sādhāraṇadharma, and upamādyotaka, in the
specified format.

Output Format:
{

”upameya”: ”<upameya>”,
”upamāna”: ”<upamāna>”,
”sādhāraṇadharma”: ”<sādhāraṇadharma>”,
”upamādyotaka”: ”<upamādyotaka>”

}

Examples:

Example 1:
Input: ”rāmaḥ kālāgnisadṛśaḥ krodhe�”
Explanation: The comparison here is between ‘rāmaḥ’ and ‘kālāgni’, where ‘rāma’
is the ‘upameya’ and ‘kālāgni’ is the ‘upamāna’. The common property is anger,
indicated by the word ‘krodhe’. The upamādyotaka used here is ‘sadṛśaḥ’. Since all
four components namely, Upameya, Upamāna, sādhāraṇadharma and upamādyotaka are
present, this is an example of Pūrṇopamā.
Output: {

”upameya”: ”rāma”,
”upamāna”: ”kālāgni”,
”sādhāraṇadharma”: ”krodhe”,
”upamādyotaka”: ”sadṛśaḥ”

}

Example 2:
Input: ”sītā api anugatā rāmaṃ śaśinaṃ rohiṇī yathā �”
Explanation: Here, a comparison is being made between ‘sītā’ and ‘rohiṇī’ who is the
wife of Candra (moon). The sādhāraṇadharma is indicated by the word ‘anugatā’ which one who follows.
The Upamā alaṅkāra is indicated by the upamādyotaka/ comparator ‘yathā’. Since, all



the four components namely, Upameya, Upamāna, sādhāraṇadharma and upamādyotaka are
present, this is an example of Pūrṇopamā.
Output: {

”upameya”: ”sītā”,
”upamāna”: ”rohiṇī”,
”sādhāraṇadharma”: ”anugatā”,
”upamādyotaka”: ”yatha”

}

Example 3:
Input: ”salabdhamānairvinayānvitairnṛpaiḥ purālayairjānapadaiśca mānavaiḥ �
upopaviṣṭairnṛpatirvṛto babhau sahasracakṣurbhagavāniva amaraiḥ ��
Explanation: Here, a comparison is being made between ‘mānavaiḥ’ which means men and
amaraiḥ which means Gods. The sādhāraṇadharma is ‘vṛtaḥ’ which means the common
property is to encircle. The Upamā alaṅkāra is indicated by the comparator ‘iva’.
Since, all the four components namely, Upameya, Upamāna, sādhāraṇadharma and
upamādyotaka are present, this is Pūrṇopamā.
Output: {

”upameya”: ”mānavaiḥ”,
”upamāna”: ”amaraiḥ”,
”sādhāraṇadharma”: ”vṛtaḥ”,
”upamādyotaka”: ”via”

}

Give only the output in the specified format and nothing else.

Input: <Sentence S>
Output:

3.3 Integration and Final Output

Data: rāmaḥ viṣṇunā sadṛśo vīrye

Classification Prompt
...

Input: rāmaḥ viṣṇunā sadṛśo vīrye 
Output:                                            

LLM Output: pūrṇopamā LLMYes

No

Is pūrṇopamā?

Final Output
- Label: luptopamā/none

Final Output
- Label: Pūrṇopamā                             
- Components:                                    

- Upameya: rāmaḥ       
- Upamāna: viṣṇu         

        - Sādhāraṇadharma: vīrye  
       - Upamādyotaka: sadṛśaḥ  

Component Identification Prompt
...

Input: rāmaḥ viṣṇunā sadṛśo vīrye 
Output:                                            

Figure 2: Example run of our pipeline on a datapoint. This shows both the classification and
component identification processes.

Figure 2 shows the execution of our pipeline on a datapoint. The outputs from both phases
are combined into the final structured result:

• Classification result (Pūrṇopamā, Luptopamā, or None).

• For Pūrṇopamā, the four extracted components.



Task Dataset Metric Value

Classification Rāmāyaṇa Accuracy 59%
F1 Score 0.53

Classification Raghuvaṃśa Accuracy 56%
F1 Score 0.49

Component Identification Rāmāyaṇa Exact Match 47%
Full Match 41%

Component Identification Raghuvaṃśa Exact Match 44%
Full Match 39%

Table 1: Results for Classification and Component Identification

4 Experiments and Results

This section describes the experimental setup, evaluation methodology, and results for the pro-
posed LLM-based approach to analyzing Upamā alaṅkāra in Sanskrit texts. Our study focuses
on two main tasks: the classification of sentences into subtypes of Upamā alaṅkāra: Pūrṇopamā
or Luptopamā or None and the identification of the components of sentences belonging to
Pūrṇopamā alaṅkāra.

4.1 Dataset

The datasets for the experiments are derived from two Sanskrit texts that are rich in Upamā, the
Vālmīkīyarāmāyaṇa and Raghuvaṃśa. The selection of texts ensured that we select examples
of Upamā alaṅkāra from both simplified and complex Sanskrit language. The datasets are
manually annotated to mark the sentences as either Pūrṇopamā, Luptopamā, or None, along
with the identification of components for sentences belonging to Pūrṇopamā alaṅkāra. The
Raghuvaṃśa text consists of 129 examples, with 74 examples of Pūrṇopamā, 27 examples of
Luptopamā, and 28 examples of None. Similarly, the Vālmikīyarāmāyaṇa text consists of 116
examples, with 70 examples of Pūrṇopamā, 39 examples of Luptopamā, and 7 examples of None.
Further, both the datasets have all the four components: Upameya, Upamāna, Sādhāraṇadharma,
and Upamādyotaka; identified for all the Pūrṇopamā examples.

Component Count (Rāmāyaṇa) % (Rāmāyaṇa) Count (Raghuvaṃśa) % (Raghuvaṃśa)
Upameya 14 31.82 11 23.40
Upamāna 20 45.45 10 21.28
Sādhāraṇadharma 11 25.00 6 12.77
Upamādyotaka 31 70.45 36 76.60

Table 2: Component Matches for Rāmāyaṇa and Raghuvaṃśa

4.2 Experimental Setup

We conduct our experiments with the Llama-3.1 8B model7, a large language model based on
the Transformer architecture, prompted for analysis of Upamā alaṅkāra. We utilize a few-shot
prompting based strategy, and provide the LLM with the following information in the prompt:
<Context, Task Description, Few-shot Examples, Sentence S>. The detailed prompts for each of
the task in our pipeline have been provided in section 3. Hence, the prompts provide a detailed
description of the task, including examples for few-shot learning.

7https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct



4.3 Evaluation Metrics
The performance of the model is evaluated using classification and component identification
metrics. For the classification task, which involves categorizing sentences as Purnopama, Lup-
topama, or None, we use Accuracy and F1 Score. Accuracy measures the proportion of sentences
correctly classified into their respective categories and is defined as

Accuracy =
Correctly Classified Sentences

Total Sentences . (1)

The F1 Score, which provides a harmonic mean of Precision and Recall, is defined as

F1 Score = 2 · Precision · Recall
Precision + Recall , (2)

where Precision represents the proportion of correctly classified sentences out of all sentences
predicted in a particular category:

Precision =
Correctly Classified Sentences in Category

Total Predicted Sentences in Category , (3)

and Recall represents the proportion of correctly classified sentences out of all actual sentences
in that category:

Recall = Correctly Classified Sentences in Category
Total Actual Sentences in Category . (4)

For the component identification task, which involves identifying Upameya, Upamāna, sād-
hāraṇadharma, and upamādyotaka, we use Exact Match and Full Match metrics. Exact Match
calculates the proportion of correctly identified components per example:

Exact Match =
Number of Correctly Identified Components

Total Components Per Example . (5)

Full Match evaluates the proportion of examples where all four components are perfectly
identified between the system’s output and the reference output. It is defined as

Full Match =
Number of Examples with All Components Correctly Identified

Total Examples . (6)

These metrics provide a precise and task-specific evaluation of the model’s performance in
both sentence classification and component identification tasks.

4.4 Results and Analysis
The results for both tasks on the Rāmāyaṇa and Raghuvaṃśa datasets are summarized in Table 1.
Additionally, Table 2 provides detailed statistics of component matches for Upamā alaṅkāra
across both datasets.

Classification Performance: The model achieves moderate accuracy (59% and 56%) and F1
scores (0.53 and 0.49) for Rāmāyaṇa and Raghuvaṃśa, respectively. These results indicate that
while the model can distinguish between Pūrṇopamā, Luptopamā, and non-Upamā sentences
to some extent, it struggles with finer distinctions, particularly when implicit or ambiguous
components are present. Misclassifications often occur in cases where sentences contain all com-
ponents but are labeled as Luptopamā or vice versa, revealing gaps in the model’s understanding
of contextual nuances.



Task Ave. Annotator Accuracy Ave. System Accuracy Time Taken By Annotator-to-System
Upamā Subclass Classification 63.33% 63.33% 24:1
Pūrṇopamā Component Identification 70.00% 60.00% 10:1

Table 3: Comparison with Human Annotators

Component Identification Performance: The identification task shows varying levels of
success for different components. Upamādyotaka, being explicitly marked by words like ”iva”
and ”yathā,” is the easiest to identify, with match percentages exceeding 70% across both
datasets. In contrast, Sādhāraṇadharma consistently shows the lowest match percentages (25%
and 12.77%), reflecting the difficulty of recognizing shared attributes that are often implicit or
context-dependent.

The confusion between Upameya and Upamāna is a recurring issue, suggesting that the model
struggles with semantic roles, particularly when adjectives or phrases overlap these components.
Similarly, phrases containing both the comparator and the standard of comparison are sometimes
misinterpreted as the common property (Sādhāraṇadharma), further complicating the task.

Error Patterns and Linguistic Challenges: The analysis reveals several persistent error
patterns that hinder the model’s performance in both classification and component identification
tasks. Sentences with missing or ambiguous components are often misclassified, indicating the
model’s difficulty in dealing with partial or implicit information. Moreover, the inflectional
nature of Sanskrit poses challenges, particularly in handling Sandhi-s (euphonic combinations),
which often result in fragmented or incorrect interpretation of words. This issue disrupts the
lexical and syntactic coherence required for accurate analysis. Additionally, adjectives describing
the Upameya are frequently misclassified as part of the component itself, highlighting the model’s
inability in distinguishing the modifier from the modified. The machine finds it challenging to
identify the components particularly when there is variance in the expression of Upamā of various
poets such as Rāmāyaṇa and Raghuvaṃśa. The complexity of expression is one of the key factors
that impact the inconsistencies in the identification and labeling of components. Combined with
the limited availability of annotated datasets, these challenges underscore the complexities of
applying computational techniques to classical Sanskrit texts.

Comparison with Human Annotators: To asses how our system compares with linguists
who are acquainted with analysis of Upamā alaṅkāra, we conduct a comparison of our proposed
approach. This comparison is done on the basis of accuracy for the particular task, and the
efforts required are quantified on the basis of average time taken to analyze and annotate a
single instance of poetry/prose. The results in table 3 show that our proposed approach per-
forms comparably with the performance of linguists undertaking the aforementioned two tasks,
while taking significantly less time to analyze and annotate an instance. For the task of Up-
amā Subclass Classification, both linguists and our proposed approach achieve an accuracy of
63.33% while our system performing the task 24 times faster than a human. For the task of
Pūrṇopamā Component Identification, linguists achieve an average accuracy of 70%, while our
system achieves an average accuracy of 60%, while taking 10 times lesser time than human.

5 Conclusion and Future Work

We study the potential of large language models (LLMs) for analyzing Upamā alaṅkāra
in Sanskrit literature, specifically focusing on the classification of subtypes of Upamā
alaṅkāra: Pūrṇopamā and Luptopamā, and identifying components of poetry/prose belonging
to Pūrṇopamā alaṅkāra: Upameya, Upamāna, Sādhāraṇadharma, and Upamādyotaka.

Our experiments highlight the efficacy of the proposed approach. We show that using LLMs
and using few-shot prompting strategy achieves reasonable performance, with F1 scores exceed-
ing 0.5 for classification and acceptable accuracy in component identification, despite the inher-
ent linguistic complexities of Sanskrit. The findings underscore both the promise and challenges



of LLMs in Sanskrit computational linguistics, particularly in resolving contextual dependencies
and handling linguistic features like Sandhi and compounds. These limitations suggest avenues
for refinement. We further show that computational methodologies such as LLMs can achieve
comparable accuracy with linguists in terms of achieving the task, while the proposed approach
being considerably faster. Compared to linguists, LLMs suffer from hallucinations and show
inability to provide proper reasoning for the provided output. We consider this to be a topic
for a future study. As we experiment with datasets from sources with different level of morpho-
semantic complexity, with Rāmāyaṇa consisting of simpler language structures as compared to
Raghuvaṃśa which exhibits a profound style of Upamā expression. Comapred to Raghuvaṃśa,
our approach shows better performance on dataset extracted from Rāmāyaṇa, underlining the
inability of LLMs to process complex language structures.

Future work could involve expanding annotated datasets, developing component-specific sub-
models, and integrating advanced syntactic and semantic features. Addressing preprocessing
challenges, such as Sandhi splitting, and extending the approach to other alaṅkāras would en-
hance applicability.
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