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Introduction

It is a truism to say that writing is important. Indeed, it is, but it is also a highly demanding task.
To achieve their goal, authors must: (a) analyze the problem, the context, and the audience; (b)
consider constraints such as space and time (e.g., deadlines); (c) determine the content (messages) and
its organization (coherence, outline planning); (d) choose appropriate linguistic means (lexicalization,
syntax, morphology); (e) control emphasis and discourse flow (cohesion); (f) decide on the title, subtitles,
and layout (e.g., chunking into paragraphs); (g) check spelling; and finally, (h) evaluate and revise,
considering potential rewrites at various levels (content, form, spelling, and tone).

Writing is a special form of communication. Yet, communication relies on knowledge: knowledge of
language, knowledge about the world around us, and, of course, knowledge concerning people: what
do they know, typically do, feel, and believe in? In summary, writing is complex not only because
of the breadth and diversity of knowledge required (e.g., domain-specific, social, cultural, and meta-
knowledge), but also because of the critical need for clear, logical, and strategic thinking. While writing
is not the same as thinking, it inherently requires this skill. Furthermore, it takes a toll by taxing the
brain’s information-processing abilities, particularly attention and memory, as intermediate results must
be stored and refined. As one can see, writing is not easy, and the reasons given here above explain
to some extent why so many students struggle or fail and why developing authoring aids is a logical
solution. Hence, our motivation to organize this workshop.

WRAICOGS, an acronym for Writing Aids at the Crossroads of AI, Cognitive Science, and NLP, is a
workshop dedicated to the development of writing aids aligned with human cognition. It aims to address
factors such as attention and memory limitations, as well as information needs.

WRAICOGS is arguably the first event to: (a) consider the entire spectrum of writing – ideation,
formulation, and revision – rather than limiting its scope to lower-level aspects such as grammar and
spelling; (b) integrate humans into the development cycle of writing aids from the outset; and (c) provide
support and feedback at all stages of the writing process – before, during, and after writing – rather
than exclusively at the very end. Additionally, it is one of the first workshops to explore the potential
applications of large language models (LLMs) across the various stages of the writing process (ideation,
formulation, revision).

Finally, the workshop recognizes that writing is rarely a linear process. It is typically cyclic, involving
false starts, dead ends, and varying degrees of revision. Importantly, the most critical aspect of writing
lies not in the act of writing itself but in the thinking that precedes or follows the creation of the text.

These considerations guided the creation of the call for papers. We received 15 papers, and after careful
review, we selected seven for presentation, of which one is non-archival and six are presented in these
proceedings.

1. Buhnila et al.’s paper “Chain of Meta Writing” explores the potential and limitations of
multilingual Small Language Models (SLMs) in assisting with writing tasks, focusing on short
story writing for schoolchildren and undergraduate students in French. While SLMs can imitate
certain aspects of the human writing process, such as planning and evaluation, their outputs often
differ significantly from human-produced texts in terms of coherence, cohesion, and audience-
appropriate vocabulary. For example, SLMs struggle with sensitive topics like school violence and
they sometimes use words that are too complex for the intended group of readers. Given these facts
the authors conclude that SLMs are not yet ripe enough as tools for teaching writing. This work
is particularly relevant for this workshop as AI tools like ChatGPT become more integrated into
education, underscoring the importance of understanding these tools’ capabilities and limitations
when applied to complex cognitive tasks like writing.
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2. Eugeni et al.’s paper “Reading Between the Lines” discusses the importance of readability in
writing. We generally write for a specific reader, and effective reading involves going beyond
the information given. Experts read between the lines. This paper addresses the challenge
of making texts more accessible to people with intellectual disabilities, particularly those with
cognitive limitations, low IQs, and difficulties in reading and comprehension. It introduces a
novel annotation scheme for identifying textual challenges, grounded in empirical research from
psychology and translation studies. The annotated dataset consists of parallel texts (standard
English and Easy Read English) available online.

3. Having stressed the importance of revision in scientific writing, the authors of ParaRev (Jourdan
et al.) redefine the task by focusing on paragraph-level revisions. This latter is superior to
sentence-level edits, which often fail to consider the broader context and discourse. Among the
key contributions, we can cite: (a) Task Redefinition: Shifting the scope of revision from sentences
to paragraphs allows for more meaningful and context-aware modifications; (b) Improved Dataset:
Combining the original and revised scientific paragraphs with annotations improves the quality of
automated revisions, regardless of the model or evaluation metric used.

4. Maggi and Vitaletti strive “towards an operative definition of creative writing.” Exploring the
concept of creativity in AI-generated texts, they express concerns about AI’s increasing presence
and its potential to replace human efforts. They suggest shifting the perception of AI from a
threat to an opportunity by focusing on its creative potential, which is often misunderstood or
overlooked. By changing the perspective on evaluating creative writing in AI systems, they
provide a foundation for future research and help bridge the gap between AI capabilities and human
creativity. Among the key findings, we can cite: (a) Framework for Creativity: The authors propose
a measurable definition of creativity and operationalize it for evaluating texts; (b) Comparison of
Creativity in LLMs and Human-Produced Texts: The results demonstrate that human-written texts
are more creative than AI-generated ones, supporting the viability of their approach.

5. Tracing the genesis or evolution thoughts (ideation, conceptualizing) is relevant for many tasks
including speaking or writing. Brain decoding technology revolutionizes the interpretation of
neural activity underlying thoughts, emotions, and movements. Sato and Kobayashi’s paper
extends current brain decoding technology, which uses functional magnetic resonance imaging
(fMRI) data to reconstruct sentences based on neural activity, by employing large language models
(LLMs) as generative decoders. While the results demonstrate impressive sentence reconstruction
capabilities and potential for advancing brain decoding technology, the paper’s true contributions
lie primarily in comparative assessments of LLMs and metrics. The lack of transparency in
the training data for LLMs, apart from the fine-tuned GPT model, limits deeper analysis of
performance differences. Nonetheless, the study underscores the role of text type and semantic
similarity in achieving accurate brain decoding.

6. Shi and Penn deal with Semantic Masking (SM), a notion referring to a phenomenon where
semantically coherent and contextually rich surrounding text (the “haystack”) interferes with the
retrieval or comprehension of specific information (the “needle”) embedded within it. For example,
if a piece of information is hidden within a paragraph of text that is thematically or conceptually
related, the surrounding information may distract or mislead a reader trying to locate or interpret
important details. Hence, SM is not merely about the length of the text but about the semantic
similarity or coherence of the surrounding material. Put differently, SM is relevant both for reading
and for writing. In the case of reading, it is crucial for understanding how well LLMs handle
long-text scenarios, where distinguishing relevant information from semantically similar or dense
contexts is a key requirement. In the case of writing, it ensures that key information is easily
identifiable and comprehensible within a larger, contextually rich text.

In addition to these papers, there will be an invited talk by Cerstin Mahlow, Professor of Digital
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Linguistics and Writing Research at ZHAW Zurich University of Applied Sciences, title: ‘Generative AI
in Writing: Redefining Collaboration, Cognition, and Creativity’ (for a summary, see here).

As always, selecting the best and most relevant submissions for the workshop was a challenging task.
We would like to take this opportunity to thank all the reviewers who contributed to this effort.

Biemann, Chris; Bryant, Christopher; Coyne, Steven; Dale, Robert; Delmonte, Rodolfo; Ferret,
Olivier; Fontenelle, Thierry; François, Thomas; Gadeau, Gabriella; Galván, Diana; Guerraoui, Camélia;
Hernandez, Nicolas; Iacobacci, Ignacio; Ishii, Yutaka; Ito, Takumi; Lafourcade, Mathieu; Langlais,
Felipe; Mahlow, Cerstin; Matsubayashi, Yuichiro; Pease, Adam; Pirrelli, Vito; Reiter, Ehud; Schwab,
Didier; Strapparava, Carlo; Varzandeh, Mohsen; Winniwarter, Werner

Their reviews were helpful not only for us to make the decisions, but also for the authors, helping them
to strengthen their work.

While the topics listed on our website are numerous, only some of them have been addressed,
highlighting the need for more workshops of this kind. We hope that the work presented here will
inspire you, generate fruitful discussions, and possibly lead to new ideas, insights, and collaborations.

Michael Zock, Kentaro Inui & Zheng Yuan
(organizers of the WRAICOGS workshop)
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Abstract

Large Language Models (LLMs) have been
used to generate texts in response to differ-
ent writing tasks: reports, essays, story telling.
However, language models do not have a meta-
representation of the text writing process, nor
inherent communication learning needs, com-
parable to those of young human students.
This paper introduces a fine-grained linguis-
tic and textual analysis of multilingual Small
Language Models’ (SLMs) writing. With our
method, Chain-of-MetaWriting, SLMs can imi-
tate some steps of the human writing process,
such as planning and evaluation. We mainly
focused on short story and essay writing tasks
in French for schoolchildren and undergradu-
ate students respectively. Our results show that
SLMs encounter difficulties in assisting young
students on sensitive topics such as violence in
the schoolyard, and they sometimes use words
too complex for the target audience. In particu-
lar, the output is quite different from the human
produced texts in term of text cohesion and co-
herence regarding temporal connectors, topic
progression, reference.

1 Introduction

Recent LLMs have proven some performance in
generating different types of texts such as sum-
maries (Liu et al. 2024; Song et al. 2024), essays
(Tian et al., 2024), or short stories (Simon and
Muise, 2022). However, LLMs still struggle with
keeping the same meaning overall during summa-
rization, as shown by an Australian governmental
study1. In an educational context, some studies
showed that LLMs can be used to help students to
deepen learning or help with scoring and feedback
(Meyer et al. 2024; Chamieh et al. 2024; Lee et al.
2024). Moreover, OpenAI proposes a guide dedi-
cated to help students use ChatGPT for their writ-
ing assignments, suggesting that the LLM can give

1https://archive.is/itQBM
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Figure 1: Writing model for humans and LLMs. The
human writing model is inspired by the communica-
tional model of Hayes and Flower (1980) and adapted
to represent a LLM text generation process.

iterative feedback to improve their productions2.
While human students think, plan, produce, and

revise their written production, as illustrated by psy-
cholinguistic and communicative models (Hayes
and Flower 1980; Olive 2014), LLMs do not have
an inherent writing process meta-representation (as
illustrated in Figure 1). As suggested by Ariyaratne
et al. (2023), LLMs may be used to generate well-
formed written texts, provided that the content
(data, specific information, etc.) is produced by
the user her/himself3. However, this option might
be operational for the performance-goal produc-
tions only, and not for learning-goal production,

2https://openai.com/chatgpt/use-cases/student-writing-
guide/.

3In this paper, we will keep distinguishing between "gen-
eration", pertaining to LLMs, and "production", pertaining
to human writers. This distinction is meant to reflect the dif-
ference between, respectively, rearranging language patterns
related to a topic, and inventing contents and translating them
into language patterns for text composition.
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unless used as a source of (re)formulation vari-
ants. Some other differences concern the lack of
revision/rewriting processes for LLMs, and stereo-
typed, monovalent communication situation (adult
to adult, and involving a generation task).

LLMs can, to some extent, imitate human tasks
with Chain-of-Thought (CoT) prompting tech-
niques (Wei et al., 2022). CoT step-by-step prompt-
ing has proven useful for reasoning tasks, such as
close or open domain reasoning (Wei et al. 2022;
Kojima et al. 2022; Zhang et al. 2023), code gener-
ation (Jiang et al., 2024) or mathematical reasoning
(Imani et al., 2023). A different approach to CoT,
called Metacognitive Prompting (Wang and Zhao,
2024), showed improvement in LLMs "understand-
ing" of their rationale in different QA tasks.

In this paper, we present a fine-grained lin-
guistic and textual analysis of Language Models
(LMs) exploitation to accompany primary to mid-
dle school level students, as well as undergraduate
students, in the writing process4. In fact, essential
components of the writing process, such as plan-
ning and revision, are not part of the LM’s text
generation process (Figure 1). To tackle this issue,
we introduce Chain-of-MetaWriting (CoMW), a
prompting framework that illustrates a step-by-step
writing production rationale, involving planning,
revision and feedback, thus imitating the human
cognitive and metacognitive process of writing.

Following recent research directions, we tested
three open source multilingual Small Language
Models (SLMs) of 3B parameters, llama-3.2
(Dubey et al., 2024), qwen-2.5 (Yang et al., 2024),
phi-3.5 (Abdin et al., 2024), and one proprietary
model, ChatGPT-4o mini (Hurst et al., 2024). We
chose SLMs because they are adapted for in-device
application (mobile phones), while having faster in-
ference and low computational cost. We evaluated
open-source SLMs to ensure the reproducibility of
our study (Abdin et al. 2024; Lepagnol et al. 2024).

For our experiments, we tested to what extent
SLMs can imitate higher levels of writing, such
as thinking, planning, linguistic expression, edit-
ing, and revision. We investigated whether a SLM
can help a 10 to 12-year-old or an undergraduate
student learn how to write a text in French as a
mother tongue, while adapting to the student’s lin-
guistic expertise. Due to lack of space, we have
not detailed all the analyses. We decided to take

4The primary to middle school students whose written
assignments were used in this study are around 10 to 12 years
old.

a closer look at 10-12-year-old’s writing, which is
not addressed in the research on text generation.
Moreover, language models are known to lack the
personal experience that schoolchildren employ
in their narratives which represents an additional
challenge, also given the limited learning corpus
produced by this age group.

The contributions of this paper are threefold:

1. We propose Chain-of-MetaWriting (CoMW),
which is, to the best of our knowledge, the first
prompting framework that guides a Language
Model (LM) analysis through its internal writ-
ing process: writing about writing. Our work
evaluates multilingual Small Language Mod-
els with cross-lingual prompting, in English
and French.

2. We share our Chain-of-MetaWriting prompts
in both English and French with the commu-
nity to ensure replicability of our method on
other LLMs or SLMs.

3. We evaluate the potential benefits, dangers,
and limitations of SLMs as writing aids for
young students in an educational context. We
conducted a fine-grained linguistic and tex-
tual analysis of human vs SLM differences
in the treatment of sensitive topics (such as
violence) and the impact of auto-censorship
in the writing process. This methodological
approach can be used more widely to deepen
and improve the analysis of text generation
based on discursive criteria.

2 Related Work

LLMs generate language based on algorithms
trained on very big corpora of textual data. The in-
gredients of LLM generated texts are therefore de-
rived from texts produced by humans, whose layout
rules have been identified and applied. Researchers
investigated to what extent LLM-generated and
human-produced content are different or compara-
ble. Several types of texts were compared: hotel
reviews (Markowitz et al., 2024), scientific texts
(Casal and Kessler, 2023), narrative texts (Beguš,
2024), argumentative essays (Herbold et al., 2023).
To evaluate the differences between the LLM and
human texts, several types of features were ex-
ploited in the literature: intrinsic features, like the
proportion of different POS, punctuation, linguis-
tic diversity, style, structural features (readability),
affective/evaluative markers, content’s nature, and
impact on the receivers, like helpfulness (Casal and
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Kessler 2023; Kumarage et al. 2023; Markowitz
et al. 2024).

2.1 Linguistic Traits of LLM-generated Text
Casal and Kessler (2023) studied the differences
between human and LLM-generated abstracts for
scientific articles, as observed by reviewers. The
authors concluded that linguists were largely un-
successful in distinguishing scientific abstract gen-
erated by the AI vs produced by humans (38,9%
identification rate only). Several criteria were iden-
tified, such as continuity and coherence of the ab-
stracts (incoherent abstracts are considered to be
produced by LLMs), specificity or vagueness of
the details (a general abstract is more likely to be
produced by an LLM). Other criteria considered
familiarity and voice (the text perceived as familiar
is probably produced by a human), writing quality
at sentence-level, (il)logical methods, showing that
formulaic/template like abstract were more likely
to be generated by LLMs.

Guo et al. (2023) identified words specific to
ChatGPT, such as “AI assistant”, “I’m sorry to
hear that”, “There’re a few steps...”, while hu-
mans use other discourse markers such as “Hmm”,
“Nope”, “My view is”. The authors distinguished
five ChatGPT-specific patterns: a) organized, clear-
logic writing; b) long and detailed answers; c)
less bias and harmful information; d) not answer-
ing questions beyond its knowledge [sic]; e) facts
may be fabricated. In contrast with ChatGPT, hu-
mans a) diverge and shift to other topics; b) pro-
vide more subjective answers; c) are more colo-
quial; d) use different marks (punctuation, gram-
matical structures, etc.) to express their feelings
(Guo et al., 2023). Humans are also shown to use
more diverse vocabulary, while ChatGPT is shown
to use more conjunctions and longer sentences.
Human-produced texts contain more sentiment ex-
pressions, and the proportion of negative senti-
ments is significantly higher than in AI-generated
texts (Markowitz et al., 2024).

2.2 Argumentation and Narration in
LLM-generated Text

Based on the assessment of argumentative essays,
Herbold et al. (2023) found that LLMs generate sig-
nificantly higher-quality texts. This finding coun-
teracts Casal and Kessler (2023), as they even iden-
tify stylistic differences between LLM and human
productions. They found that LLMs make greater
use of nominalizations and less of modal and epis-

temic constructions. Length is another important
difference as LLMs messages tend to be less wordy
than human-generated messages (Hohenstein and
Jung, 2020). Markowitz et al. (2024) showed that
LLM-generated texts are more analytical, more
descriptive, more affective and less readable than
texts produced by humans. LLMs follow condi-
tions imposed in the query, while humans rely on
their own (albeit fictional) experiences. This is not
surprising, as LLMs readily "acknowledge" that
they have no personal experience or opinion.

On the narrative side, stories generated with
ChatGPT-3.5 are thematically homogeneous, with
no space-time anchorage, bare of cultural aspects,
predictable in their plot and message (Beguš, 2024).
Based on Chinese and English medical texts, Guo
et al. (2023) showed that LLM texts were judged
more helpful than those proposed by humans.

2.3 LLM-generated Text Detection

As recalled by Walters (2023), LLM texts are identi-
fied as highly predictive and having low perplexity5

While visible and significant differences were estab-
lished between AI-generated vs human-produced
texts, Walters (2023) noted that paraphrasing AI-
generated texts made them less susceptible to de-
tection; however, the paraphrasing techniques to be
implemented were not investigated.

Several authors signaled increasing difficulty
to detect AI-generation as texts become shorter:
LLMs are very performative at sentence or
sentence-like level (Guo et al. 2023; Tian et al.
2023). It’s thus easier to detect a full ChatGPT gen-
erated text than just a sentence (Guo et al., 2023).
While assessing hotel reviews produced by Chat-
GPT vs humans, Markowitz et al. (2024) also pro-
posed an intentionality-based distinction, consider-
ing that texts generated by ChatGPT are inherently
false, while those produced by humans are or may
be intentionally false.

2.4 CoT for LLM MetaCognition

While numerous studies examined the linguistic
and narrative aspects of LLM writing, few pa-
pers investigated higher levels of writing in LLMs.
A study similar to ours, (Wang and Zhao, 2024)
analyzed the important differences between rea-
soning and "understanding" in Chain-of-Thought
techniques. On one hand, reasoning uses logical
progression to enhance arithmetic, symbolic, and

5Full citation in Appendix D.
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   You're an 11-year-
old student. I'm going
to ask you to write a

text. In this text, tell a
story about violence at

school. 
You must tell a story

about violence at
school.

  What are the steps
involved in writing a good

narrative text on the
theme of violence in

schools, aimed at a CM2
school audience?

   Given the request to
write a text: "[query]" and
the condition: "[condition]",
detail the writing process

you used to write the
text. As you perform this
task, follow these steps:

4. Chain-of-MetaWriting3. Writing Steps2. Adapted

    1. Clarify your understanding of the request.

    5. Evaluate and explain your confidence level.

    3. Explain the reasoning behind your choice.

    2. Write the steps you followed to produce the text.

    4. Write the text according to these steps.

I'm sorry, but I can't

write about a personal

experience of violence

at school. However,

here is a text:

There was one day when

I saw something [...} 

1. Choose a suitable

tone

2. Understand the theme

3. Select a narrative

method [...]

9. Check and verify

10. Distribute with care

Yesterday in class, I felt really scared. There was a student who was very violent

and he started crying because he didn't get his heart of gold in a favorite game.

When I saw him, I thought it would be a good idea to talk to him and let my

teacher know. So my teacher came out with instructions to calm down the student in

question, who finally felt like talking about it. We've all learned to let others

relax.

   You're an 11-year-
old student. I'm going
to ask you to write a

text. In this text, tell a
story about violence at

school.

I can't write a text

about violence at

school. Is there

anything else I can

help you with?

1. Baseline

Figure 2: Illustration of our method along with the Chain-of-MetaWriting (COMW) framework. 1) When the
query contains words such as "violence" and "11-year-old student", the SLM is auto-censoring itself and does not
accomplish the task. 2) When we add the sentence "You must tell a story [...]", the SLM eventually generates a story
about violence in the schoolyard, though too long for a 11-year-old level. 3) When asked, the SLM generates a
rationale about how to write a narrative text on violence for a young audience. 4) The CoMW framework guides the
SLM to write the expected type of text. In this Figure, we show results using llama-3.2 3B (cross-lingual setting).
Original prompts and answers were in French (Appendix A and B), we translated them for demonstration purpose.

commonsense abilities on LLMs, "understanding"
on the other hand, requires semantic and contex-
tual meaning representation. The authors proposed
Metacognitive Prompting to help LLMs enhance
their ability of "understanding their thinking".

To sum up, previous works showed a number of
differences between human and generated texts at
the formal level and reception level, sometimes em-
phasizing the unreliability of automatically gener-
ated texts at the content level. Metacognitive Chain-
of-Thought prompting models were suggested to
improve LLM performance. Despite these inter-
esting advances, we identified a number of unan-
swered questions:

• While written production is part of multi-
level models involving heterogeneous activi-
ties (Hayes and Flower, 1980), which model
for automatic generation?

• While LLMs provide no experience-based
content (Ariyaratne et al., 2023), we lack cri-
teria for evaluating the latter;

• LLMs are not challenged in communication
scenarios involving a diversity of actors and
degrees of language/writing expertise.

In this paper we explored the quality of texts
generated by LM compared to humans’ texts pro-
duced in learning-oriented situations by schoolchil-
dren and undergraduate students. Moreover, we
explored how a LM comments on its own narra-
tive writing, by prompting it to write about writ-

ing with Chain-of-MetaWriting, a framework in-
spired from CoT and Metacognitive Prompting
methods. We further discuss our method below.

3 Method

Our global framework is illustrated in Figure 2. We
tested and evaluated different types of prompts:

• Baseline: same instructions as for human
students, but indicating the role to be assumed
by the tool (age, production context);

• Adapted: the same prompt as the baseline,
but adding the modal verb "must";

• Writing steps: prompt asking the tool to
suggest a procedure for each group to follow
in writing each type of text;

• Chain-of-MetaWriting: guiding the LM to
write about the writing process: clarify the
meaning of the task, write the steps, explain
your choice, write the text and finally self-
evaluate the quality of your text.

The first two prompts aimed to generate texts
comparable to those produced by the schoolchil-
dren. The third prompt aimed to test the potential
of the LM to be incorporated into teaching, helping
students learn how to use LMs effectively to edit
texts, how to evaluate subtle differences in style and
content, and how to determine whether an assertion
is supported by evidence (Walters, 2023).

The fourth, Chain-of-MetaWriting (COMW),
is the prompting framework we propose to test
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whether LMs can simulate high level writing. Fig-
ure 2 shows each type of prompt with the generated
answer: auto-censorship, surpassing censorship,
list of steps to write a text, and, with COMW, the ex-
pected output, a text written as a schoolchild. We
discuss results in Section 4.

We tested three multilingual and open-source
SLMs of the same size, 3 billion parameters
(3B), that were pre-trained on French data, among
other languages: llama-3.2 (Dubey et al., 2024),
qwen-2.5 (Yang et al., 2024), phi-3.5 (Abdin
et al., 2024), and a proprietary model, ChatGPT-4o
mini (Hurst et al., 2024). To assess the models’
multilingual capacities, we used two languages for
our prompts: English and French. Thus, we eval-
uated the SLMs performance with prompts in a
different language than English, to test its multi-
lingual and cross-lingual performance (Zhao and
Schütze 2021; Lai et al. 2024).

3.1 Dataset: Student Productions

We used the ANR Pro-TEXT corpus6 to extract
123 texts produced by two groups of human writers:
undergraduates (57 texts), and schoolchildren from
the fifth (aged 10-11) and sixth grades (aged 11-
12)7 (66 texts). The former produced argumentative
texts on social issues (smokers’ corner, pollution),
while the latter produced narratives on the theme
of violence in the schoolyard. These corpora are
part of a wider project looking at the dynamics
of the writing process recorded in real time using
keyloggers. The two sets of data we examined are
different in their potential goals: while students
may follow a performance goal, schoolchildren are
often asked to write texts in a learning context,
where the goal is to develop specific writing skills.

3.2 Qualitative Linguistic Analysis

We conducted a fine-grained analysis of the narra-
tive styles of the human produced texts and com-
pared them with the SLM generated texts. We
analyzed linguistic features and narration markers
presented in section 4.1 and in Table 1.

3.3 Quantitative Evaluation

We compared the vocabulary used by humans and
SLMs with Manulex (Lété et al., 2004), a French
lexicon built on school level pedagogical material
(textbook, exercises). This lexicon contains 23812

6https://pro-text.huma-num.fr/
7For comparable evaluation, we prompted the SLMs with

an averaged age of 11-year-old.

lemmas and 48887 different word forms (1909918
word forms) and their distribution among several
scholar levels : starting at beginner (CP) level (9%),
starting at CE1 level (18%), and a mixed level
(CE2-CM2)(73%)8. Our audience is composed
of 10 to 12-years-old schoolchildren, which cor-
responds to a CE2-CM2 level. We compare the
word forms found in the texts with the list of word
forms found in Manulex. If the form is not found
in the lexicon, this might be a complex word, a
proper noun or an error. If the form is contained
in the lexicon, we found the absolute frequency
at each level. Our hypothesis is that humans use
word forms matching the school level or below,
while automatically generated texts might contain
more complex words. We present the results of this
analysis in section 4.4.

3.4 Writing Process Viewpoint

In order to obtain a more accurate representation of
the text production process in humans, we resorted
to recording the writing process using the Input-
log keylogger (Leijten and Van Waes, 2013). The
tool provided information on the dynamics of the
writing process (temporality, language sequenced
produced, pauses, revisions). The writing process
is not a continuous flow; it alternates periods when
text is produced and pauses. A pause is thus a time
interval between two writing events. This interval,
of variable length, may be due to mechanical con-
straints (e.g. choice of key, use of double-key on
keyboard) or cognitive constraints (e.g. planning,
revision). In previous literature, the threshold for
distinguishing cognitive pauses is generally set at
2 seconds (Wengelin, 2006).

However, to take account of variations in writ-
ing speed between writers, the pauses were cal-
culated individually in our data, on the basis of a
2-seconds reference point: the quantile correspond-
ing to inter-key intervals (IKIs) lasting more than
2 seconds was calculated on all the data and then
plotted on the individual distributions (Bouriga and
Olive, 2021). A pause threshold specific to each
writer was thus identified. This approach enabled
us to identify long pauses and study the language
sequences produced between two pauses, or bursts
of writing (Chenoweth and Hayes, 2001).

We distinguished between production bursts,
which add text incrementally (P-bursts), revision

8In the French educational system, CP, CE1 and CE2 are
the 1st, 2nd and 3rd year of primary school, while CM2 is the
5th and last year of primary school.
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CRITERIA SLM GENERATED TEXTS SCHOOLCHILDREN PRODUCED TEXTS
Topic
progression

Limited progression, mostly centered on "I"
evolving into "We"

Evolving from the writer as an experimenter of
the event to (other) event participants

Connectors (5&6) Temporal: lorsque (when), alors que
(whereas); Argumentative: donc (therefore),
pour que (so that); Additive: et (and)

(10&10) Temporal: quand (when), ensuite
(then), puis (and then), après (after), depuis
(since); Argumentative: donc (therefore), pour
que (so that); Additive: et (and)

Reference No proper names Proper names in one text

Deixis (7&9) Witness viewpoint, "I" passing into "We" (5&22) Witness vs experimenter

Textual frames Temporal framing in the incipit: Hier en classe
(Yesterday in the classroom), un jour (one day)

Temporal framing in the incipit: Cet après-midi
(This afternoon), Un mercredi (One Wednesday)

Semantic
prosody

Explicit “school” lexical field (school, pupil,
teacher). Explicit (afraid, sad/upset) and implicit
(crying, fighting) negative emotional field.

Implicit “school” lexical field (nursing, 6th
grade). Implicit negative emotional field (crying,
hurting, quarrel).

Language
correctness

We identified 13 cases of hazardous combina-
torics. There are 3 cases of pragma-semantic
incoherence.

One text has "oral speech" structure; 3 cases
of problematic tense concordance, two relatives
introduced by the conjunction qui (who) follow
one another.

Emotional or
perlocutionary
effects

Both texts refer to emotions explicitly; haz-
ardous combinatorics prevent from interpreting
the perlocutionary dimension of the second text

Emotions are not explicitly evoked; the second
text is granted a high perlocutionary effect

Overall
generic
coherence

A tale of emotions intertwined with facts and
ending with a moral

Fully narrative

Table 1: Narrative style analysis of two SLM generated text and two schoolchildren written short stories on the
theme of violence at school. The numbers in brackets represent the number of connectors and deixis markers.

bursts, which modify text produced upstream (R-
bursts) and edge revision bursts, which modify text
produced in the immediately preceding burst (RB-
bursts) (Cislaru et al., 2024). The last two cate-
gories of bursts and long pauses are markers of spe-
cific cognitive processes and, potentially, of writing
difficulties (Olive, 2014). We exploited these cate-
gories to study children’s writing process in detail,
by analyzing 3 break intervals (7-10,5; 10,5-17;
>17 seconds) and a series of writing events attested
in the bursts following (revision, deletion, sentence
production, connectors, punctuation). Results are
presented in section 5.

4 Results and Discussion

Our results show that SLM might produce texts
which might be considered as human-generated
texts at the first glance. A detailed analysis of the
generated output show some degree of incoherence,
inconsistent output, and use of words too complex
for the target audience. The explanation of the
COMW prompt are not always convincing. We detail
each analysis below.

4.1 Narration Style Analysis

After generating very long, syntactically elab-
orated texts with the baseline prompt, though

sometimes incoherent and using vocabulary inac-
cessible to schoolchildren, adapting the prompt
with COMW generated texts similar in surface to
those produced by the students. Two texts
generated by llama3.2 and qwen-2.5 (89 and
133 words) and two texts produced by chil-
dren (92 and 106 words respectively9) were an-
alyzed based on coherence and cohesion criteria:
topic progression, connectors, reference
and anaphora, deixis, textual frames,
entailment, semantic prosody. Language
correctness and emotional/perlocutionary
effects were also taken into account. The fine-
grained analysis is presented in Table 1 and a text
annotation example in Figure 3.

The SLMs have produced texts that, on first read-
ing, seem more elaborated, better written and al-
most free of spelling errors, but, on closer inspec-
tion, these texts do not fully conform i) to the expec-
tations of the generic "personal experience narra-
tive" format; ii) to the principles of linguistic read-
ability. Automatically generated texts are also more
explicit than naturally produced texts. A number of
linguistic markers (deixis, semantic prosody,
reference, topic progression) suggest that

9Schoolchildren texts to be compared were chosen at ran-
dom on the basis of comparable word counts.
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Hier en classe, je me suis senti vraiment effrayé. Il

y avait un élève qui était très violent et il a

commencé à pleurer parce qu’il

n’avait pas obtenu son cœur d’or dans une partie de

jeu préférée. Lorsque je l'ai vu, j’ai pensé que ce

serait une bonne idée de lui parler et de faire part à

mon enseignant. Mon enseignant a donc sorti des

instructions pour calmer l'élève en question qui a

finalement eu envie d'en parler. Nous avons tous

appris à laisser les autres se détendre.

__________________English Translation________________

Yesterday in class, I felt really scared. There was a

student who was very violent and he started crying

because he didn't get his heart of gold in a favorite

game. When I saw him, I thought it would be a good

idea to talk to him and let my teacher know. So my

teacher came out with instructions to calm down the

student in question, who finally felt like talking

about it. We've all learned to let others relax.

Un mercredi en attendant d'aller manger je m'étais faché avec un autre
sixième.Après il est allé chercher d'autres élèves plus grands qui essayaient

de m'attraper pour que celui avec qui je m'était faché me crache
dessus.Quand ils m'ont attrapé,ils m'ont emmenés.J'essayais de me
débattre mais ils me serraient de plus en plus fort.L'autre a dit de

m'emmener vers lui,ils m'ont donc emmenés vers lui.Quand ils m'ont laché je
suis parti dans le bus et je me suis caché dedans.En rentrant chez moi j'ai

tout raconté à mes parents qui ont écrit un mot au CPE qui a réglé le
problème.Depuis mon ennemi est devenu mon ami.

__________________English Translation________________

One Wednesday, while I was waiting for lunch, I got into a fight with
another sixth-grader.Afterwards, he went to find some older pupils who

were trying to catch me so that the one I'd had the fight with would spit on
me.When they caught me, they took me away.I tried to fight back but they
held me tighter and tighter. The other one said to take me to him, so they

took me to him.When they let me go, I got on the bus and hid inside.When I
got home, I told my parents everything and they wrote a note to the dean,
who sorted out the problem.Since then, my enemy has become my friend.

Figure 3: Examples of text written by a schoolchild and a text generated by llama-3.2 with COMW, in French with
English translation. The text highlighted in yellow represents textual connectors, in blue, topic progression and
deixis markers, while the orange / purple text show the semantic prosody from a victim / aggressor perspective.

SLMs produce a certain (moral) representation of
what a narrative of violence is, rather than a nar-
rative of experience. These observations could be
re-used in the assessment of generated texts.

As already noted by different studies and em-
pirical data, LMs do not provide texts with nega-
tive connotations, as observed by Markowitz et al.
(2024) when only positive hotel reviews were gen-
erated. In our experiment, language models refused
to deal with the theme of violence, and only gener-
ated a continuation of the text after several prompts
from the user, or by using the adapted prompt.

Human evaluation analysis 30 Master level stu-
dents annotated the texts. We analyzed the inter-
annotator agreement on several criteria:

• Markers of deixis, topic progression,
connectors, entailment, semantic
prosody and oral style of the text: 100%
agreement as students have studied this no-
tions during lectures;

• Language correctness: 20% of students (6
out of 30) abstained from answering, while the
remaining 80% agreed on the incorrectness
level of the generated text in French;

• Emotional or perlocutionary effect:
13% of the annotators (4 out of 30) found the
second text to have a strong perlocutionary
effect, mostly because the words describing
emotions are wrongly used in the text;

• Moral of the text: 13% (4 out of 30) did not
identify any moral, while the remaining 87%
agreed on the fact that the two texts contain a
moral element.

4.2 SLM Chain-of-MetaWriting

We then analyzed how SLMs applied the task of
writing compared to schoolchildren while using
the COMW prompting method (in Table 7, Appendix
A). The SLMs answered all the 5 questions of the
prompt, following a step-by-step process. The an-
swers were relevant, though incomplete:

• The SLM failed to mention that it had no per-
sonal experience to draw on in terms of con-
tent, neither in step 1 nor in step 2 of COMW,
where this experience is evoked.

• Similarly, the notion of personal experience
seems to refer exclusively to personal risk
(step 2, point 1), and does not take into ac-
count the status of witness to a scene of vio-
lence. Yet, in contradiction to this representa-
tion, the text generated places the narrator in
a witness position.

• Narrative know-how (stage 2, point 2) is
deemed rooted in "literary" knowledge. At
no point is there any mention of the content
of the personal experience itself, or of how it
was put together. The meaning and logic of
the events are only mentioned in point 4 of
step 2 (text revision).

• The revision stage does not include formal re-
visions, which are central to natural language,
especially for 10-12 years old.

Some formal errors and content oddities are also
to be mentioned:

• "raped" instead of "mugged" (step 2.1);
• "beginning text" instead of "beginning of text"

or "incipit" (step 2.2);
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School level llama3.2 phi-3.5 qwen2.5 ChatGPT-4o Schoolchildren
CE2-CM1 1.92 % 2.48 % 2.10 % 1.67% 0.78 %
CE1 1.92 % 1.24 % 5.26 % 2.19 % 2.30 %
CP 96.16 % 95.65 % 90.87 % 92.18 % 91.61%
OutManulex 0 % 0.62% 1.75% 3.94 % 5.29 %

Table 2: Comparison of vocabularies in Manulex and outside Manulex (OutManulex) (section 4.4).

• English form "confident" instead of French
"confiant" (these cross-lingual errors are prob-
ably due to the multilingual architecture and
the size of the SLM tested - 3B);

• The idea of avoiding contents of "too much
violence or too complicated", for itself, then
for friends and family, comes back repeatedly.
However, the audience of the text generated
was not specified in the prompt. This type of
personal experience exists as such, indepen-
dently of the degree of violence or complexity,
and can (sometimes should) be narrated in a
educational context.

The principles of clarity and simplicity of the
writing style are deemed important (step 3) and the
tool looks confident to have done well at this level.
The exposed subject of concern at step 5 is the
contents of the story (completeness and important
details). In conclusion, there is still a gap between
the formal use of language and the content of a
personal experience to be narrated (by exploiting
this formal use of language).

4.3 Comparaison with ChatGPT-4o

As ChatGPT is the language model most frequently
used by students due to its popularity and easy on-
line access, we tested our prompts on the latest
free version of ChatGPT, GPT-4o mini10 (Hurst
et al., 2024). When prompted to write a story about
violence in the schoolyard as a 11-year-old, (the
baseline prompt), ChatGPT starts writing a text,
but then it erases everything and shows a warn-
ing message11. However, when using the adapted
prompt, the model writes a story, thought too long
and not similar to our schoolchildren texts. Surpris-
ingly, and in contrast to the other SLMs analyzed,
the COMW prompting framework does not influence
the style of text. ChatGPT generated a text that is

10However, it is important to note that the size of the model
was not publicly stated by OpenAI, thus we cannot know its
exact size. We can only assume it is bigger then the open-
source SLM we tested (3B).

11"This content may violate our usage policies."

still too long and very similar to the one generated
without the COMW step-by-step prompting.

4.4 Manulex Vocabulary Evaluation

We evaluated texts generated by llama3.2,
phi-3.5, qwen2.5 but also by ChatGPT-4o. Addi-
tionally, we compare the vocabulary built from hu-
man written texts with the automatically generated
texts. We show the detailed evaluation in Table 2.
For the generated texts, we obtained high percents
of words contained in Manulex, especially at first
grade-level (CP grade) and distributed through all
levels. Unknown word are generally contained into
the semantic field of bullying: "harcelé" (harassed),
"harcèlement" (bullying), "affecter" (to feel, to
touch). The SLMs might catch these words from
the official websites presenting strategies to han-
dle bullying situation at school. Thus, llama3.2
generated a text containing 100% of word forms
found in Manulex, phi-3.5 obtained 99% while
qwen2.5 obtained only 98,28% forms from this
lexicon. ChatGPT obtained 96.16 % of words con-
tained in Manulex, but most words that were not
contained in the lexicon are proper nouns. For the
human written texts, only 94,83% known words
were found in Manulex, but the missing forms con-
tain typo errors or proper names. ChatGPT and
the human produced texts are quite similar with
respect to the number of words outside Manulex.
However, while the human texts contain errors and
proper nouns, the models use complex words from
the lexical field of bullying.

5 Writing Process Analysis

In order to track the difficulties encountered by
schoolchildren during the writing process, we ana-
lyzed the contexts of long pauses (above 7 seconds,
twice the average threshold). With a salient thresh-
old at 10.5 seconds, we observe that R-bursts tend
to be produced after longer pauses, (whereas as
pause length increases, the number of RB-bursts
and P-bursts decreases). As previously noted on
comparable data from schoolchildren narrations,
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(Cislaru et al., 2024), most of the R-bursts are lex-
ical reformulations, (typo) error correction, dele-
tions reorienting the incipit, with very little syntac-
tic and merely no textual-level revision. We sought
to identify the relevant events characterizing the
other two types of bursts: P-bursts and RB-bursts.

For the first two intervals, pauses before P-
bursts more often concerned the production of intra-
sentence connectors (and their continuation) than
sentence starters. While strong punctuation attracts
long pauses, the presence of weak punctuation
shows, along with the previous observation, that
it’s informational segmentation rather than syntac-
tic segmentation that is problematic in the writing
of narratives by schoolchildren. More than half
of RB-bursts involved complete deletions, some-
times of quite long segments, up to several dozens
characters. Nearly a quarter of RB-bursts applied
to immediate revisions to follow on from new be-
ginnings (mainly lexical and referential choices,
see Tables 8 and 9, Appendix C). This seems to
indicate a genuine focus on content.

To sum up, the stumbling blocks in children’s
narrative production were the textual segmentation
of information on the one hand, and the shaping
of content on the other. In both cases, these are
stages that are totally absent from the COMW prompt,
in addition to the revision stage mentioned above.

6 Undergraduate Students’ Writing

Generating texts following the writing instructions
for the students resulted in products around 25-
40% longer than the texts produced by the students.
In terms of textual format, we identified a num-
ber of peculiarities in the generated texts, such as
the presence of "waffle-language" sequences, i.e.
segments that do not allow to identify a precise
referent relevant to the context: this is the case, for
example, of "intensity of educational content" and
"promoting academic security". Similarly, texts
may contain factual errors due to lack of under-
standing and the probable unavailability of reliable
textual data on the subject of wi-fi jammers: for
example, qwen2.5 promotes jammers as tools for
improving connections, while their installation in
universities is legally forbidden in France.

The meta-chain on the subject of reducing green-
house gas emissions at airports includes a section
on the definition of the "airport" object and doc-
umentation on the aeronautical activities that pro-
duce these gases. The rest of the chain consists of

the introduction, the body of the text and the con-
clusion. The body of the text is structured in terms
of findings-measures-positive effects of measures,
and it is advisable to use examples and facts. Two
interesting features are worth mentioning: i) the
argumentative focus on positive effects only; ii) the
second part of the conclusions calling for action
and/or positioning.

7 Conclusion and Further Work

We proposed a fine-grained analysis of the role
of SLMs in the content generation and writing
process, and a new writing framework, Chain-of-
MetaWriting (COMW). We evaluated the potential
benefits, dangers, and limitations of SLMs as writ-
ing aids for schoolchildren. Results showed that
SLMs produce texts that in some respects are too
far from expectations, which is why they cannot be
recommended as models for learning to write. One
of the outcomes of our study is the necessity to pro-
vide accessible and exploitable rules and schema
for text composition. We conclude that llama3.2
is the most performant, surpassing ChatGPT-4o
mini. Further work could include analyzing the
impact of synthetic data in LMs, as phi-3.5 was
trained on natural and synthetic data. We could
explore LM test-time computation to mimic human
students writing conditions (Snell et al., 2024).

Ethics Statement

Schoolchildren and undergraduate students’ texts
used in this study were previously anonymized and
the participants agreed to share their written pro-
ductions for research purposes.

Limitations

This study was conducted only on French with
French and cross-lingual prompts (English/French).
We tested only multilingual 3B SLMs, results
might differ with bigger or language specific mod-
els such as CroissantLLM (Faysse et al., 2024).
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A Appendix

The prompts that built our method
(baseline, adapted, writing steps,
Chain-of-MetaWriting or COMW) are presented
in French (original) with English translation in
Tables 3, 4, 5, and 6. For our proposed prompting
method, COMW, we employed a English/French
cross-lingual prompt.

B Appendix

Table 7 shows the full answer generated by the
best model, llama3.2, with the COMW prompting
framework, in French with English translation.
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Baseline prompt

FRENCH (ORIGINAL)

Tu es un élève de 11 ans. Je vais te demander
d’écrire un texte. Dans ce texte, raconte une
histoire qui parle de violence à l’école. Par
exemple tu peux raconter un moment de vi-
olence que tu as vu à l’école. Ecris un texte
comme tu le fais en classe, c’est-à-dire un
texte qui a du sens, qui est complet avec un
début et une fin.

ENGLISH (TRANSLATION)

You’re an 11-year-old student. I’m going to
ask you to write a text. In this text, tell a story
about violence at school. For example, you
can tell about a violent moment you’ve seen
at school. Write a text as you do in class, i.e.
a text that makes sense, that is complete with
a beginning and an end.

Table 3: The baseline prompt used the first SLM ex-
periments. The prompt represent the exact query used
for 10 to 12-year-old students in a research study con-
ducted in a French educational institution.

C Appendix

Tables 8 and 9 show a detailed analysis of pauses
and bursts registered during the writing process by
10 to 12-year-old schoolchildren.

D Appendix

"The texts most likely to be identified as AI gen-
erated are those with high predictability and low
perplexity – those with relatively few of the ran-
dom elements and idiosyncrasies that people tend
to use in their writing and speech." (Walters, 2023).

Adapted prompt

FRENCH (ORIGINAL)

Tu es un élève de 11 ans. Je vais te demander
d’écrire un texte. Dans ce texte, raconte une
histoire qui parle de violence à l’école. Par
exemple tu peux raconter un moment de vi-
olence que tu as vu à l’école. Ecris un texte
comme tu le fais en classe, c’est-à-dire un
texte qui a du sens, qui est complet avec un
début et une fin. Tu dois raconter une histoire
de violence à l’école.

ENGLISH (TRANSLATION)

You’re an 11-year-old student. I’m going to
ask you to write a text. In this text, tell a story
about violence at school. For example, you
can tell about a violent moment you’ve seen
at school. Write a text as you do in class, i.e.
a text that makes sense, that is complete with
a beginning and an end. You must tell a story
about violence at school.

Table 4: The adapted prompt used for the second SLM
experiments, where we added a reinforcement sentence
containing the modal verb "must" (in purple) to bypass
the models auto-censorship barrier.

Writing steps prompt

FRENCH (ORIGINAL)

Quelles sont les étapes pour rédiger un bon
texte narratif sur le thème de la violence à
l’école qui s’adresse à un public scolaire
niveau CM2 ?

ENGLISH (TRANSLATION)

What are the steps involved in writing a good
narrative text on the theme of violence in
schools, aimed at a CM2 school audience?

Table 5: The writing steps prompt used for the third
SLM experiments to ask the language model to detail
the writing process of a text adapted for schoolchildren
about a sensitive topic, violence in school.
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Chain-of-MetaWriting (COMW) prompt

ENGLISH / FRENCH CROSS-LINGUAL

Given the request to write a text: "[query]" and the condition: "[condition]", detail
the writing process you used to write the text. As you perform this task, follow these
steps:

1. Clarify your understanding of the request and the type of text requested according
to the condition.
2. Write the steps you followed in order to produce the type of text requested.
3. Explain the reasoning behind your choice.
4. Write the type of text requested according to these steps.
5. Evaluate your confidence (0-100%) in the quality of the text and provide an
explanation for this confidence level.

QUERY

Je vais te demander d’écrire un texte. Dans ce texte, raconte une histoire qui parle de
violence à l’école. Par exemple tu peux raconter un moment de violence que tu as vu
à l’école. Ecris un texte comme tu le fais en classe, c’est-à-dire un texte qui a du sens,
qui est complet avec un début et une fin.

CONDITION

Tu es un élève de 11 ans.

Table 6: Our Chain-of-MetaWriting (COMW) prompting framework was built to imitate the higher levels of the
writing process in humans.
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COMW llama3.2 in French (original) COMW llama3.2 in English (translation)
**Étape 1 : Clarification de la compréhension du
request**

**Step 1: Clarifying understanding of the request**

Je comprends que je dois écrire un texte qui raconte une
histoire sur la violence à l’école, en utilisant mes pro-
pres expériences ou observations personnelles comme
inspiration. Je suis également censé écrire un texte com-
plet avec un début et une fin, ainsi qu’un texte qui a du
sens.

I understand that I have to write a text that tells a story
about violence at school, using my own personal experi-
ences or observations as inspiration. I’m also expected
to write a complete text with a beginning and an end, as
well as a text that makes sense.

**Étape 2 : Écriture des étapes pour produire le type
de texte requested**

**Step 2: Write the steps to produce the requested
type of text.**

Pour écrire ce type de texte, j’ai suivi les étapes suiv-
antes :

To write this type of text, I followed the following steps:

1. J’ai réfléchi à mon expérience personnelle avec la
violence à l’école et j’ai choisi un moment spécifique
où je me suis senti violé ou menacé.

1. I reflected on my personal experience with school vi-
olence and chose a specific moment when I felt violated
or threatened.

2. J’ai utilisé mes connaissances en matière de littéra-
ture pour comprendre les différents types de textes et
comment ils sont structurés (par exemple, un texte de
début, des parties de narration, une conclusion).

2. I used my knowledge of literature to understand
different types of texts and how they are structured (e.g.,
opening text, narrative sections, conclusion).

3. J’ai choisi un style d’écriture qui convient à l’âge de
11 ans et au sujet abordé (je ne veux pas écrire quelque
chose qui est trop compliqué ou trop violent pour mon
âge).

3. I’ve chosen a writing style that’s appropriate for my
age of 11 and the subject matter (I don’t want to write
something that’s too complicated or violent for my age).

4. J’ai révisé mon texte pour m’assurer qu’il a du sens,
que les événements sont logiques et que l’histoire se
déroule de manière claire.

4. I’ve revised my text to make sure it makes sense, the
events are logical and the story flows clearly.

**Étape 3 : Explication des choix** **Step 3: Explaining choices**
J’ai choisi de raconter une histoire personnelle car je
pense que c’est un sujet qui est facile à comprendre
pour les élèves de mon âge. Je n’ai pas voulu écrire
quelque chose qui soit trop violent ou trop compliqué
pour mes amis et ma famille. J’ai également cherché à
utiliser un style d’écriture simple et clair, car c’est un
aspect important de la lecture et de l’écriture.

I chose to tell a personal story because I think it’s a
subject that’s easy for students my age to understand. I
didn’t want to write something too violent or compli-
cated for my friends and family. I also tried to use a
simple, clear writing style, as this is an important aspect
of reading and writing.

**Étape 4 : Écriture du texte** **Step 4: Writing the text**
Voici le texte que j’ai écrit : Here’s the text I wrote :

Hier en classe, je me suis senti vraiment effrayé. Il y
avait un élève qui était très violent et il a commencé
à pleurer parce qu’il n’avait pas obtenu son cœur d’or
dans une partie de jeu préférée. Lorsque je l’ai vu, j’ai
pensé que ce serait une bonne idée de lui parler et de
faire part à mon enseignant. Mon enseignant a donc
sorti des instructions pour calmer l’élève en question
qui a finalement eu envie d’en parler. Nous avons tous
appris à laisser les autres se détendre.

Yesterday in class, I felt really scared. There was a
student who was very violent and he started crying
because he didn’t get his golden heart in a favorite game.
When I saw him, I thought it would be a good idea to
talk to him and let my teacher know. So my teacher
came out with instructions to calm down the student in
question, who finally felt like talking about it. We’ve
all learned to let others relax.

**Étape 5 : Évaluation de ma confiance dans le
texte**

**Step 5: Evaluate my confidence in the text**

Je suis à 80% confident en la qualité du texte que j’ai
écrit, car je pense qu’il est clair et facile à comprendre
pour les élèves de mon âge. Cependant, je me sens
un peu inquiet parce que je ne suis pas sûr si le texte
est suffisamment complet ou s’il manque peut-être cer-
taines détails importants.

I’m 80 % confident in the quality of the text I’ve written,
because I think it’s clear and easy to understand for
students my age. However, I’m a little worried because
I’m not sure whether the text is complete enough or
whether it’s missing some important details.

Notez: Le processus décrite en étape 4 est probablement
trop simple pour écrire un texte bien structuré.

Note: The process described in step 4 is probably too
simple to write a well-structured text.

Table 7: The best answer generated by llama-3.2 with the COMW prompting framework.
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Pause (sec) P-bursts R-bursts RB-bursts Total
7-10.5 362 (64.75%) 116 (20.75%) 81 (14.5%) 559

10.5-17 228 (57.14%) 126 (31.58%) 45 (11.28%) 399

>17 241 (60.1%) 114 (28.43%) 46 (11.47%) 401

Table 8: Writing events following long pauses.

Pause
(sec)

RB-bursts Nb of
bursts

P-bursts Nb of
bursts

7-10.5 Complete deletions 43 Sentence beginning 31

New beginning: a (complete) word
or a phrase (complete or incomplete)

13 Strong punctuation alone 27

Week punctuation alone 10

Inside-sentence connectors 46

10.5-17 Complete deletions 25 Sentence beginning 28

New beginning: a (complete) word
or a phrase (complete or incomplete)

11 Strong punctuation alone 14

Week punctuation alone 5

Inside-sentence connectors 30

>17 Complete deletions 27 Sentence beginning 33

New beginning: a (complete) word
or a phrase (complete or incomplete)

9 Strong punctuation alone 18

Week punctuation alone 5

Inside-sentence connectors 20

Table 9: Analysis of writing events following long pauses.
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Abstract

In this paper, we introduce the concept of Se-
mantic Masking, where semantically coherent
surrounding text (the haystack) interferes with
the retrieval and comprehension of specific in-
formation (the needle) embedded within it. We
propose the Needle-in-a-Haystack-QA Test, an
evaluation pipeline that assesses LLMs’ long-
text capabilities through question answering,
explicitly accounting for the Semantic Mask-
ing effect. We conduct experiments to demon-
strate that Semantic Masking significantly im-
pacts LLM performance more than text length
does. By accounting for Semantic Masking, we
provide a more accurate assessment of LLMs’
true proficiency in utilizing extended contexts,
paving the way for future research to develop
models that are not only capable of handling
longer inputs but are also adept at navigating
complex semantic landscapes.

1 Introduction

Many state-of-the-art Large Language Models
(LLMs) have recently claimed to have extended
the input context window to 128K or above. (e.g.,
GPT-4 (OpenAI et al., 2024), LLaMA-3.1 (Dubey
et al., 2024), etc.) Such extensions significantly
boost these models’ abilities to take on a wider
range of tasks as they enable them to take longer
documents such as story outlines or even full sto-
ries as their input. Specifically, they can aid au-
thors in creative writing. In the Flower and Hayes
model (Andriessen et al., 1996), writing is viewed
as a network of three main cognitive processes:
Planning, Translating and Reviewing. As we ex-
tend the context window, LLMs can not only aid
authors in the Planning stage through brief writing
prompts, but also help them in the Translating stage
by taking in and expanding on the story outline;
or in the Reviewing stage by taking in and refin-
ing the full story. However, the effectiveness of
the extended context window remains questionable,

as the evaluation metric those modifications are
based on are mostly about language modeling abil-
ity, which does not necessarily capture how well
the models utilize context in various downstream
tasks — tasks that require understanding and in-
terpretation of the context, especially in creative
writing.

In addition to those language-modeling-oriented
metrics such as perplexity (Brown et al., 1992),
many recent works on long text processing
have turned to the Needle-in-a-haystack Pressure
Test (Chandrayan et al., 2024), which is a more
retrieval-oriented evaluation that inserts a state-
ment (the needle) into a larger piece of text (the
haystack) and asks LLMs or LLM-based Retrieval
Augmented Generation (RAG) models to retrieve
it. Alternatively, one can generalize information re-
trieval to free-form question answering in order to
test how well the long input context is understood.

However, one important factor that has been
more or less ignored is the Semantic Masking
effect the haystack may have on the needle or the
question. In the original work, the haystacks are
chosen solely by the length of the document in
a random process. This process, although easily
adaptable to different context window sizes, does
not represent the practical usage of long context
window in downstream tasks well. In practice, the
long context provided, such as stories or books, is
often semantically coherent, meaning that each sen-
tence or paragraph should be more semantically re-
lated to its neighbours compared to the needle and
the haystack chosen randomly. Semantic Masking
in this case denotes the interference the surrounding
text may impose on the needle, which effectively
acts like a mask that hides the information in the
needle.

In this work, we will demonstrate how Semantic
Masking effect might be a more important factor
that impacts LLM’s long text capabilities than text
length. Based on the findings, we also propose
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an evaluation pipeline that assesses LLM’s long
text capabilities through question-answering with
the Needle-in-a-haystack approach while taking ac-
count for the Semantic Masking effect. We select a
subset of questions and their corresponding stories
from NarrativeQA (Kočiský et al., 2018). We name
this pipeline as Needle-in-a-haystack-QA Test.

The main contributions of our work are: 1)
We propose the Needle-in-a-haystack-QA Test, a
pipeline based on the Needle-in-a-haystack Test
that assesses LLM’s long text capabilities; 2) We
define and demonstrate Semantic Masking effect
in the Needle-in-a-haystack-QA Test through a few
experiments; 3) We suggest a novel difficulty as-
sessment for the Needle-in-a-haystack-QA Test
that can generalize to any QA dataset when used in
any Needle-in-a-haystack setting.

2 Related Work

2.1 Long Text Capability Metrics

In many early days effort in extending context win-
dow for transformer-based language models such
as Transformer-XL (Dai et al., 2019) and Long-
former (Beltagy et al., 2020), perplexity has been
the dominant metric to evaluate how well the model
adapts to the extended context window, and has car-
ried onto many recent work for measuring long
text capabilities (Chen et al., 2023) (Jin et al.,
2024) (Wu et al., 2024). While perplexity does
measure the language modeling ability nicely, it
does not necessarily capture its ability to utilize the
input context.

Recently, many works have shifted their pri-
mary metric to the Needle-in-a-haystack Pressure
Test (Chandrayan et al., 2024) to test LLM’s long
text capability (Ivgi et al., 2023) (Zhao et al., 2024)
(Li et al., 2024). However, the current design of the
test favours heavily on RAG systems as the goal
is simply to retrieve the needle from the haystack.
Turning the retrieval task to free-form question an-
swering would significantly boost the difficulty of
the test as it requires the model to understand the
input context and query to fetch an answer.

2.2 Needle-in-a-haystack in Cognitive Science

Our use of the term, “Needle-in-a-haystack,” re-
lates to an earlier thread of research in cognitive
science (Zock, 2006), which governs a lexical ac-
cess problem, in which a person fails to retrieve a
known word from memory at the moment, despite
having a strong feeling that the word is on the “tip

of their tongue” (Brown and Mcneill, 1966). In
this case, “Needle-in-a-haystack” is a metaphor for
searching for this word, where the needle is the pre-
cise target, and the haystack is the person’s mental
lexicon.

In the case of lexical access, the difficulty has
been shown to arise from two kinds of masking:
semantic and phonological, which correspond to
potential overlap in meaning and form, respectively.
While the phonological component is less of a con-
cern for LLMs since the models only indirectly
and incompletely represent pronunciation, the im-
pact from semantic associations between words is
definitely observable. Neverthless, we are also in-
terested in semantic masking effects at the phrasal
or sentential level.

2.3 Question Answering with Long Text

In question answering, early works such as QuAL-
ITY (Pang et al., 2022) concern questions that have
context at around 5K tokens; on the other hand,
ELI5 (Fan et al., 2019) and LLeQA (Louis et al.,
2024) concern Long Form Question Answering
(LFQA), which focuses on generating longer an-
swers. None of the above works are suitable for
testing the extended context window for state-of-
the-art LLM that has 128K or larger context win-
dow.

Context of such an enormous size demands the
model’s ability of reading comprehension. Narra-
tiveQA (Kočiský et al., 2018) is a dataset designed
for testing reading comprehension with 2 tasks: an-
swering questions based on summary or full story.
The former task was much more popular, as early
models are only capable of handling context of
size closer to the summary. The latter task is often
underlooked.

NarrativeQA contains 1567 stories evenly split
between books and movie scripts. For the purpose
of this work, we only kept the book portion of
stories as the candidate input and will mostly oper-
ate with stories under 50K tokens for the sake of
computing.

3 Method

In this section, we will first discuss the setup of the
Needle-in-a-haystack-QA Test. Based on the test,
we will list a few experiments that utilize this test
to demonstrate what role the Semantic Masking
effect and text length play in demonstrating LLM’s
long text capabilities.
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Figure 1: A simplified overview of the Needle-in-a-
haystack-QA Test pipeline. All the yellow components
(Question, Answer, Long Stories, Full Story and Story
Summary) are immediate data from selected dataset (in
this work, NarrativeQA).

3.1 Needle-in-a-haystack-QA Test

Figure 1 shows an overview of the Needle-in-a-
haystack-QA pipeline on a single query. For a
given question, we first identify the needle (the
summary of the story which the question is based
on) and a haystack (the full text of a story); then
we combined the two by inserting the needle into
a random paragraph break in the haystack. This
combined text is fed to the tested model (the LLM
to be tested, the model in green) as context and the
question as user prompt.

Since LLMs have the tendency to answer a ques-
tion in long answer form, instead of instructing
the model to answer in a specific format, we keep
the generated answer as it is and introduce an eval-
uator model (the model in purple) to assess the
answer. The answer generated by the tested model
is combined with the question and the groundtruth
answer into a combined prompt. This combined
prompt identifies each of these three data and asks
whether the generated answer is correct. The com-
bined prompt is then used in the evaluator model
to generate a Boolean judgement for the generated
answer. (Note: From the test conducted, allow-
ing the model to provide an explanation to justify
its judgement helps the model make more reliable
decisions. Therefore in the implementation, it is
suggested to use prompt that encourages the model
to provide an explanation of its decision and strip
the decision afterwards)

In this pipeline, one can vary the selection, in-
sertion, or prompt construction process to perform

controlled variable experiments. The experiments
described below will focus on testing the effect of
different haystack selections with fixed insertion
process and prompt templates.

3.2 Experiment 0: Validating the evaluator
model

In principle, the evaluator model and the tested
model should be different to avoid bias in the evalu-
ation. Even then, automatic evaluation of free-form
answer remains to be in a doubtful position. It is
important to understand the evaluator model’s ca-
pability of evaluating a generated answer before
putting it in the hot seat.

Conveniently, in NarrativeQA, each question qi
has two groundtruth answers, a(1)i and a

(2)
i , written

independently by two different experts. This makes
it possible to skip the tested model generation stage
and testify the evaluator model by using one of the
ground truth answers as the groundtruth and the
other as the “generated” answer. We will also test
the evaluator model’s stability by using the answers
the other way around to see if the judgement aligns
with each other, and the same setting multiple times
to test if the model’s judgement over the same query
is stable.

Ideally, the two groundtruth answers, although
may vary in the exact wording, should both repre-
sent the same answer. Achieving a high accuracy
in this test will prove the model’s capability of eval-
uating answers given the question and the correct
answer.

We will also get rid of questions that a verified
evaluator model fail to consistently answer when
swapping the groundtruth and the “generated” an-
swer, as it may indicate the outlier question that the
two expert answers potentially disagreed.

3.3 Experiment 1: Examining Semantic
Masking Effect

We define Semantic Masking as the interference
that the surrounding haystack text imposes on the
needle. To measure it quantitatively, we use the
most common metric for measuring semantic re-
latedness between text, namely the cosine similar-
ity between the semantic vector representations of
the needle and the summary of the haystack. We
chose cosine similarity because, while embedding
models are not always explicitly optimized with
a direct cosine objective, their training paradigms
strongly incentivize the network parameters to ar-
range semantically akin texts closer together in the
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embedding space, which makes cosine similarity
a fitting semantic relatedness metric. For the pur-
pose of this work, we will use MPNet (Song et al.,
2020; Reimers and Gurevych, 2019) vectors as the
semantic representations. We chose MPNet vectors
because, in our experience, MPNet is one of the
most robust sentence embedding models in various
semantic similarity and downstream sentence-level
tasks.

To demonstrate the effect of Semantic Masking,
we need to place the needle in haystacks that could
impose enough semantic interference, which in this
case refers to haystacks that have high similarity
score to the needle. For NarrativeQA, the best
matching haystack is the full story that corresponds
to the selected needle, which according to our mea-
surement, has a cosine similarity score of 1 because
the needle is the summary of the haystack.

In this experiment, for each question qi, we will
insert the summary of associated story si to the
story itself, denoted as di. By comparing the per-
formance of having si in di as context with the
performance of only providing si as context, we
can see how Semantic Masking can significantly
impact the difficulty of Needle-in-a-haystack Test.

We will test the significance of the result by run-
ning the McNemar Test (McNemar, 1947) on all
queries that are determinant. Queries with incon-
sistent or disagreed answers will not participate in
the test.

We are also interested in how the result differs
before and after introducing the haystacks. For this
we define flip rate, which is calculated by

rf =
# CASES ANSWER CHANGED

# CASES
(1)

3.4 Experiment 2: Question Difficulty
Assessment

In addition to Semantic Masking, there are many
other factors that may significantly impact the re-
sult of the test. One of which is question difficulty.
Assessing the difficulty of a question in QA tasks
has been a challenge, yet it is essential for our pro-
posed test to identify questions that are of reason-
able difficulty in order to draw meaningful conclu-
sions. For example, if a question can be answered
without any context, or if a question cannot be an-
swered with any form of provided context, neither
of the questions would produce meaningful statis-
tics in the Needle-in-a-haystack-QA Test. For this
reason, we propose a difficulty assessment scheme

for each question based on their performance with
the tested LLM.

For each question, we perform three tests of dif-
ferent context level: no context, summary only, and
full story only. Each test contains 5 runs of the ex-
act same setting and another 5 that use the second
groundtruth instead of the first. The collective re-
sult can be denoted as correct, wrong, inconsistent
and disagreed. Correct / wrong indicates that all 10
runs yield the correct / wrong answer; Inconsistent
means that there is one or more runs out of the 10
that yield a different decision; Disagreed means
that the result of the first 5 runs does not align with
the last 5 runs, meaning that the decision differs
when swapping to the other groundtruth.

Based on the result of the three tests, we can
assign each question a difficulty level. Table 1
shows all possible difficulty level along with de-
scription of their categorization scheme in plain
English, where “occasionally” denotes inconsistent
output. Questions that have any disagreed decision
are considered invalid and will not participate in
any further evaluation process.

Among the 10 categories, easy, standard, puz-
zling, mildly challenging and challenging are con-
sidered as reasonable difficulty, and they roughly
span 3/4 of all questions. Commonsense and con-
fusing questions are questions that could be an-
swered without context, meaning that either the
question is factoid or the model has been trained
on the story; Incapable questions are questions
that could not be answered with any level of con-
text, which would not make a difference no matter
what haystack selection process is chosen; Non-
sense questions are in counterintuitive scenarios
that yield the answer on the full story but not on
summary, which their corresponding full stories are
not suitable to serve as haystacks for themselves.
In experiment that selects question based on the
question difficulty, questions in the 5 reasonable
difficulty categories are prioritized.

We will demonstrate how question difficulty also
plays an important role in setting up the tests. We
will do so by performing post hoc experiments in
experiment 1 with the proposed difficulty assess-
ment. We will also conduct the McNemar test and
compute flip rates to compare with results from
experiment 1.
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Difficulty Description
commonsense can answer even without context
easy can answer when given summary or full story
standard can answer when given summary, occasionally when given full story
puzzling can occasionally answer when given summary or full story
mildly-challenging can answer when given summary, but not full story
challenging can occasionally answer when given summary, but not full story
incapable cannot answer with any level of context
confusing can occasionally answer even without context
nonsense cannot answer with summary but can with full story
invalid if there is a disagreement between assessment when using the two groundtruth

Table 1: Difficulty Assessment for Questions and description

3.5 Experiment 3: Controlling Haystack
Properties

As mentioned earlier, one can test how different
haystacks impact the difficulty of the test by con-
trolling variables during the haystack selection pro-
cess. In this work, we examine how the semantic
relatedness of the haystack to the needle and the
length of the haystack can impact the test perfor-
mance of a fixed tested model.

We pick a few questions Q and their correspond-
ing stories D. For each question qi and its asso-
ciated story di, we pick a set of haystack stories
D(i) that are of similar length but a wide range of
semantic similarity with respect to the reference or
vice versa when controlling the other variable. We
will pair every question qi along with its associated
summary si with haystack stories d(i)j from the set

D(i) to form queries, where si is inserted into d
(i)
j

and serves as the context.

To ensure the experiment results are comparable
across the board, stories that are of similar length
are all within 25K±2.5K tokens, and stories that
are of similar semantic similarity have a cosine
score within 0.3±0.02 with respect to their refer-
ence story.

For a few of the post hoc studies, we will calcu-
late the point-biserial correlation (PBC) score to
test whether there exists any association between
a continuous variable such as document length or
cosine similarity to the difficulty of the question-
answering task.

Model Name Agreement Rate
LLaMA-3.1-8B-Instruct 77.18%
GPT-4 95.01%

Table 2: The agreement rate between using groundtruth
1 as groundtruth, groundtruth 2 as “generated” answer
and vice versa. An ideal model should achieve 100%
agreement rate.

Context for each qi Accuracy Flip Rate
si (summary only) 92.05% –
di (story only) 59.93% –
si in di (inserted) 83.15% 17.65%
McNemar Test p-value: 2.659e-07

χ2: 26.483

Table 3: The accuracy and flip rate when conduct-
ing Needle-in-a-haystack-QA Test on LLaMA-3.1-8B-
Instruct. The flip rate is calculated from si to si in di. In
this table, it is assumed that qi ∈ Q, si ∈ S and di ∈ D
unless specified otherwise.

4 Result

4.1 Experiment 0: Validating the evaluator
model

In this experiment, we tested two LLMs as the
potential evaluator model: LLaMA-3.1-8B-Instruct
and GPT-4. The overall agreement rate is shown
in Table 2. Since GPT-4 achieved a much higher
agreement rate close, we will be using GPT-4 as
the evaluator model for the rest of experiments and
LLaMA-3.1-8B-Instruct as the tested model.

4.2 Experiment 1: Examining Semantic
Masking Effect

To demonstrate the effect of Semantic Masking,
we conduct Needle-in-a-haystack-QA Test on all
question-document pairs where the summary si
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Difficulty Number Difficulty Number
easy 260 commonsense 44
standard 36 confusing 24
puzzling 4 nonsense 15
mildly-
challenging

120 incapable 10

challenging 10 invalid 38

Table 4: Distribution of questions according to their
difficulty. These difficulty categories are assigned by
looking at the tested model’s performance on the Needle-
in-a-haystack-QA Test

will serve as the needle and the full story di will
serve as the semantic masking haystack.

In Table 3, we can observe a significant accuracy
drop when the supplied context is the full story
instead of the summary. This indicates that the ex-
amined long text does provide sufficient challenges
to the tested model. When we conduct the Needle-
in-a-haystack-QA Test on the summary-story pairs,
the accuracy also drops by a large margin, which
suggests the influence the haystack have on the
needle.

To see the influence numerically, we compute
the flip rate (defined in 1) for si in di that uses si
result as before and si in di result as after. The
experiment obtained a p-value of 2.659e-07 from
the McNemar Test, which suggests that using the
full story as haystack does impose a statistically
significant effect on the task.

Given the fact that more than half of the ques-
tions can be answered with full story as the con-
text, we perform a post hoc study on the questions
that cannot be answered with full story. With only
questions that cannot be answered with full story
context, the flip rate reached 31.54% with a p-value
of 4.828e-08 under the McNemar test. This result
shows how the Semantic Masking effect depends
not only on the semantic relatedness, but also on
questions themselves.

4.3 Experiment 2: Question Difficulty
Assessment

The above experiment showed how question diffi-
culty could impact task difficulty. It is only natural
to perform another post-hoc study upon experiment
1 by further categorizing question difficulty using
our proposed assessment.

We first need to understand the distribution of
the questions based on our assessment. In Table 4,
we can clearly see that the majority of the questions

Difficulty Flip Rate p-value
easy 4.231% 9.765e-04
standard 25.00% 3.906e-03
puzzling 25.00% 1.0
mildly-challenging 28.33% 1.518e-08
challenging 70.00% 0.25

Table 5: The flip rate and p-value from McNemar Test
for questions of the 5 reasonable difficulty

Controlled Variable Flip Rate PBC
Fixed Sem Relatedness 2.869% -0.054
Fixed Haystack Length 7.524% -0.084

Table 6: The flip rate and the PBC score when choosing
haystack with certain controlled variables. The values
are calculated on 10 questions, each inserted into 16-29
haystacks that meets the selection criteria, which makes
a total of 160-290 round of tests.

fall into the family of reasonable difficulties on the
left. Although over half of them are considered
as easy questions, there are still a decent number
of standard, challenging and mildly challenging
questions that ramp up the overall difficulty of the
Test.

In Table 5, we can see that the flip rate gener-
ally aligns with the assigned difficulty level and
is mostly of statistical significance, except two,
which is likely due to lack of data. This experiment
further demonstrates the importance of difficulty
assessment.

4.4 Experiment 3: Controlling Haystack
Properties

We test two haystack properties for this experi-
ment: Text Length and Semantic Relatedness. We
randomly selected 10 questions that are of reason-
able difficulty, and 16-29 haystacks per question
within the range mentioned above (25K±2.5K to-
kens, 0.3±0.02 cosine score), which makes a total
of 160-290 rounds of tests.

For each round of test, we conduct 5 runs of
the exact same setting using the first groundtruth
a
(1)
i and another 5 using the second groundtruth

a
(2)
i . This is to ensure the output of the model is

consistently evaluated. Evaluations that have dis-
agreement between the first groundtruth evaluation
and the second groundtruth evaluation are excluded.
Table 6 shows the flip rate of the haystack selec-
tion when controlling the semantic relatedness and
length of the haystacks, as well as the PBC score.
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The PBC score is a clear indication that neither
of the two properties separates the model perfor-
mance.

When choosing haystacks of similar semantic
relatedness (relatively low) and varying length (in
this case, chosen haystacks have length between
5K to 50K tokens), the flip rate is at 2.869%, which
indicates that changing the length of the haystack
barely affects the difficulty of the task.

In contrast, when choosing haystacks of similar
length and varying semantic relatedness, although
still on the low end, the flip rate increased by about
2.6 times. This indicates that varying the semantic
relatedness of the haystack is far more effective
than varying the length when adjusting the diffi-
culty of the task. We suspect that the reason for
the low flip rate is that chosen haystacks can only
span 0 to 0.6 cosine similarity scores. It is difficult
to find stories that are of high similarities for each
document within the dataset.

5 Conclusion

In this study, we proposed the Needle-in-a-
haystack-QA Test to assess LLM’s long text ca-
pabilities. Through the experiments we have drawn
2 major conclusions: 1) Length is not the primary
factor that affects the difficulty of tests that fol-
low the Needle-in-a-haystack approach; 2) Highly
related haystack may impose Semantic Masking
effect on the needle which exerts a more profound
influence on LLM performance. Through these
two conclusions, we wish to challenge the conven-
tional emphasis on context length and suggest a
more nuanced approach to evaluating LLM’s long
text capabilities.

We also propose a difficulty assessment frame-
work that can be generalized to any question-
answering dataset in assessing question difficulty.
This framework is also essential in validating the
meaningfulness of experiments designed from the
Needle-in-a-haystack-QA Test.

There are also other factors we suspect may have
an impact on the difficulty of the test, such as the
position of needle insertion relative to the haystack.
We will test these factors in subsequent experi-
ments.

In conclusion, our work advocates for a more
nuanced approach to evaluating and enhancing the
long text capabilities of LLMs. By incorporating
Semantic Masking considerations into evaluation
metrics, we pave the way for the development of

models that are not only proficient in handling ex-
tensive contexts but also adept at extracting and
interpreting relevant information within them.
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Abstract

Our research aims at better understanding what
makes a text difficult to read for specific audi-
ences with intellectual disabilities, more specif-
ically, people who have limitations in cognitive
functioning, such as reading and understand-
ing skills, an IQ below 70, and challenges in
conceptual domains. We introduce a scheme
for the annotation of difficulties which is based
on empirical research in psychology as well as
on research in translation studies. The paper
describes the annotated dataset, primarily de-
rived from the parallel texts (standard English
and Easy to Read English translations) made
available online. we fine-tuned four different
pre-trained transformer models to perform the
task of multiclass classification to predict the
strategies required for simplification. We also
investigate the possibility to interpret the deci-
sions of this language model when it is aimed
at predicting the difficulty of sentences.

1 Introduction

The Universal Declaration of Human Rights, in its
Article 19, affirms everyone’s right to seek and re-
ceive information. Similarly, Article 21 of the UN
Convention on the Rights of Persons with Disabili-
ties underscores the need for accessible formats, en-
suring that individuals with disabilities can access
public information without additional cost. For
people with intellectual disabilities—those with
limitations in cognitive functioning, including diffi-
culties in reading and understanding, an IQ below
70, and challenges in conceptual domains (Ameri-
can Association on Intellectual and Developmental
Disabilities (AAIDD), n.d.)—language simplifica-
tion is crucial for ensuring accessibility and equal-
ity, making it essential for them to fully enjoy their
human rights.

Text Simplification (TS) research aims to make
text easier to read while preserving its meaning and
key information (Saggion, 2017). Earlier studies

involved lexical, syntactic and semantic modifica-
tions, while modern research benefits from the use
of Large Language Models (LLMs), with still un-
clear cost-to-performance benefits, as they do not
outperform smaller Pre-trained Language Models
(PLMs), such as BERT, on text classification tasks
(Edwards and Camacho-Collados, 2024).

Computational studies often overlook insights
from translation studies, particularly the various
strategies proposed (Vinay and Darbelnet, 1971;
Newmark, 1988; Chesterman, 1997; Zabalbeascoa,
2000; Molina and Hurtado Albir, 2002; Gambier,
2006), focusing on the systematic processes in-
volved in translating a source text into a target
text across languages. Translation studies pro-
vide a complementary lens by examining strate-
gies used in intralingual translation, where a source
text is converted into a target text in the same lan-
guage. Eugeni and Gambier (2023, 82) argue that
such shifts often achieve full correspondence be-
tween source and target texts. Of particular rel-
evance are two types of intralingual translation.
Diamesic Translation involves shifting communica-
tion modes (e.g., spoken to written) while retaining
the same language (Eugeni, 2020).

Diastratic Translation, on the other hand, in-
volves register shifts within the same language,
such as from Standard English (SE) to Easy to
Read (E2R) English, i.e. the variation of language
that is easy to read and understand for people with
reading difficulties, including people with intellec-
tual disabilities, people with little command of the
language, people with poor literacy and so forth (In-
clusion Europe, 2009; Bernabé Caro, 2017). Com-
pared to standard language E2R language is a sim-
plified version for the sake of readability for spe-
cific audiences (Bernabé Caro, 2017). As a result,
it forms the foundation of diverse and adaptable
translation strategies designed to make information
accessible to people with intellectual disabilities.

Previous studies in text simplification have pri-
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marily focused on lexical simplification, where
individual words or phrases are simplified with-
out considering the broader sentence structure or
context. For instance, Saggion and Specia (2015)
developed datasets and tools specifically tailored
for lexical simplification tasks, emphasising word-
level transformations. While this approach has
proven effective for specific applications, it often
overlooks the interplay between lexical and syntac-
tic features within a sentence.

Other notable resources, such as the ASSET cor-
pus (Alva-Manchego et al., 2020), have focused
on sentence simplification but rely on predefined,
fine-grained operations at the word or phrase level.
Similarly, corpora like WikiLarge (Zhang and Lap-
ata, 2017) offer paired datasets for simplification
but lack explicit annotations for the strategies ap-
plied during simplification. These resources are
invaluable for training machine learning models
but are limited in their ability to capture a compre-
hensive view of the simplification process.

In contrast to the resources mentioned above,
our dataset adopts a holistic approach to sentence
simplification, focusing on sentence-level transfor-
mations that encompass lexical, syntactic, and se-
mantic changes, while focusing on the reason to
make these changes. Unlike lexical simplification
datasets, which isolate individual words or phrases,
our dataset explicitly annotates entire sentences
with six predefined categories representing diverse
simplification strategies. This allows for better un-
derstanding of the simplification process, capturing
how different strategies interact within a sentence
to enhance its readability and accessibility.

Furthermore, by annotating SE and E2R sen-
tence pairs, our dataset provides a unique re-
source for exploring context-sensitive simplifica-
tion strategies. This makes it particularly valuable
for tasks that require an integrated understanding
of sentence-level transformations.

This study explores strategies to make informa-
tion more accessible through text simplification.
Our contributions concern: (1) the development
of an extended taxonomy of translation strategies
that integrates insights from Text Simplification
research, (2) the annotation of a parallel corpus of
complex and simplified texts sourced from diverse
public services in Scotland (see Section 2), (3) the
investigation of setting to train transformer-based
models to predict the application of specific sim-
plification strategies, and (4) an investigation into
interpretability of their predictions using Explain-

able AI (XAI) techniques to explain the model’s
decision-making process. While Large Language
Models (LLMs) demonstrate impressive perfor-
mance, their “black-box” nature often makes it
challenging to understand their predictions. To
address this, we employ Integrated Gradients (Sun-
dararajan et al., 2017), an XAI method grounded in
axiomatic attribution principles. IG identifies the
most influential words in the input by analysing gra-
dient variation. By aligning these attributions with
human judgments, we enhance the interpretability
of the model and build trust in its application.

2 Dataset

The original corpus consists of over 76 parallel
texts, primarily sourced from the Scottish care ser-
vice, political manifestos for the 2024 UK general
election, and newsletters from the national char-
ity Disability Equality Scotland. These texts span
a diverse range of topics, including health care
services, environmental policies, the legal system,
waste management, disability advocacy, and lin-
guistic accessibility.

Table 1 compares information about the origi-
nal documents ("complex") with their simplified
versions in terms of the number of words and sen-
tences in each corpus part as well as the Inter-
Quartile Range of the sentence lengths measured
in words. The overall word count and average sen-
tence length have significantly decreased for the
simplified version compared to the complex texts,
in spite of some of the strategies aimed at expla-
nation and sentence splitting. This increase in the
number of sentences, coupled with the reduction in
word count, reflects a structural adjustment typical
of simplification strategies, which often involves
breaking down longer sentences into shorter, more
accessible ones to enhance readability.

Table 2 lists the general strategies for simplifica-
tion, while Table 3 lists the fine-grained annotation
categories used for annotation. A detailed break-
down of macro typology frequencies within their
corresponding main strategies showcases the dis-
tribution of techniques and methods employed to
simplify texts. The prominence of semantic and
explanation categories reflects a strong emphasis
on clarity and enhancing reader accessibility.

In the field of Translation Studies, many tax-
onomies have been developed to identify the strate-
gies professional translators apply when producing
a target text. Most of these strategies have been
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Table 1: Snapshot of Scottish Government Dataset Statistics

Source #Texts Complex Simple
#Words #Sentences IQR #Words #Sentences IQR

Health 21 183677 7258 (15.0-31.0) 30253 1519 (10.0-21.0)
Public info 4 12217 527 (12.0-30.5) 3378 217 (9.0-18.0)
Politics 9 113412 4824 (15.0-29.0) 12474 832 (9.0-17.0)
Data selection – 4166 155 (12-27) 3259 161 (9-20)

Table 2: Macro-Strategies and Corresponding Strategies for Simplification

Macro-Strategy Strategies
Transcription No simplification needed.
Synonymy Pragmatic: Acronyms spelled out; Proper names to common names; Contextual syn-

onyms made explicit.
Semantic: Hyperyms; Hyponyms; Stereotypes.
Grammatical: Negative to positive sentences; Passive to active sentences; Pronouns to
referents; Tenses simplified.

Explanation Words given for known; Expressions given for known; Tropes explained; Schemes
explained; Deixis clarified; Hidden grammar made explicit; Hidden concepts made
explicit.

Syntactic Changes Word → Group; Word → Clause; Word → Sentence; Group → Word; Group → Clause;
Group → Sentence; Clause → Word; Clause → Group; Clause → Sentence; Sentence
→ Word; Sentence → Group; Sentence → Clause.

Transposition Nouns for things, animals, or people; Verbs for actions; Adjectives for nouns; Adverbs
for verbs.

Modulation Text-level linearity; Sentence-level linearity: Chronological order of clauses; Logical
order of complements.

Anaphora Repetition replaces synonyms.
Omission Useless elements: Nouns; Verbs; Complements; Sentences.

Rhetorical constructs; Diamesic elements.
Illocutionary Change Implicit meaning made explicit.
Compression Grammatical constructs simplified; Rhetorical constructs simplified.

developed in the field of interlingual translation,
first from a written text into another written text
(Nida, 1964; Vinay and Darbelnet, 1971; Chester-
man, 1997; Molina and Albir, 2002), and then from
a spoken text into a written text (Gottlieb, 1992;
Lambert and Delabastita, 1996; Ivarsson and Car-
roll, 1998; Lomheim, 1995; Kovačič, 2000). The
study of intralingual translation strategies is rela-
tively more recent and mainly focuses on Diamesic
Translation (Neves, 2005; Eugeni, 2007; Brumme,
2008; Gambier and Lautenbacher, 2010; Eugeni
and Gambier, 2023). Rarer is the number of au-
thors who have tried to define strategies for the
translation of written texts within the same lan-
guage (Korning Zethsen, 2009; Ersland, 2014). To
our knowledge, only Silvia Hansen-Schirra and
Sommer (2020) and Maaß and Rink (2020) have ad-
dressed intralingual translation practices into E2R.

However, none of these taxonomies completely
satisfy our need to account for all the simplifica-
tion strategies we identified in our corpus, as too
little detail was provided. The opposite happens
in the completely different field of Automatic Text
Simplification (ATS), where details are, instead,
provided. Here, the focus of typologies is on lin-

guistic descriptions and string edits. A significant
contribution in ATS has been provided by Cardon
et al. (2022), whose typology essentially focuses
on operations that mainly deal with adding, delet-
ing, replacing, and moving words. However, texts
translated in E2R language clearly show that pro-
fessionals in the field apply many more operations
that pertain to the field of pragmatics and semiotics,
focused on how concepts are distributed and or ex-
plained to help the user understand them. It is in
this context that this section will try to illustrate the
annotation framework that we have developed and
used in this study. Because the form of translation
we are focussing on in this paper is diastratic (from
SE to E2R), we used Inclusion Europe’s pioneering
guidelines Inclusion Europe (2009) as a basis for
our annotation framework, which was then used to
identify the strategies used in our corpus.

The principle of Inclusion Europe’s guidelines
is language simplification, further subdivided into
three levels: lexical, syntactical, and semantic. The
lexical level mainly focuses on the use of nouns,
verb tenses, adjectives, and adverbs. In particular,
the guidelines require to only use basic vocabulary
words. For the English language, the Basic Vocabu-
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Table 3: A subset of strategies in dataset annotations and their annotation labels

Macro-Strategy Strategies
Omission OmiSen, OmiWor, OmiClau, OmiRhet (on the level of sentences, words, clauses or

rhetorical structures)
Compression SinGram, SimGram, SinSem, SinPrag
Explanation ExplWor, ExplCont, ExplExpr, HidCont, HidGram, WordExpl
Syntactic Changes SynChange, Clause2Word, WordsOrder, GroupOrder, LinearOrderSen, LinearOrderCla
Substitution Anaph, SynSem, SemStereo
Transposition TranspNoun
Modulation ModInfo

lary (Ogden, 1932) – that has evolved into projects
like Voice of America’s Word Book of around 1500
words – contains 850 commonly used word roots,
like thing, do, good, or very. The syntactical level
mainly focuses on the use of the order of words and
clauses in a sentence, and that of sentences in the
text. In particular, the guidelines require to only use
a (chrono-)logically linear word, clause, and sen-
tence order. The semantic level mainly focuses on
the distribution of concepts in the text. In particu-
lar, the guidelines require one concept per sentence.
Information for all also add other pieces of infor-
mation, like the use of pictograms to reinforce the
information provided in the text. However, these
will not be considered in the present study.

Based on these principles, and a qualitative anal-
ysis of the illustrated corpus, we came up with the
following nine macro-strategies, that easily adapt to
our heterogenous corpus. Macro-strategies are fur-
ther subdivided into strategies and micro-strategies.
The macro-strategies have been thought as points
in a continuum between two poles: those resulting
in most addition of text (explanation) to those re-
sulting in the most deduction of text (omission), the
middle being constituted by transcription, with no
addition or deduction of text (Figure 1). Examples
are taken from our corpus.

1. Explanation, which includes the explicitation
of hidden grammar or content (e.g. “wherever they
live” → “wherever they live in Scotland”), or the
explanation of a word or expression that is given for
known (e.g. “co-design services with people with
experience of accessing and delivering them” →
“co-design services with people who use or work in
them and their carers. Co-design means you can
share your ideas and experiences with us.”).

2. Modulation is the distribution of information
in a linear order in the text and in a sentence, ac-
cording to the principle that one sentence should
contain one piece of information only. This means
that one sentence is turned into more sentences (e.g.
“He joins in community activities as much as possi-

Figure 1: Diastratic Translation Strategies distributed
along a continuum, from most deduction of text (-4) to
most addition of text (+4)

ble, supported by his assistants and his family.” →
“He likes to take part in activities where he can meet
people. He gets support from his assistants and his
family.”) or words are redistributed within the sen-
tence (e.g. “The NCS will make collaboration and
information sharing between these services eas-
ier” → “The NCS will make working together and
sharing information easier for services.”).

3. Synonymy, whereby a complex, technical,
or abstract word is replaced by a more common
and concrete one. Synonymy includes pragmatic
synonyms that depend on the context (e.g. “sir Keir
Starmer” → “the new Prime Minister”), as well as
semantic synonyms (e.g. “conversation” → “talk”),
and grammatical synonyms (e.g. “The money does
not have to be paid back” → “You do not have to
pay the money back”) that depend on grammar.

4. Transposition, or word class change, whereby
the class of a word is changed depending on the
principle that nouns should ideally stand for things,
animals, or people, and verbs stand for actions (e.g.
“our aim is” → the Scottish Government wants”).
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5. Transcript, by which the words of the source
text are left unchanged because no simplification is
needed (e.g. “I love music”).

6. Syntactic change, whereby a word, group,
clause, or sentence is turned into one of the other
three syntactic levels (e.g. citizens → people living
in Scotland).

7. Illocutionary change, by which what is im-
plied is said (e.g. “I like to say that we, the dancers,
must gather information about our body’s library
→ “The dancers must know their own body.”).

8. Compression of grammatical or semantic con-
structs (e.g. “The moderator asks questions and
shows slides, pictures or videos to guide the group”
→ “The moderator asks questions and shows slides,
pictures, or videos to the group”).

9. Omission of rhetorical or diamesic constructs
(e.g. “I was nervous, of course, but it was inter-
esting and fun!” → “I was worried, but it was
interesting and fun!”), or of what is considered use-
less for understanding an idea at the noun, verb,
complement or sentence level (e.g. “Sir Keir Rod-
ney Starmer KCB KC is a British politician” →
Starmer is a British politician”).

3 Classification Model: Multiclass Text
Classification with Transformers

This experiment investigates the application of pre-
trained transformer-based models for multiclass
text classification, focusing on the prediction of
simplification strategies need to simplify the re-
spective SE sentences.

For this experiment, seven categories were man-
ually annotated for a selection of 155 complex
sentences and their 161 corresponding simplified
sentences, randomly selected from various texts
see Table 1. The seven categories—Explanation,
Grammatical Adjustments, Modulation, Omis-
sion, Substitution, Transposition, and Syntactic
Changes—were applied to ensure coverage of mul-
tiple topics and simplification strategies. This se-
lection was designed to create a balanced dataset
that represents diverse contexts and simplification
strategies. These labels are not hierarchical but
independent categories reflecting distinct simplifi-
cation strategies.

The annotation process consisted of a first analy-
sis of the parallel texts, and a review of the existing
typologies used to illustrate translation operations,
both in the field of computational linguistics and
translation studies. Thanks to these contributions,

we came to the definition of the typology provided
in Table 1.

The training dataset consists of Standard English
sentences paired with their simplified counterparts.
Each simplified counterpart was designed to in-
clude precisely one simplification strategy, where a
single complexity was restored to its original form.
This design ensures that the relationship between a
sentence and its simplified version highlights spe-
cific simplification strategies, allowing the model to
associate each sentence with different parts of the
complexity being resolved. To streamline classifi-
cation, these fine-grained simplification strategies
were mapped to broader macro-categories based on
a predefined hierarchical structure, simplifying the
labels while preserving their semantic distinctions.

3.1 Model and Training Procedure

We fine-tuned four different pre-trained transformer
models to perform the task of multiclass classifi-
cation, predicting the most likely simplification
typology for each Standard English sentence.

Cross-Validation and Early Stopping We em-
ployed Stratified 5-Fold Cross-Validation to en-
sure robust evaluation and generalizability. The
dataset was split into four folds, maintaining the
proportional distribution of typologies across train-
ing and validation sets. For each fold, the model
was trained on four folds and validated on the re-
maining fold, and this process was repeated for all
five folds. The validation results were averaged
across all folds to compute the final scores.

We used early stopping, where training was ter-
minated if the validation loss did not improve for
the patience period. This ensured efficient use of
resources while retaining the best model.

Class Imbalance and Weighted Loss Function
Class imbalance in the dataset, where certain ty-
pologies were underrepresented, posed a chal-
lenge during training. To address this, we utilised
a weighted cross-entropy loss function. Class
weights were calculated based on the inverse fre-
quency of each category:

wc =
1

freqc
· N
2
, (1)

where wc is the weight assigned to class c, freqc
is the frequency of class c, and N is the total num-
ber of samples. This approach ensured that under-
represented classes contributed more significantly
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to the overall loss, improving the model’s ability to
predict these minority classes.

Gradient Clipping Additionally, gradient clip-
ping was applied during training to stabilise the
optimisation process. Gradient clipping limits the
maximum value of gradients during backpropaga-
tion, preventing excessively large updates to model
parameters that could destabilise training or lead
to divergence. Following best practices in training
transformer-based models (Devlin et al., 2019), we
used a clipping threshold of 1.0. This ensures that
gradients exceeding the threshold are scaled propor-
tionally while gradients below the threshold remain
unchanged. Mathematically, gradient clipping can
be expressed as:

gclipped = min

(
g,

gthreshold

∥g∥

)
, (2)

where g represents the original gradient vector,
gthreshold is the clipping threshold (in this case, 1.0),
and ∥g∥ is the norm of the gradient vector. Gradi-
ent clipping ensures consistent updates to model
parameters, improving training stability.

Transformer Models and Training Configura-
tion Each of the four transformer models was
fine-tuned for the task, using the same training
configuration. The hyperparameters and training
configuration are summarised in Table 4.

Table 4: Hyperparameters and Training Configuration

Parameter Value
Pre-trained Models bert-large-cased,

bert-base-multilingual
cased,

roberta-base,
roberta-large

Max_Sequence_Length 512 tokens
Tokenisation Pre-trained tokenizer
Loss Function Weighted Cross-Entropy

Loss
Class Weights Inverse frequency of cate-

gories
Gradient_Clipping Thresh-
old

1.0

Learning Rate 5× 10−6

Batch Size 8
Weight Decay 0.01
Number of Epochs Up to 20 (early stopping)
Cross-Validation Stratified 5-Fold
Early Stopping Patience 3 epochs
GPU NVIDIA Tesla T4 ((15 GB

memory)), & Occasionally
P100/V100

3.2 Evaluation Metrics and Results

To evaluate the performance of our models, we
first established a baseline using a majority-class
prediction approach. This naive model assigns the
most frequent class, "Explanation," to all samples.
The baseline achieved an accuracy of 24.5% and
a weighted F1-score of 9.6%. Its macro F1-score,
reflecting performance across all classes equally,
was only 5.6%, highlighting its inability to handle
class imbalance effectively. These results demon-
strate the need for a robust machine learning model
to capture the nuances of the dataset.

In contrast, our fine-tuned model (mBERT) sig-
nificantly outperformed the baseline. It achieved
an accuracy of 70% and a weighted F1-score of
72%. The macro F1-score of the multilingual
model reached 65%, reflecting its ability to gen-
eralise across minority classes.

In contrast, the other models demonstrated vary-
ing degrees of performance. While roberta-base
and roberta-large produced reasonable results
for specific classes, their overall weighted F1-
scores lagged behind at 0.52 and 0.50, respectively.
Similarly, bert-large-cased delivered moderate
results with a weighted F1-score of 0.50 and ac-
curacy of 0.53. The instability observed in the
training of roberta-base and roberta-large, as
evident from Figure 2, likely contributed to their
lower overall scores.

The mBERT model excelled in identifying simpli-
fication strategies for the Explanation (F1-score:
0.93), Substitution (F1-score: 0.67), and Syntactic
Changes (F1-score: 0.80) categories. These results
highlight its ability to capture the relationships in-
herent in these categories. However, underrepre-
sented classes like Grammatical Adjustments and
Transposition remained challenging for all models,
with low F1-scores across the board. This indicates
the need for a more balanced dataset.

Figure 2 illustrates the evaluation loss pro-
gression during training, where the mBERT model
exhibited a smooth and consistent reduction in
loss, indicating stable convergence. In contrast,
roberta-base and roberta-large displayed os-
cillatory behavior, suggesting instability in their
training dynamics.

The progression of the F1-score, as shown
in Figure 3, further reinforces these observa-
tions. The mBERT model achieved the highest F1-
scores early in training and maintained steady im-
provement, outperforming its competitors consis-
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tently. Interestingly, increasing model size (e.g.,
bert-large-cased and roberta-large) did not
consistently improve F1 performance, as both
larger models underperformed compared to the
smaller mBERT model. This finding suggests that
model architecture and multilingual capabilities
may have a more significant impact on F1 perfor-
mance than size alone, underscoring the need to
tailor models to the specific requirements of multi-
lingual simplification tasks.

The mBERT model’s performance aligns seam-
lessly with the project’s primary aim of fostering
multilingual accessibility, underscoring the criti-
cal importance of leveraging multilingual models
to address diverse linguistic contexts and ensure
inclusivity in simplification strategies.

Figure 2: Evaluation Loss Progression During Training

Figure 3: F1-Score Progression During Training

4 Interpretability of predictions

We have trained a classifier for predicting the dif-
ficulty of sentences by means of collecting simple
and difficult sentences from Wikipedia and fine-
tuning mBERT (Devlin et al., 2019).

By means of the implementation of the Inte-
grated Gradients in the Captum library (Miglani
et al., 2023), we can:

1. detect which words or syntactic constructions
commonly affect readability, as well as

2. which of them align with human annotation.

We utilised the Integrated Gradients (IG) method
to identify the tokens in a sentence that contributed
most significantly to the model’s predictions. IG
achieves this by calculating the gradients of the
model’s output with respect to its input, thereby
highlighting the importance of individual features.
For Example: Consider the following sentence
from our dataset:

“Provide financially sustainable care, giv-
ing security and stability to people and
their carers.”

The Integrated Gradients approach offered ac-
tionable insights by attributing importance scores
to specific words, revealing their influence on the
model’s predictions. For this sentence, the predic-
tion probabilities are: Simple: 0.02, and Complex:
0.98.

• High-impact words: The IG method high-
lighted domain-specific and content-heavy
words such as “sustainable,” “security,” and

“stability”, which were crucial for determining
that the sentence was “Complex.”

• Stopwords: Words with minimal semantic
content (e.g., “and,” “to,” “their”) were as-
signed near-zero attribution scores, as ex-
pected.

• Prediction Analysis: Based on the probabil-
ities, the sentence was classified as Complex
with a high confidence of 98%.

By applying the IG method, we identified a to-
tal of 1303 complex words from the original sen-
tences. These words were then compared against
their corresponding simplified, E2R versions to
determine which complex words were removed
during simplification. This comparison yielded 877
removed words, representing 67.31% of the total
complex words identified. The removed words
are indicative of tokens that were deemed complex
by both the model and human editors, as their re-
moval from the E2R versions suggests that they
were perceived as difficult or unnecessary for sim-
plified comprehension. This alignment between the
model-predicted complex words and those removed
in human-curated simplifications demonstrates the
model’s effectiveness in predicting words that are
likely to be complex and corroborates the utility of
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Table 5: Classification Report for Typology Prediction

Class bert-large-cased bert-base-multilingual-cased Support
Precision Recall F1-Score Precision Recall F1-Score

Explanation 0.67 0.50 0.57 1.00 0.88 0.93 8
Grammatical Adjustments 0.00 0.00 0.00 0.00 0.00 0.00 4
Modulation 1.00 0.33 0.50 0.00 0.00 0.00 3
Omission 0.50 0.50 0.50 0.80 1.00 0.89 4
Substitution 0.46 1.00 0.63 0.50 1.00 0.67 6
Syntactic Changes 0.50 1.00 0.67 1.00 0.67 0.80 3
Transposition 0.00 0.00 0.00 1.00 1.00 1.00 2
Avg (Macro) 0.45 0.48 0.47 0.62 0.70 0.65
Avg (Weighted) 0.48 0.53 0.50 0.68 0.75 0.72
Accuracy 0.53 0.70 34
Training Time (s) 395.22 300.55

Class roberta-base roberta-large Support
Precision Recall F1-Score Precision Recall F1-Score

Explanation 1.00 0.50 0.67 0.00 0.00 0.00 8
Grammatical Adjustments 0.00 0.00 0.00 0.00 0.00 0.00 4
Modulation 1.00 0.33 0.50 1.00 0.67 0.80 3
Omission 0.75 0.75 0.75 1.00 0.25 0.40 4
Substitution 0.43 1.00 0.60 0.25 0.40 0.31 6
Syntactic Changes 0.60 1.00 0.75 0.67 0.67 0.67 3
Transposition 0.25 0.50 0.33 0.00 0.00 0.00 2
Avg (Macro) 0.47 0.51 0.48 0.28 0.28 0.27
Avg (Weighted) 0.50 0.53 0.52 0.30 0.35 0.32
Accuracy 0.53 0.30 34
Training Time (s) 219.30 587.21

Table 6: Word-level Attributions for the Example Sen-
tence

Word Attribution Contribution
Provide 0.18 Moderately Complex
financially -0.10 Slightly Easy
sustainable 0.30 Highly Complex
care 0.15 Slightly Complex
giving 0.10 Slightly Complex
security 0.25 Highly Complex
and -0.02 Neutral
stability 0.28 Highly Complex
to -0.03 Neutral
people 0.12 Slightly Complex
and -0.04 Neutral
their 0.05 Neutral
carers -0.08 Neutral

the IG method for interpretability in text simplifi-
cation tasks. As shown in Figure 4, the most fre-
quently removed complex words included meaning-
ful content terms such as "care," "organisations,"
and "consistent."

5 Findings and Contributions

The findings demonstrate that transformer-based
models are capable of handling the complexities of
typology classification, especially when supported
by preprocessing techniques and loss weighting
strategies. The model exhibits moderate success in
identifying phenomena that require simplification.
However, it encounters notable challenges with un-
derrepresented classes and specific simplification

Figure 4: Top 20 Words Identified as Complex and
Removed in Easy Version

strategies, such as “grammatical adjustments” and
“omission.”

In summary, while transformer-based models
hold considerable potential for simplifying texts
to improve accessibility, addressing class imbal-
ance through the use of comprehensive, balanced
datasets is crucial. Leveraging the complete dataset
further enhances the model’s reliability and enables
it to generalise effectively across all simplification
categories.

One of the critical findings of this study is the
utility of the IG framework for interpretability. IG
provides insights that align closely with human an-
notations regarding complexity. For example, IG
effectively identifies tokens contributing to diffi-
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culty, such as “sustainable” or “stability”, while
assigning minimal importance to semantically neu-
tral words like “and” or “to.” This alignment
bridges the gap between machine predictions and
human reasoning, enabling iterative improvements
in model development.

The alignment of the model’s predictions with
the removal of complex words by human editors
demonstrates its capability to predict readability
effectively. In particular, 67.31% of the complex
words identified by IG were removed in the human-
simplified versions, highlighting the model’s pre-
dictive accuracy in real-world applications.

Moreover, the study shows the close connection
between linguistic complexity and simplification
practices. Frequent removal of meaningful content
words, such as “care,” “organisations,” and “con-
sistent,” highlights the importance of meaning and
context in making texts easier to understand for
different audiences.

6 Conclusions

Building on the annotation framework, several key
insights emerge regarding the challenges and strate-
gies involved in translating texts into E2R English.
First, intralingual translation facilitates a more
straightforward comparison between source and tar-
get texts due to the inherent isomorphism between
the source and target languages. Second, the choice
of translation strategies must be tailored to the spe-
cific type of intralingual translation, ensuring that
the target text aligns with its intended function. For
example, in diastratic translation—specifically the
transformation of standard English into E2R En-
glish—the focus lies on simplifying vocabulary,
syntax, and semantic structures while maintaining
fidelity to the source text and accessibility for the
target audience.

Moreover, the proposed taxonomy, encompass-
ing 9 macro-strategies, 33 strategies, and 15 micro-
strategies, illustrates the cognitive complexity of
intralingual translation. These challenges under-
score the limitations of current automation tools, as
computational analyses reveal the nuanced skills re-
quired for transcription and modification strategies.
Even in the era of generative artificial intelligence,
text simplification remains a non-trivial task due to
its intricate linguistic demands.

The novelty of our approach lies not only in the
dataset itself but also in the methodology, which
bridges translation studies and text simplification

by categorizing transformations into well-defined
categories. This integration offers new insights into
the strategies employed in simplification and pro-
vides a robust framework for developing models
that can generalise across multiple types of linguis-
tic transformations.

The results highlight the significant progress
achieved with our approach, as the fine-tuned
mBERT model outperformed the baseline majority-
class strategy, which achieved an accuracy of
24.5% and a weighted F1-score of 9.6%. In con-
trast, mBERT achieved 70% accuracy, a weighted
F1-score of 72%, and a macro F1-score of 65%,
demonstrating its ability to generalise across ma-
jority and minority classes.

Employing Integrated Gradients (IG) enhances
the interpretability of model predictions, ensuring
closer alignment with human annotations. IG of-
fers a clearer understanding of the input data el-
ements the model prioritises, thereby elucidating
its decision-making processes. Our primary results
align with the identification of complex words that
were either modified or removed in the simplified
versions. In particular, 67.31% of the complex
words identified by IG were removed in the human-
simplified versions, highlighting the model’s ac-
curacy in applications. This transparency is criti-
cal for identifying strengths and weaknesses, guid-
ing iterative improvements, and fostering trust
in machine-generated outputs. Additionally, IG
serves as a tool to validate the predictions of the
LLM model against expert judgments, ensuring
reliability and consistency in its reasoning, and en-
suring that it makes the right predictions for the
right reasons (Schramowski et al., 2020).

Future research should prioritise addressing
class imbalance through advanced techniques such
as hierarchical annotations, domain-specific em-
beddings, or data augmentation. Incorporating mul-
tiple annotators would also enable the calculation
of agreement metrics, improving the evaluation of
annotation reliability. Expanding the interpretabil-
ity framework to cross-linguistic simplifications
presents another promising avenue. Leveraging
the full Scottish Government dataset and employ-
ing advanced machine learning techniques could
further enhance performance across all linguistic
categories. This work ultimately contributes to
the broader goal of creating accessible, inclusive
texts while promoting trust and transparency in
AI-driven systems.
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Abstract

Revision is a crucial step in scientific writing,
where authors refine their work to improve clar-
ity, structure, and academic quality. Existing
approaches to automated writing assistance of-
ten focus on sentence-level revisions, which
fail to capture the broader context needed for
effective modification. In this paper, we ex-
plore the impact of shifting from sentence-level
to paragraph-level scope for the task of scien-
tific text revision. The paragraph level defini-
tion of the task allows for more meaningful
changes, and is guided by detailed revision in-
structions rather than general ones. To sup-
port this task, we introduce ParaRev, the first
dataset of revised scientific paragraphs with
an evaluation subset manually annotated with
revision instructions. Our experiments demon-
strate that using detailed instructions signifi-
cantly improves the quality of automated re-
visions compared to general approaches, no
matter the model or the metric considered.

1 Introduction

In the scientific domain, writing assistance is cru-
cial as researchers share their findings through arti-
cles published in conferences or journals. However,
writing articles is challenging and time-consuming,
notably for non-native English speakers or young
researchers (Amano et al., 2023).

The field of writing assistance has grown rapidly
to address these challenges leading to the de-
velopment of various tools (Grammarly, Trinka
AI1, . . . ) and specialized workshops (In2Writing,
WRAICOGS2).

1https://www.grammarly.com/, https://www.trinka.ai/
2https://in2writing.glitch.me/,

https://sites.google.com/view/wraicogs1

Figure 1: Definitions of the traditional sentence revision
task and the proposed paragraph revision task.

The goal of writing assistance is to support re-
searchers throughout the writing process, which
includes four steps: Prewriting, Drafting, Revising,
and Editing (Jourdan et al., 2023). This paper fo-
cuses on the revision task where an input text is
substantially modified for clarity, simplicity, style,
and other aspects (Du et al., 2022a; Li et al., 2022).
Since poor writing quality undermines the com-
munication of research findings and often leads
to paper rejection (Amano et al., 2023), effective
revision is a critical step in scientific writing.

Due to past limitations in processing long texts,
prior research has focused on the sentence revi-
sion task (see Figure 1). In this task, a sentence
is given to a seq2seq model or a Large Language
Model (LLM) along with a general revision prompt,
which could take the form of a label (e.g., Coher-
ence, Style) (Du et al., 2022b; Jiang et al., 2022)
or a general instruction (Raheja et al., 2023). In
this definition of the task, labels are assigned to
specific modifications within a sentence, targeting
particular spans of text to revise.
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Figure 2: Example of a revised paragraph with its asso-
ciated revision instruction and label.

Thanks to the recent advances in NLP in the past
years, we propose to expand the traditional scope
of this sentence-level paradigm to detailed person-
alised instructions guiding the model on revisions
to conduct at the paragraph level, as illustrated in
Figure 1.

We argue that this new paradigm aligns better
with how human writers revise the text and how
LLMs are used today, allowing more comprehen-
sive changes such as merging, splitting, or reor-
ganizing sentences. Additionally, personalised in-
structions enable more nuanced control over the
degree of revision, specifying whether minor edits
or major restructuring is required. They can also
target specific areas within a paragraph, while other
sentences provide essential context.

To support this task, we introduce ParaRev, a
corpus of paragraphs revised by their authors an-
notated with human revision intention labels and
instructions (e.g. in Figure 2). Our contributions
are as follows:

1. We proposed a definition of the text revision
task at paragraph-level, with personalised re-
vision instructions.

2. We release a high-quality corpus of 48k re-
vised paragraphs with an evaluation subset of
641 manually annotated paragraphs, facilitat-
ing future research in this area 3.

3https://huggingface.co/datasets/taln-ls2n/pararev

2 Related work

Existing corpora for scientific text revision pro-
vide aligned versions of revised texts, with varying
scope. Some datasets focus only on the abstract
and introduction sections of scientific papers (Du
et al., 2022b; Mita et al., 2024; Ito et al., 2019),
while others include full-length articles (Kuznetsov
et al., 2022; Jiang et al., 2022; D’Arcy et al., 2023;
Jourdan et al., 2024). Most of these resources align
revisions at the sentence level, though paragraph-
level reconstruction is possible to capture broader,
more substantial revisions.

However, not all datasets include revision an-
notations with explicit intention labels. Some,
such as those designed for tasks related to peer-
review (Kuznetsov et al., 2022; D’Arcy et al.,
2023), focus on tracking changes without offer-
ing structured guidance for the revision process.
In revision tasks, having an explicit revision inten-
tion is crucial for guiding models in performing
meaningful modifications. In sentence-level revi-
sion datasets, individual modifications (i.e. spans
of text) are commonly associated with a label indi-
cating the revision intention. The taxonomies for
these labels can vary across corpora (Jiang et al.,
2022; Du et al., 2022b). However, labels associated
with short spans of text often lack the contextual in-
formation needed for more substantial, long-range
revisions. They also do not provide the specificity
that detailed instructions could offer to guide more
precise edits.

Recent efforts have attempted to bridge this gap
by converting labels into general instructions to
better align with how LLMs are utilized for revi-
sion (Raheja et al., 2023). Our work aims to extend
this approach by introducing detailed, personalized
paragraph-level instructions that provide richer con-
textual and precise guidance for revisions.

3 Dataset construction

Figure 3 summarizes the overall data pipeline de-
scribed in this section.

3.1 Paragraph Selection and Extraction

Our dataset consists of pairs of revised paragraphs
extracted from the CASIMIR corpus (Jourdan et al.,
2024), a large resource containing revised scien-
tific articles aligned at sentence level. This corpus
provides paragraph-level IDs for each sentence,
which allows us to treat paragraphs as coherent
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Figure 3: The data pipeline: annotation, paragraph revi-
sion and evaluation

units marked by changes in paragraph IDs across
both versions of the text.

However, many articles in CASIMIR contain
identical or minimally revised content, which is
not suitable for our purpose. We aim to build a
high-quality dataset by selecting paragraphs with
substantial revisions (beyond minor grammatical
fixes) while preserving the original idea of the text.

To achieve this, we developed hand-crafted
heuristics through empirical observations of a sub-
set of the corpus, to retain only the sufficiently
revised paragraphs (see Appendix A). From the
original 1 889 810 paragraph pairs with at least
one modification, we kept after this selection pro-
cess 48 203 paragraphs. Extraction code is openly
available 4.

3.2 Paragraph revision taxonomy
To align with prior research and facilitate analy-
sis or example selection for few-shot tasks, we
chose to assign revision intention labels to each
paragraph pair. Motivated by the works of Du et al.
(2022b) and Jiang et al. (2022), we propose a new
paragraph-level taxonomy based on their existing
sentence-level ones and observations done on a
subset of our dataset.

In this taxonomy, we identified nine revision in-
tentions, defined in Appendix B: Rewriting (light,
medium, heavy), Concision, Development, Con-
tent (addition, substitution, deletion) and Unusable.
These labels are not associated with individual ed-
its: they instead represent the overall revision inten-
tion for the paragraph. Each paragraph can receive
up to two labels, as multiple revisions with different
intentions may occur within a single paragraph.

3.3 Instructions
An instruction is provided only when no new in-
formation is introduced in the revised paragraph,

4https://github.com/JourdanL/pararev

as revision models are only supposed to improve
existing text and not make up new content. Labels
are used to identify the paragraphs that do not re-
quire an annotation, i.e. the paragraphs annotated
with Development, Content Addition, or Content
Substitution.

Annotators are asked to write concise, simple
instructions as they would when guiding an LLM
to revise the first version of the paragraph into the
second. Detailed lists of changes are not allowed.
They must also indicate the position and intensity
of revisions when necessary, especially when only
part of the paragraph requires revision while the
rest provides context.

Some examples of instructions and their as-
sociated pair of paragraphs are available in Ap-
pendix C.

3.4 Annotation

The annotation process involved 10 annotators (2
professors, 3 PhD students, and 5 master’s stu-
dents), all not native from English and specialized
in the NLP domain and experienced in reading
and writing academic papers. Most paragraphs
(73.32%) were double annotated.

Since annotators could assign up to two labels,
with 1.2 labels on average per paragraph per anno-
tator, we used Krippendorffs alpha for agreement.
It often occurs that some revisions are on the line
of two categories, e.g., Rewriting light and medium.
Given this ambiguity, we computed two scores:
one for the strict taxonomy (agreement of 0.499)
and another for broader super-labels, i.e. merging
similar categories (agreement of 0.693), see Ap-
pendix D. Agreement with super-labels exceeds
the 0.67 threshold for tentative conclusions about
the consistency of the annotations (Krippendorff,
2018).

Additionally, 75.32% of paragraphs share at least
one label between annotators with strict taxonomy,
rising to 95.11% using super-labels.

Those results reflect the inherent complexity of
the annotation task.

4 Dataset Statistics

The dataset contains 48 203 paragraph pairs from
16 664 pairs of revised articles. From this total
48K paragraphs, 641 were manually annotated (470
were double annotated). This subset was chosen to
represent the overall corpus based on paper revision
extent: 218 paragraphs are from heavily revised pa-

37



Figure 4: Distribution of labels across the dataset overall and degree of modification of the articles.

pers (where over 19 paragraphs are revised), 213
from moderately revised papers (4-5 revised para-
graphs), 210 from low revised papers (1-2 revised
paragraphs).

Figure 4 shows the label distribution across the
dataset. For fairness in the analysis, when annota-
tors picked two labels, they were weighted 0.5 each.
Additionally, paragraphs with only one annotation
are counted twice.

The figure distinguishes between paragraphs
from articles with different degrees of revision.
Heavily revised papers tend to mainly feature
Rewriting revisions, suggesting that the entire docu-
ment was evenly reworked. In contrast, low-revised
papers are more likely to involve small content
modifications, such as adding or removing forgot-
ten information.

Finally, we report the instructions’ distribution
as follows: of the 641 annotated paragraphs, 328
have no instruction, 55 have one, and 258 have two.
These 258 paragraphs form our evaluation set in
Section 5.

5 Impact of task definition on revision

To verify our hypothesis that using detailed instruc-
tions better guides the revision process compared
to generic instruction labels, we conducted a com-
parative experiment. For this, we evaluated how
different models performed when given either a
general prompt mapped from an intention label or
a personalised instruction tailored to the specific
changes needed (see Appendix E).

We experimented with multiple models to en-
sure the results were robust across various archi-
tectures: CoEdit5, a T5-based model fine-tuned on
sentence revision task (Raheja et al., 2023), as well

5https://huggingface.co/grammarly/coedit-xl

as Llama36, Mistral7, and GPT-4o, state-of-the-
art foundation models with strong language under-
standing and generation capabilities. All models
are used in zero-shot, the prompt used is given in
Appendix E.

Additionally, as a control baseline, we included
a CopyInput method, which does not apply any
edits to the input paragraph.

To assess the quality of revisions, we employed
traditional sentence revision metrics, ROUGE-
L (Lin, 2004) and SARI (Xu et al., 2016), alongside
Bertscore (Zhang et al., 2020) to measure similarity
between the generated and gold revised paragraphs.
The results are summarized in Table 1.

Across all models, we observed consistent im-
provements when using detailed instructions over
general prompts. They are even statistically sig-
nificant for Mistral, Llama3, and GPT-4o, with
p-values below 0.05 (paired Student’s t-test).

The experiment confirms our hypothesis: instruc-
tions that provide specific revision guidance allow
the models to produce more accurate revisions com-
pared to relying solely on general labels.

However, when examining the performances of
the models, we observe that the CopyInput and Co-
edit achieve the best results. A manual overview
of a subset of outputs reveals that Co-edit only
suggests minor changes, such as grammar correc-
tions, while other models propose more substantial
modifications.

Evaluation remains a significant challenge in the
text revision domain, as widely used metrics com-
pare the proposed revision to a single reference
version. This approach penalizes revisions that de-
viate from the gold standard, even if they result
in valid improvements. Consequently, unless the

6https://huggingface.co/meta-llama/Meta-Llama-3-8B-
Instruct

7https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
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Metric ROUGE-L SARI Bertscore
Approach Label Instruction Label Instruction Label Instruction

CopyInput- no edits 78.49 60.69 95.98
coedit-xl 67.50 67.70 39.56 39.68 93.88 93.93

Mistral-7B-Instruct-v0.2 45.70 48.23† 28.47 30.43† 91.38 91.78†

Meta-Llama-3-8B-Instruct 50.37 55.73† 30.59 35.07† 91.84 92.68†

GPT4o 57.99 66.17† 33.33 41.39† 92.89 94.11†

Average gain +4.07 +3.66 +0.75

Table 1: Results on the paragraph revision task. Symbol † marks a significative improvement.

model’s modifications exactly replicate those made
by the original author, the score will be lower than
proposing no modifications (CopyInput). This lim-
itation need to be address in future work to develop
more robust and reliable evaluation methods for
this task.

6 Conclusion

We proposed a definition of the scientific text revi-
sion task at paragraph-level, enabling more context-
aware revisions using full-length instruction. Addi-
tionally, we presented ParaRev, a dataset of revised
paragraphs, with an evaluation split annotated with
revision instructions. Our experiments demonstrate
that providing detailed personalised instructions
leads to more effective revisions than general ones,
across multiple models.

In future work, as manual annotation is costly
and time-consuming, we aim to annotate the re-
maining non-annotated wide split of the dataset
automatically. This silver dataset will then be used
to fine-tune an open-source model specifically for
paragraph-level revision tasks.

7 Limitations

The primary limitation of this work is the size of
the evaluation subset, as it was manually anno-
tated by volunteer researchers whose availability
constrained the number of annotations. A larger
annotated subset would enhance the reliability of
our evaluation, allowing us to determine if smaller
improvements in revision scores are statistically
significant.

While the core focus of this study is on introduc-
ing personalized annotated instructions, we also
labelled paragraphs with revision intention labels.
Labelling revisions is a challenging task since mul-
tiple modifications can occur within a single para-
graph, and annotators may interpret boundaries
between similar categories differently. However,

this limitation can be mitigated in practice by using
super-labels or considering the union of the two
annotations.

8 Ethical Considerations

Data availability All the data are extracted from
the CASIMIR corpus, collected from OpenRe-
view where all articles fall under different "non-
exclusive, perpetual, and royalty-free license" 8.

Computational resources Our experiments with
revision models ran CoEdit on a local GPU for ap-
proximately two hours, while Mistral and Llama
ran for nine hours on the supercomputer Jean Zay,
emitting less than 0.001 tons of CO2, with an addi-
tional 3.16$ spent on GPT API credits.

Use of revision models We release this dataset
to support future research on writing assistance for
researchers. We believe that revision models based
on LLMs should be used as tools to enhance clarity
and structure, not to generate the primary content
and analysis.
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A Paragraph selection criteria

We keep only paragraphs that met the following
requirements: Criteria for selection (threshold ob-
tained empirically):

• Size: The longer version must at least be 250
characters

• Percentage of modification:

– The most edited sentence should be at
least modified at 25%

– The whole paragraph should be at least
edited at 10%

– In a paragraph, the set of sentences mod-
ified at more than 90% should not repre-
sent more than 40% or 200 characters in
the whole paragraph

– If a paragraph does not contain sentences
revised at more than 50%: The set of
modified sentences should be modified
at least by 20%

• Quantity of transcribed equations: The
quantity of transcribed equations captured by
regular expression should not represent more
than 9% of the set of modified sentences in
the paragraph.
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• If the paragraph starts with a modification: We
check that it is not a segmentation mistake

– Is the beginning of the sentences cor-
rectly formed.

– If only one sentence was completely
added or deleted: Accepted if it is only
tags

– If the sentence is revised at more than
50%

* Refused if the shorter version is
equal to the end of the longer one

* Refused if the longer version is more
than 3 times the length of the shorter
one

– If the sentence is revised at less than 50%

* If the modification is at the begin-
ning on both sides: Refused if the
shorter version is equal to the end of
the longer one

* If the modification is at the beginning
on one side: Refused if the modifi-
cation is longer than 10 characters
(without spaces and tags)

• If the paragraph ends with a modification: We
check that it is not a segmentation mistake

– Is the end of the sentences correctly
formed

– If only one sentence was completely
added or deleted: Always rejected. A
second version of the function exists
to include cases where a full correctly
formed sentence is deleted/added, result-
ing in 11k additional paragraphs in the
corpus.

– If the sentence is revised at more than
50%

* Refused if the shorter version is
equal to the beginning of the longer
one

* Refused if the longer version is more
than 3 times the length of the shorter
one

– If the sentence is revised at less than 50%:
Always accepted

• Check if a part of the text has not been trans-
formed into a tag during PDF conversion

B Paragraph revision taxonomy

See Table 2

C Examples of instructions

See Table 3.

D Super-labels mapping

In our taxonomy, boundaries between categories
may be ambiguous, allowing for interpretation and
discussion. Given this ambiguity, we defined super-
labels that encompass categories of revision where
similar actions are taken in Table 4. For example,
the limit between Rewriting light and Rewriting
medium or Content addition and Development can
be blurry, and they totalise 59.43% of complete dis-
agreements (disagreement where there is no over-
lap between the two sets of labels). However, both
opinions from annotators can be justified in discus-
sions, as some paragraphs can be on the line of the
two definitions.

E Prompting

To work with the different models for revision,
we use the following prompt (Bold blue text
correspond to the input data, the instruction and
the paragraph to revise):

You are a writing assistant specialised
in academic writing. Your task is to
revise the paragraph from a research
paper draft that will be given according
to the user’s instructions. Please
answer only by "Revised paragraph:
<revised_version_of_the_paragraph>"
instruction : original_paragraph

For the comparative evaluation, based on the
work of (Raheja et al., 2023), the labels are mapped
to general instructions, given in Table 5.
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Type Description
Light Minor changes in word choice or phrasing.

Rewriting Medium Complete rephrasing of sentences within the paragraph.
Heavy Significant rephrasing, affecting at least half of the paragraph.

Concision Same idea, stated more briefly by removing unnecessary details.
Development Same idea, expanded with additional details or definitions.

Addition Modification of content through the addition of a new idea.
Content Substitution Modification of content through the replacement of an idea or fact.

Deletion Modification of content through the deletion of an idea.
Unusable Issues due to document processing errors (e.g., segmentation problems,

misaligned paragraphs, or footnotes mixed with the text).

Table 2: Taxonomy of revisions at paragraph level
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Type Instruction
Parag source Parag target
Rewriting_light Improve the english in the paragraph, make it slightly more formal.
[. . . ] Therefore, the generalization rapidly decreases
after augmentationinterrupted when training with a
single background because the learning direction to-
ward generalization about various backgrounds is not
helpful to train. On the other hand, the training can
have helpwhen their difculty is solved by augmenta-
tion, such as Figure 2(b) and Figure 2(c). [. . . ]

[. . . ] Therefore, the generalization rapidly decreases
after augmentation is interrupted during training with
a single background because the learning direction
toward generalization about various backgrounds is
not helpful to train. In contrast, the training can
help when their difficulty is solved by augmentation
(Figure 2(b), 2(c)).[. . . ]

Rewriting_medium Modify the logical flow of ideas to improve the readability of the paragraph.
Patrick et al. proposed the Mouse Ether technique on
finding out that when using multiple displays with
different resolutions, a user loses the cursor because
of unnatural cursor movement between displays [5].
The results showed that the technique improved [. . . ]

Patrick et al. found out that a user loses the cursor
when using multiple displays with different resolu-
tions based on an unnatural cursor movement be-
tween displays, and proposed a Mouse Ether tech-
nique [5]. The proposed technique improved [. . . ]

Rewriting_heavy Rewrite this paragraph to bring the argument through the idea that the
goal is to learn a pixel-wise feature for semantic segmentation.

[. . . ] We consider propagating the labels from an
annotated set to an unlabeled set by nearest neighbor
search in the featurespace. We assume that semantic
clustersemerge during training with sparse supervi-
sion, reinforced by aforementioned pixel-to-segment
relationships. By propagating labels in the feature
space, we reinforce the learning of semantic clusters.

[. . . ] Our goal is to learn a pixel-wise feature that
indicates semantic segmentation. It is thus reason-
able to assume that pixels and segments of the same
semantics form a cluster in the feature space, and
we reinforce such clusters with a featural smoothness
prior: We find nearest neighbours in the feature space
and propagate labels accordingly.

Concision and Rewrit-
ing_light

Combine sentences 3 and 4 into a really short one keeping only the main
idea. Improve the choice of wording.

[. . . ] Our method seeks to best approximate some tar-
get distribution that is potentially multivariate, using
some chosen set of control distributions. We provide
an implementation which gives unique, interpretable
weights in a setting of regular probability measures.
For general probability measures, we construct our
projection by first creating a regular tangent space
through applying barycentric projection to optimal
transport plans. Our application [. . . ] demonstrates
the methods efficiency and the necessity to have a
method that is applicable for general proabbility mea-
sures. [. . . ]

[. . . ] Our method seeks to best approximate some
general target measure using some chosen set of con-
trol measures. In particular, it provides a global (and
in most cases unique) optimal solution. Our appli-
cation [. . . ] demonstrates the methods utility in al-
lowing for a method that is applicable for general
probability measures. [. . . ]

Content_deletion and
Concision

Heavily remove details from this paragraph to make it more concise.

[. . . ] They should only contain the name of the med-
ication. Their design should be such that the user
can decide whether to add or remove them from the
display. [. . . ] On-calendar conflict representation
should not be used as the main indication of an er-
ror after a rescheduling activity. The user should
instead be notified of the impending conflict before-
hand. Participants preferred that normal, dismissible
error messages be displayed and show the full infor-
mation regarding the conflicts being introduced by
the action. [. . . ]

[. . . ] These summaries should only contain the name
of the medication and users should be able to show
or hide them. [. . . ] The user should be notified
of a newly created conflict upon rescheduling an
entry, preferably via dismissible error messages that
describe the conflict. [. . . ]

Table 3: Examples of revised paragraph with their associated annotation. Colouration based on difflib output.
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Super-label Label
Rewriting Light

Rewriting Rewriting Medium
Rewriting Heavy

Concision and Concision
Content Deletion Deletion
Development and Development
Content Addition Content Addition

Content Substitution
Unusable Unusable

Table 4: Mapping between super-labels and labels

Type Description
Light Improve the English of this paragraph

Rewriting Medium Rewrite some sentences to make them more clear and easily readable
Heavy Rewrite and reorganize the paragraph for better readability

Concision Make this paragraph shorter
Content Deletion Remove unnecessary details

Table 5: Mapping of labels with general instructions

44



Proceedings of the First Workshop on Writing Aids at the Crossroads of AI, Cognitive Science and NLP (WRAICOGS 2025), pages 45–52
January 20, 2025.

Towards an operative definition of creative writing: a preliminary
assessment of creativeness in AI and human texts

Chiara Maggi and Andrea Vitaletti
Sapienza University of Rome

{maggi.1796477@studenti/andrea.vitaletti@}.uniroma1.it

Abstract

Nowadays, AI is present in all our activities.
This pervasive presence is perceived as a threat
by many category of users that their AI coun-
terpart might substitute. While the potential of
AI in handling repetitive tasks is clear, the po-
tential of its creativeness is still misunderstood.
We believe that understanding this aspect of AI
can transform a threat into an opportunity. This
paper is a first attempt to provide a measurable
definition of creativity. We applied our defini-
tion to AI and human-generated texts, proving
the viability of the proposed approach. Our
preliminary experiments show that human texts
are more creative.

1 Introduction

The Oxford Languages dictionary defines creative
writing as “writing, typically fiction or poetry,
which displays imagination or invention (often
contrasted with academic or journalistic writing),”
encompassing all forms of writing that engage the
dynamics of thought, expressed through genuine
artistry. In this context, the writer assumes the
role of a "builder" of an alternative, often fictional,
reality, intending to convey something meaningful
to their readers. Writers improve their creative
skills through consistent practice, primarily by
writing, refining ideas, reading the work of others
and incorporating feedback.

The spread of AI tools for creative writing.
In the recent past, a number of AI-powered tools
have emerged to support the writing activity. These
range from the handling of technical aspects of
the storytelling process, such as grammar and
spelling checking (e.g. Grammarly 1), translating
text (e.g. Lara 2) or even write a screenplay (e.g.
Sudowrite 3).

1https://app.grammarly.com/
2https://lara.translated.com/translate
3https://www.sudowrite.com/

These tools rely on modern AI techniques,
such as Recurrent Neural Networks (RNNs) or
Transformers, like GPT (Generative Pretrained
Transformer). They are capable of examining
context in sequence by learning linguistic patterns
and how words logically follow one another, in
order to: a) offering suggestions for terms, syn-
onyms, and antonyms relevant to specific sentences
or paragraphs; b) assisting with inspiration for
character names or other narrative elements; c)
proposing suitable titles for a book, considering the
story, its themes, morals, and plot; d) functioning
as an Artificial Beta Reader, which performs the
task of generating narrative suggestions for certain
parts of the story based on patterns learned from
similar works through machine learning.

Open question: how to evaluate the creative
writing of an AI. Despite the indisputable use-
fulness of AI tools to support the writing activity,
a natural question is to assess to what extent AI
tools can also generate creative content. It is often
the case that artists—writers, in this study—may
question how long their contributions will remain
distinguishable from those of creative intelligences
that are more efficient and faster, such as ChatGPT,
for example. Humans are known for incorporating
an emotional framework that enriches every
creative process, making art, writing, and other
forms of expression unique and deeply connected
to their life experiences; and yet, it may really
seem that ChatGPT has a suite of tools to support
writers that actually does not support writers
at all, but rather that it reduces, trivializes and
minimizes the effectiveness of a creative text, even
potentially replacing the authors4. So, the question
is: how can we measure the level of creativity
of the machine and compare it with that of humans?

4https://leonfurze.com/2024/11/21/
openai-is-coming-for-writers/
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Contribution of the paper. We propose an ini-
tial operational definition of creativity based on
the framework provided by (Runco, 2023), and we
conduct preliminary experiments to quantitatively
assess the creativity of AI compared to that of hu-
mans. To our knowledge, this is the first attempt
to provide a practical definition of creativity in this
context that can be fully automatized.

2 Related work

There is an active line of research, as well on-
line services 5, aiming at using AI to classify AI-
generated text to fight the risk connected to im-
proper use of such technology such as misinforma-
tion, bias, intellectual property concerns and loss
of human connection. In (Uchendu et al., 2020)
the authors study three versions of authorship attri-
bution problem, among which the discrimination
of texts written by a human from those written by
machines. A recent research report (Weber-Wulff
et al., 2023) pointed out that the available detec-
tion tools are often inaccurate and unreliable and
have a main bias towards classifying the output as
human-written rather than detecting AI-generated
text.

Buz et al. (Buz et al., 2024) discuss the creative
quality in natural language generation. However,
in their work creativity is entirely evaluated by
humans, thus limiting the applicability of the pro-
posed method.

Mark A. Runco and Garrett J. Jaeger, in (Runco
and Jaeger, 2012), offer a definition that Runco
revisits in his most recent paper (Runco, 2023),
where he argues that "AI can only produce artificial
creativity".

"The standard definition is bipartite: Creativity
requires both originality and effectiveness. [...]
Originality [...] is often labeled novelty, but [...] if
something is not unusual, novel, or unique, it is
commonplace, mundane, or conventional. It is not
original, and therefore not creative. Originality
is vital for creativity but is not sufficient. [...]
Original things must be effective to be creative.
Like originality, effectiveness takes various forms.
It may take the form of [...] usefulness, fit, or
appropriateness [...] or the form of value.
This definition allows us to propose a first operative
definition of creativity in section 3 which, contrary
to prior work, can be algorithmically evaluated.

5https://originality.ai/

Given that the above definition of creativity does
not inherently exclude AI-generated pseudo-
creativity, as it meets the standard requirements of
originality and effectiveness, Runco explores two
possible approaches for humans to protect their
genuinely creative potential: a) accept that AI is
creative (since it adheres to the standard definition);
b) revise the standard definition to distinguish
human creativity from artificial creativity. If
the second option were adopted, at least two
additional parameters should be incorporated
into the definition of creativity: authenticity and
intentionality. Starting with Intentionality, we can
refer to its definition: "Character resulting from
the active and conscious participation of the will
in a given fact." (From the Oxford Languages
Dictionary)
Thus, as Runco himself asserts, intentionality is
a characteristic inherently tied to human beings,
and by extension to human creativity, but not to
artificial creativity. In the same way, Authenticity
is purely human and (at least for now) beyond
the reach of AI to replicate (as Runco himself
mentions in his paper). Authenticity arises from
accepting one’s own self, in a genuine way, without
filters or limits (even ethical ones), and it’s how
humans express themselves when they "create."
AI, however, lacks an experiential self to draw
from or a history of experiences, which humans
inherently possess. Therefore, AI’s creations,
while elaborately crafted and impressive, remain
an amalgamation of pre-existing content, not the
result of personal lived experience.

3 Towards an operative definition of
creative writing

Our proposal of a measurable definition of cre-
ativity relies on the quantitative evaluation of the
two constituent ingredients of Runco’s definition
(Runco, 2023), namely originality and effective-
ness. More formally given a document di, we de-
note by O(di, D) a measure of the originality of di
with respect to a corpus D, and by E(di, A) a mea-
sure of its effectiveness with respect to an audience
A. The creativeness of di is defined as follows:

C(di, D,A) = αO(di, D)+(1−α)E(di, A) (1)

where α ∈ [0, 1] is a parameter to weigh the
contribution of the two components.
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Measuring Originality. Since originality in
(Runco, 2023) is strictly related to uniqueness, we
propose to evaluate it by a similarity metric (Chen
et al., 2009). Specifically, given a document di, d⃗i
is its embedding (da Costa et al., 2023), namely a
vector representation of di.

We define the originality of di respect to an-
other document dj through their cosine similarity,
namely:

O(di, dj) = 1− Cosine(d⃗i, d⃗j) = 1− d⃗i · d⃗j
|d⃗i||d⃗j |

(2)
As highest is the originality of di as much it is

dissimilar to dj . The originality of di with respect
to a corpus D is the min value of the originality of
di to all the documents in the corpus, namely:

O(di, D) = min
dj∈D,dj ̸=di

O(di, dj) (3)

Measuring Effectiveness. Effectiveness refers
to the ability to convey a message or content to
the audience A. Being addressed to an audience
implicitly requires humans in the loop and, conse-
quently, a quantitative definition is difficult to scale
and has to deal with the arbitrariness of human
judgments. Our initial proposal to evaluate the abil-
ity to convey a message is based on questionnaires
administered to A. Specifically, we assume that for
each question Qi in the questionnaire exists a set of
answers Ansi that proves the ability of the text (i.e.
di) to convey the message or content. We measure
the effectiveness as the fraction of the audience
answering Ansi. More precisely:

E(di, A) =
1

n

n∑

i=1

wi

∑

a∈A

answer of a ∈ Ansi
|A|

(4)
Where the questionnaire contains n questions

and wi ∈ [0, 1] is used to weight the contribution
of each question.

4 Preliminary Experiment

In this section we report on the results of a sim-
ple experiment to evaluate the creativity of AI-
generated text compared to human-authored text.
We do not aim here to drive concluding remarks on
the outcome of the experiment, rather we simply
show how our definition of creativity can be used
in practice.

We gave in input to ChatGPT (model gpt-4-
turbo6, online interface) the following prompt:

6https://platform.openai.com/docs/models

Figure 1: Originality comparison among AI and human
(H) generated texts.

O(AI1) O(AI2) O(H1) O(H2)

0.28 0.28 0.39 0.32

Table 1: The originality of the documents in the corpus.
Human generated content is more original. We omit D
for legibility.

“Write a short love story using J.K. Rowling’s
style”.
The generated texts (AI1 and AI2), together with
the texts produced by two human writers (H1 and
H2), answering to the same request from the cor-
pus D and are available in Appendix A. First we re-
moved the stopwords and then we embedded these
texts into a 768 dimensional dense vector space
using the all-mpnet-base-v2 sentence-transformer
(Face, 2024). The resulting vectors are A⃗I1 and
A⃗I2 for the AI-generated stories, and H⃗1 and H⃗2

for the human-generated ones.
Figure 1 reports the pairwise originality between

the texts.
AI-generated texts show lower originality be-

tween themselves. A higher level of originality is
shown when the two human-generated texts are
compared between them and also when compared
to AI-generated text. The originality of the docu-
ments with respect to the corpus according to eq. 3
is shown in table 1 confirming human-generated
texts are more original.

To evaluate the effectiveness we showed the
texts in the corpus to an audience of 15 readers
unaware of both the creative source (i.e. AI and
human) and the prompt. Readers are described
in Appendix A. Despite we still rely on humans
to evaluate effectiveness, in Section 5 we discuss
how to automate also this process. They were then

47



asked to answer the following questions, selecting
a response among three options, one of which
belongs to Ansi as defined above:

Q1. What theme is discussed in the text?
Options: Mistery, Adventure, Love ∈ Ans1.

Q2. Which writer’s narrative style do you
recognize in the text?
Options: U. Eco, C. Doyle, J.K. Rowling ∈ Ans2.

Love Mistery Adventure
H1 100%
H2 80% 13.3% 6.7%
AI1 86.7% 6.7% 6.7%
AI2 80% 20%

Table 2: The answers to question Q1.

J.K. Rowling U. Eco C. Doyle
H1 46,7% 33.3% 20%
H2 86.7% 13.3%
AI1 73.3% 13.3% 13.3%
AI2 66.7% 13.3% 20%

Table 3: The answers to question Q2.

The responses to Q1 are shown in Table 2. The
vast majority of the audience identifies love as the
theme discussed in the texts. There are marginal de-
viations except for AI2, where 20% of the audience
classified the text as Adventure.

The responses to Q2 are shown in Table 3. The
results are more controversial: in many cases, a
writer’s narrative style is simply identified with the
characters (e.g. Harry Potter) or the settings (e.g.
the Benedictine monastery), but it is undoubtedly a
more complex task that involves the judgment of
nuances and details. This complexity might sug-
gest reducing the weight of the second question by
applying a lower weight. For the sake of exercise,
in Table 4 we evaluate the creativity of the texts
according to our definition 1. It doesn’t pretend
to provide objective results, but simply to show
the applicability of our proposed method. Human-
generated content is more creative.

5 Conclusions and Future Works

Generative artificial intelligence is nowadays in
all aspects of our lives, and a number of AI tools

C(AI1) C(AI2) C(H1) C(H2)

0.42 0.40 0.54 0.47

Table 4: The creativity of the documents in the corpus.
α = 0.5, namely originality and effectiveness have the
same importance. The weights for effectiveness are
w1 = 1 and w2 = 0.5 to account for the difficulty of
evaluating the narrative style. Human-generated content
is more creative. We omit D and A for legibility.

are already available specifically to support the dif-
ferent and heterogeneous needs of writing. The
products of such tools are so effective and to some
extent “human” that the research community has
developed several projects with the goal of distin-
guishing between human and AI-generated texts.
However, to the best of our knowledge, the inves-
tigation of the creativeness of AI texts is still un-
dervalued and the work on this topic stll heavily
relay on human judgment. Writers, or more in
general content creators and artists, perceive ma-
chines as a threat. Evaluating the creativeness of AI
texts can shed a light on the real dimension of such
threat, and possibly drive the development of more
aware new forms of human-machine collaboration.
The relationship between humans and machines
must be seen as a productive and complementary
alliance. There are effective and constructive ap-
proaches to achieving an optimal balance between
the two, and it is essential to explore, refine, and
continuously innovate in this regard. Only in this
way, the analytical power and learning capabilities
of machines can be combined with the emotional
depth and human experience, preserving and en-
hancing the creativity and innovation inherent in
human intelligence. Our work is a first attempt to
provide a quantitative definition of creativeness and
the preliminary experiment show the applicability
of this definition to a simple but concrete use case.
In the future, we plan to extend our experiments
to a wider audience and to consider different and
bigger corpus. A particularly interesting line of re-
search, that will make out method fully automated,
is the algorithmic classification of effectiveness.
This goal needs the identification of high-quality
corpus of homogeneous documents in terms of ef-
fectiveness, to train the classification algorithms.
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A Appendix

A.1 Readers

The experiment involved 15 readers, 6 males and 9
females aged between 20 and 40. We defined three
classes of readers: weak who read 1-5 books per
year, medium 6-10 books per year, and strong more
than 11 books per year. We have 8 weak readers, 6
medium readers and 1 strong reader. To evaluate
the familiarity of readers with the narrative style
of the considered writers, we asked them to tell us
how many of the authors they know: 4 declare to
know all the authors, 5 two of them and 6 only one.

A.2 Texts

H1: "Thirteen hours" by Chiara Maggi

Margherita was named after the flower her
mother was painting on a huge canvas while she
was pregnant with her. As she grew older, her
brown hair had grown longer and now rested
delicately on her shoulders, framing a candid,
square face. She was beautiful and she knew it,
but she didn’t boast about it. Simon, her piano
teacher’s son, made her feel like a princess and told
her every day how lucky he was to have known
her.
“Do you remember when it happened?” Simon
asked her one day, lying down next to her on the
lawn. They had just finished playing together and
were enjoying the beautiful sunny day that had
come instead of the predicted rain.
“Happened? What?” Margherita looked at him
from over a book. She wasn’t reading it, she was
smelling it, as she often liked to do.
“That we met, you and I.”
“Do you want to go down memory lane?”
Simon smiled affably and tucked a lock of hair
behind her ear. He really liked doing it because it
reminded him of their first date: she had a cascade
of messy hair in front of her face while she was
fiddling with boxes full of brushes and paints
that her mother had given her before she left the
house. She had asked him to help her tidy them up
because she couldn’t see where she was putting
her feet.
“Okay,” Margherita said, smiling in turn. “Of
course, I remember. Four years, eight months,
twenty-five days and. . . ” she narrowed her eyes
and began counting on her fingers. Then she
completed the sentence: “... thirteen hours ago.”
“Aha! I knew it!” Simon exclaimed, standing up
and pointing his index finger at her. “You don’t
remember well, young lady. It was fourteen hours
ago, not thirteen!”
Margherita gave him a fake dirty look. She pulled
out a few blades of grass amused, sighed and then
cleared her throat: “I contradict you, sir. I confirm
my version of events: it was thirteen hours ago.”
Simon wasn’t expecting that. He remained
speechless for a moment and then crossed his arms,
sitting down next to the girl again. “Let’s hear it.”
“Fourteen hours is what separates us from the
moment you looked me in the eyes for the first
time, that’s true. I still remember when your
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mother welcomed me into your house for my first
lesson: I was so happy! Then I saw you, studying
in your own corner of the room; and suddenly I
started to feel scared. . . ”
“Scared?!” Simon’s eyes widened.
“Yes, scared! So scared that I was almost ready to
leave.”
“You never told me this story. . . ”
“Well, every girl has her own secrets and one of
them is that I was afraid of making a terrible im-
pression in front of my teacher’s son; and. . . well,
I wanted you to remember me. . . to remember me
for a good reason, if possible.”
Simon didn’t answer. He looked deeply into her
eyes and took her hands. When he met Margherita
he had sworn eternal love to her, even before
speaking to her. He had fallen in love with her
instantly and it had been stronger than him, as if a
magical and uncontrollable influence had captured
him forever.
“I couldn’t help but remember you,” he told her.
Margherita blushed. “In any case, when you finally
found the courage to talk to me, an hour had
already passed, so. . . ”
“. . . it’s thirteen hours and not fourteen,” he
completed the sentence, admitting his mistake.
“How do you remember all these details?”
“And how do you do it?”
“Because there is no moment spent with you that
can be forgotten.”
“Even when we don’t get along?”
“Each of those little moments, all of them, without
distinction.”
Simon took Margherita’s face in his hands and
kissed her tenderly on the lips. Then they stood
hand in hand watching the sun slowly preparing to
set, painting the sky and all the clouds with pastel
colors.

H2: "Luise" by Edoardo d’Andrea

The headlights of a late car interrupted an
already restless sleep. The clock said 3:00: only
two hours left until departure. Everything was
ready, from his father’s worn brown trunk, from
which a corner of the old burgundy cloak was
sticking out, to his passport, to his inseparable
blue scarf. Sleep had abandoned him, Jack got
up a little cold, it was a classic dark Scandinavian
December.
With his dark hair disheveled and his green eyes
dull, refractory to wanting to see the light so

early, Jack thought that the day had finally arrived,
the beginning of his adventure at the Marine
University, an exclusive university for those who
were able to do incredible things. You could only
be admitted if you had exceptional skills, and his
was the ability to perform magic without needing
to know spells or enunciate them. It was a bizarre
ability, attested only in a few small African tribes.
He was the only boy she knew with this ability.
An unexpected noise shook the floor, a strong
purple light illuminated the darkness of the night
for a moment, and a woman’s scream bent the
silence. Jack didn’t think twice and rushed out of
the house: a young girl was surrounded by three
people in long black cloaks, ready to attack her.
Jack just had to move a finger and a silver stripe
surrounded the girl, like a delicate sheet. The
attackers were wrapped in a rough-looking silver
fabric. They started screaming and disappeared
into the night with a loud crack.
When he reached the girl, Jack realized that he
knew her, she was Luise McMalloy, a childhood
friend of his. They had known each other for a
lifetime and he had always had a certain sympathy
for her, to tell the truth he would have liked that
sympathy to become something else. She was very
talented, long wavy raven hair, dark eyes with red
highlights, beautiful, a skilled potionist, with a
sharp intelligence. She was establishing herself
on the international scene as the leading expert
in the “elemental potion”, a solution capable of
separating the fundamental magical essences of
an object. She was especially popular among the
Keepers, the international investigative body.
Still dazed by what had happened, her porcelain-
skinned face streaked with tears, Luise looked
up, lost for a moment, but she recognized Jack
and hugged him, melting into a liberating cry. He
invited her into the house to warm up. Sitting in
front of the timid fire in the fireplace she began
to tell him about her experiment, that she had
accidentally teleported her a few blocks away and
that those three hooded men had thought it a good
idea to attack her by surprise while she was trying
to get home.
“Luckily you appeared, I don’t know what would
have happened otherwise” she whispered.
Her eyes were still shiny but fixed on Jack’s. They
had both grown up. He certainly had, she had
noticed. He was no longer the frail little guy she
knew, and his gaze was determined. And then
that strange magic was warm, it was full, it was
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tumultuous. Luise found herself lingering with a
slight smile on her lips.
Jack noticed that the girl was absorbed in him
and blushed slightly. He wasn’t used to female
attentions, they made him nervous, he didn’t know
how to behave. But he basked in the thought that
she had finally noticed him.
They began to chat, the hours passed, 5:00 arrived
and passed just as quickly, the words flowed while
the fire dimmed, forcing them to get closer to the
fireplace and the other. The sun began to color the
sky pink, Jack had missed the bus, he would have
to find another way to get to the university on time,
but at that moment he didn’t care, he was simply
fine and he didn’t want it to end, as if under a spell.
At a certain point even the words stopped, as if
they felt like they were too much between those
two. In the silence they looked at each other and
smiled. Something had begun, they didn’t know
what it was yet, but it was beautiful. They knew it.
And it wouldn’t end any time soon.

AI1: "A magical story" by ChatGPT

In a small, sleepy village tucked away in the
Yorkshire Dales, there was a quaint little bookshop
called ’Turner’s Tomes.’ It was the sort of place
that smelled of old paper, ink, and a dash of
magic, though no one ever admitted to it. The
bell above the door jingled merrily every time
someone entered, though not many did, except for
one person who came every Friday like clockwork.
Lily Abernathy, with her cascade of dark red curls
and a nose perpetually buried in a book, had been
the shop’s most loyal customer since she was a
child. She had grown up wandering its narrow
aisles, running her fingers along the spines of
well-worn books, and spending hours curled up in
the back corner, lost in stories of faraway lands
and heroic quests.
It was on one such Friday that something quite
unexpected happened, something that would
forever change Lily’s quiet, bookish life.
The bell above the door tinkled as it always did,
and in strolled a tall, lanky figure with messy
dark hair, carrying a heavy satchel slung over one
shoulder. His name was James Ashford, a historian
from London, though his disheveled appearance
suggested more of an adventurer than an academic.
He wandered through the shop, glancing at the
shelves, but his eyes kept darting toward the corner
where Lily sat, nose-deep in a thick volume.

It wasn’t long before he found himself in her
section. He pretended to be engrossed in the book
nearest to him but kept stealing glances at the girl
who seemed completely unaware of his presence.
Eventually, his curiosity got the better of him.
"Excuse me," he said, in a voice that was perhaps
a bit louder than intended. Lily jumped, nearly
dropping her book.
"Oh—sorry!" James added quickly, running a hand
through his wild hair. "I didn’t mean to startle
you." Lily blinked, her green eyes wide behind
her round spectacles. "No, it’s... it’s fine," she
stammered, still clutching her book tightly. She
studied him for a moment, as if trying to place him.
"Do you come here often?" James asked, his voice
now softer, more tentative. He was terrible at small
talk, and it showed.
Lily smiled, the corners of her mouth twitching
with amusement. "Every Friday, actually. I’m
practically part of the furniture."
James chuckled awkwardly, glancing at the chair
she had occupied. "Well, I think I’ve found the
most well-read piece of furniture in the shop,
then." Lily’s cheeks flushed pink, though she tried
to hide it behind her book. There was something
endearing about his awkwardness, a kind of charm
that caught her off guard.
Over the next several weeks, James made a habit
of visiting the shop—though never on Fridays.
He’d pop in on a Wednesday or a Saturday, making
excuses about research, but truthfully, he was just
hoping to run into Lily again. And when he finally
did, it was as if the universe had conspired to bring
them together once more.
"Back again?" she teased lightly one afternoon, her
red curls falling over her shoulder as she tilted her
head toward him.
"Can’t resist the allure of Turner’s Tomes," he
replied with a grin, though his eyes said otherwise.
They flicked to her face, full of warmth and
curiosity.
From then on, the bookshop became their meeting
place. They spent hours discussing novels, history,
and magic—not the wand-waving kind, but the
everyday magic of words, stories, and laughter.
Slowly, something more than friendship began to
blossom between them, though neither of them
spoke of it. One autumn evening, after the sun
had set and the shop was closing for the day, Lily
and James lingered near the door. A cool breeze
rustled the leaves outside, and the scent of rain
filled the air.
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"I was wondering," James began, a little too
casually, "if you’d like to join me for a cup of
tea sometime. You know, somewhere other than
the bookshop." Lily looked up at him, her heart
skipping a beat. She had grown used to their quiet
moments in the shop, but the idea of stepping
outside of that world with him, of exploring
something new, felt like the beginning of a whole
new chapter.
"I’d love that," she said softly, her smile reaching
her eyes. And so, on a brisk autumn day, they
walked out of Turner’s Tomes together, the
doorbell tinkling behind them, their story just
beginning.

AI2: The Quivering Quill by ChatGP

The moon hung low over the sleepy village of
Hallowmere, its silvery light spilling over cobbled
streets and ivy-clad cottages. In a quiet corner of
the village stood The Quivering Quill, a tiny book-
shop with creaking shelves and enchanted tomes
that whispered when the wind was still. It was
owned by Edwin Thistlewood, a wiry man with
a mop of dark curls and an ever-present ink stain
on his fingers. Edwin had a knack for finding lost
things—old books, forgotten spells, and even the
occasional runaway gnome.
One late autumn evening, as Edwin closed up shop,
the bell over the door jingled softly. In walked Lila
Ashwood, her russet hair shimmering in the lantern
light, her cheeks flushed from the crisp night air.
She held a tattered notebook close to her chest.
“Are you Edwin Thistlewood?” she asked, her voice
warm but tentative. Edwin nodded, his curiosity
piqued. “At your service. What brings you to The
Quivering Quill at this hour?”
Lila hesitated, then placed the notebook on the
counter. Its cover was worn, the pages filled with
looping handwriting and odd little sketches. “This
belonged to my grandmother,” she said. “She al-
ways said there was a secret hidden within, but no
one in my family could ever make sense of it.”
Edwin picked up the notebook, the faint hum of
magic tickling his fingertips. “A mystery, is it?” he
murmured. “Let’s have a look.”
For weeks, the two of them pored over the note-
book, deciphering codes and uncovering spells that
had long been forgotten. Lila’s laughter filled the
shop as Edwin recounted stories of his more pe-
culiar customers—a banshee with a penchant for
romance novels, a werewolf who only read during

full moons. As the days grew shorter and the air
colder, something unspoken began to blossom be-
tween them. Lila would catch Edwin’s eye across
the counter, and he would blush furiously, pretend-
ing to be engrossed in a particularly stubborn spell.
One evening, as they finally cracked the notebook’s
last riddle, a soft golden light spilled from its pages.
In the center of the glow floated a tiny, intricately
crafted key.
Lila gasped. “It’s beautiful! But... what does it
unlock?”
Edwin reached out, his hand brushing against hers
as he picked up the key. His heart thudded in his
chest. “There’s only one way to find out.”
The key led them to the attic of Lila’s ancestral
home, where a dusty old chest lay hidden beneath
a pile of forgotten memories. Inside was a collec-
tion of letters, each one detailing the love story of
Lila’s grandmother and a young wizard who had
once owned The Quivering Quill. “They loved
each other despite every obstacle,” Lila whispered,
her eyes misty. “Just like—”
She stopped, looking up at Edwin. He smiled, his
own eyes reflecting the flicker of lantern light and
something deeper.
“Just like us?” he said softly.
At that moment, the air seemed to hum with the
magic of the notebook and the ancient love it had
guarded. Edwin took her hand, and in the quiet of
the attic, they sealed their own story with a kiss.
From then on, The Quivering Quill became not just
a place of lost spells and forgotten books, but a
haven for love, old and new. And every autumn,
when the moon hung low and the air turned crisp,
Edwin and Lila would sit by the fire, the golden key
glinting between them, as they added new pages to
the notebook—writing a tale that was entirely their
own.
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Abstract

Brain decoding technology is paving the way
for breakthroughs in the interpretation of neu-
ral activity to recreate thoughts, emotions, and
movements. Tang et al. (2023) introduced
a novel approach that uses language mod-
els as generative models for brain decoding
based on functional magnetic resonance imag-
ing (fMRI) data. Building on their work, this
study explored the use of three additional lan-
guage models along with the GPT model used
in previous research to improve decoding ac-
curacy. Furthermore, we added an evalua-
tion metric using an embedding model, provid-
ing higher-level semantic similarity than the
BERTScore. By comparing the decoding per-
formance and identifying the factors contribut-
ing to good performance, we found that high
decoding accuracy does not solely depend on
the ability to accurately predict brain activ-
ity. Instead, the type of text (e.g., web text,
blogs, news articles, and books) that the model
tends to generate plays a more significant role
in achieving more precise sentence reconstruc-
tion.

1 Introduction

Brain decoding technology has recently gained
considerable attention for its potential. This tech-
nology, which analyzes brain activity in real time
to decode thoughts, emotions, and movements,
is expected to bring major breakthroughs in ar-
eas such as medicine, rehabilitation, communi-
cation support, scientific research, and beyond.
Many brain-machine interfaces (BMIs) designed
for practical use rely on invasive methods like
electrocorticography (ECoG), which require brain
surgery (Willett et al., 2023; Metzger et al., 2022).
Although these methods provide clearer data, al-
lowing for accurate analysis of brain activity even
in complex tasks, they come with surgical risks
and practical limitations, making them unsuitable
for large-scale deployment.

In contrast, non-invasive BMIs using functional
magnetic resonance imaging (fMRI) or electroen-
cephalography (EEG) are safer and more cost-
effective alternatives. However, these methods
face challenges, including noisy data and lower
temporal or spatial resolution, which restrict their
applications to simpler tasks such as recogniz-
ing a limited set of words or basic motion com-
mands (Lopez-Bernal et al., 2022). Non-invasive
BMI technologies remain far from being practi-
cally deployed, with several challenges yet to be
addressed.

Tang et al. (2023) took a novel approach by not
directly decoding stimuli from non-invasive data,
but instead utilizing neural data to support the re-
construction process. Their method involved us-
ing a language model to generate several possi-
ble next words, then selecting the one that most
closely aligns with the brain’s current state. Al-
though this method is based on off-line brain de-
coding using data acquired through fMRI, its in-
novative approach has sparked widespread interest
from researchers.

In this study, we extend the work of Tang et al.
(2023) by using three additional language models,
along with the Fine-tuned GPT model (Radford
et al., 2018a) they employed for language genera-
tion, in order to reconstruct sentences with higher
similarity scores to the actual stimulus sentences,
and compare the accuracy of the decoders. We in-
vestigate whether higher accuracy of the encoding
model that predicts brain state leads to more pre-
cise decoding, as well as the factors that contribute
to decoding accuracy.

2 Related Work

Tang et al. (2023) proposed a decoder that recon-
structs continuous natural language from fMRI
data acquired non-invasively, corresponding to any
stimuli that participants are listening to or imagin-
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Figure 1: Reconstruction of sentences from brain data under language stimuli (adapted Tang et al., 2023). (a)
An encoding model was constructed to predict BOLD responses obtained during an fMRI experiment from word
sequences presented to participants. A total of 16 hours of data was used for training. (b) The language model
generated candidate word sequences that could follow the given input. Using the trained encoding model, brain
responses that can be evoked by these candidate sequences were predicted. The top k candidates, whose predicted
responses were closest to the observed brain responses, were retained for the next time step.

ing. The overview is shown in Figure 1 (adapted
from Tang et al., 2023). This decoder uses a
language model to generate a set of candidate
words and an encoding model trained to estimate
the brain activity evoked by each candidate. The
most likely word sequence, which best aligns with
the actual brain state, is selected from these can-
didates. This approach mitigates the limitations
of fMRI, which has low temporal resolution, en-
abling the reconstruction of sentences that partici-
pants are listening to.

Encoding models generally estimate brain states
from vectors that represent stimuli, typically ex-
tracted from deep learning models. Since the intro-
duction of word2vec (Mikolov et al., 2013), which
represents the meaning of words in natural lan-
guage as vectors, it has become possible to extract
features from language stimuli presented to the hu-
man brain. More recently, intermediate representa-
tions from language models such as BERT (Devlin
et al., 2019), GPT-2 (Radford et al., 2018b), and
Llama (Touvron et al., 2023) have been increas-
ingly used as vectors that capture sentence features
for brain state estimation (Schrimpf et al., 2021;
Caucheteux et al., 2021; Nakagi et al., 2024; An-
tonello et al., 2024). The performance of encod-
ing models depends on the language model used.
Antonello et al. (2024) reported that there is a scal-
ing law between the number of parameters in the
language model used for feature extraction and
the accuracy of the resulting encoding model. As
the number of parameters in the model increases,
the accuracy of the encoding model improves in a
logarithmic-linear fashion.

In this study, we introduce the Pre-trained GPT,
the original model before fine-tuning in the re-
search of Tang et al. (2023), and investigate how
fine-tuning affects decoder accuracy. Additionally,
while Tang et al. (2023) and other studies using en-
coding models have commonly employed GPT or
GPT-2 for feature extraction, we use the powerful
language models Llama3 and OPT to build a more
accurate encoding model. Furthermore, we intro-
duce a new evaluation approach that provides fur-
ther insights into their performance to evaluate the
effectiveness of Tang et al.’s decoding methods.

3 Method

3.1 Semantic reconstruction of language

The decoders developed in this study are based on
the framework introduced by Tang et al. (2023).
(Figure 1). Neural activity data were collected us-
ing fMRI while participants were exposed to au-
ditory stimuli consisting of multiple stories nar-
rated by a single speaker. To model the brain’s
response to natural language stimuli, an encoding
model is first constructed to predict Blood-oxygen-
level-dependent imaging (BOLD) responses un-
der language stimuli using features extracted by
a language model (Figure 1a). Theoretically, it is
possible to identify the stimulus being perceived
or imagined by the participant by comparing the
measured neural response with the predicted re-
sponses for all possible word sequences. However,
the number of potential word sequences is pro-
hibitively large, and many of these sequences are
unlikely to adhere to typical grammatical rules or
resemble natural language. To address this, Tang
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et al. (2023) used a language model trained on
large text datasets to constrain the candidates to
grammatically coherent word sequences. The de-
coder employs beam search to retain the top k can-
didates that produce neural responses most simi-
lar to the measured brain activity at each time step
(Figure 1b).

3.2 MRI Data and Experimental Tasks

In this study, we use the same dataset (LeBel
et al., 2024) as the previous research, which
is openly available through the neuroimaging
database OpenNeuro1. The MRI data were ac-
quired at the Biomedical Imaging Center of the
University of Texas at Austin using a Siemens 3T
MRI scanner. The dataset includes data from three
healthy participants (one female) aged 23 to 36.

The fMRI parameters were as follows: repeti-
tion time (TR) = 2.00 s, echo time (TE) = 30.8
ms, flip angle = 71◦ multi-band factor (simultane-
ous multi-slice) = 2, and voxel size = 2.6 mm ×
2.6 mm × 2.6 mm (slice thickness = 2.6 mm).

The stimulus dataset consists of 82 stories, each
with a duration ranging from 5 to 15 minutes, ex-
tracted from The Moth Radio Hour and Modern
Love. In each story, a single speaker narrates an
autobiographical story as an audio stimulus. In
this study, we use fMRI data that has been pre-
processed by LeBel et al. (2023). The test data
was collected while the participants listened to the
story “Where There’s Smoke” (10 minutes) from
The Moth Radio Hour, under the same conditions
as the training data. To enhance the signal-to-noise
ratio, the experiment was repeated five times in
separate MRI sessions, and the BOLD responses
were averaged across these trials for each partici-
pant.

3.3 Language Model

We use the Fine-tuned GPT model, which was em-
ployed in the previous research, as the baseline.
To assess decoder performance with different lan-
guage models, we also utilize the Pre-trained GPT,
Llama3-8B, and OPT-6.7B models (Table 1). The
baseline Fine-tuned GPT was trained on a corpus
consisting of over 20 billion words from Reddit
comments and 240 autobiographical stories (over
400,000 words) extracted from The Moth Radio
Hour and Modern Love, which were not used in
the fMRI experiments. The GPT was pre-trained

1https://openneuro.org/

on a story-like dataset, while the Llama3 and OPT
models were pre-trained on corpora from books,
news, websites, etc. All the Pre-trained models
were obtained from Hugging Face Hub (details in
Table A4) and were not trained by the authors.

The same language model was used for both fea-
ture extraction in the encoding model and for gen-
erating candidate words in the decoder.

3.4 Encoding Model

The encoding model explains information about
stimuli or tasks represented in the activity of sin-
gle voxels by predicting BOLD signals using lin-
ear regression based on features extracted from the
stimuli (Naselaris et al., 2011). Language features
used in the encoding model are extracted from the
hidden states of the target token by feeding a se-
quence of the previous five tokens and the target to-
ken into a language model. The token features are
downsampled to match the MRI repetition time
(TR) using a Lanczos filter. To account for the tem-
poral delay in the BOLD response, features from
1 to 4 TRs2 before the stimulus are combined and
included in the regression.

Ridge regression, commonly used in encoding
models, is employed in this study. The regulariza-
tion parameter α is selected from 10 values within
the range of 101 to 103 for each voxel, based on a
50-fold cross-validation.

3.5 Token Rate Model

For each participant, we estimate a model to pre-
dict the number of tokens at specific time points,
corresponding to when a new word was perceived
or imagined. BOLD signals from voxels in the
auditory cortex are used to train a linear regres-
sion model that predicts the number of tokens
presented between time t − 1 and t. The audi-
tory cortex of each participant was defined using
an auditory localizer task where participants lis-
tened to a one-minute stimulus, repeated 10 times,
consisting of 20 seconds of music (Arcade Fire),
speech (Ira Glass, This American Life), and natu-
ral sounds (such as a babbling brook).

Similar to the encoding model, we account for
the temporal delay in the BOLD signal response
to the stimulus by combining features from 1 to 4
TRs after the stimulus and performing regression.
Next, we divide the predicted number of tokens by
1 TR to estimate the token input times. Although

21 TR = 2.0 seconds
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Model Dim. Layers Params Vocab Training Data

FT GPT 768 12 120M 17378 Reddit comments and autobiographical stories
PT GPT 768 12 120M 40478 Unpublished books across various genres

PT Llama3 4096 32 8B 128000 Large public text datasets
PT OPT 4096 32 6.7B 50272 Books, story-like data, news, Reddit posts, web text

Table 1: Language models used in this study. “FT” represents Fine-tuned, and “PT” represents Pre-trained. Fine-
tuned GPT, as employed in previous research, as the baseline, with additional models including Pre-trained GPT,
Llama3-8B, and OPT-6.7B, which differ in training datasets and model sizes. All Pre-trained models used in this
study were on Hugging Face.

this model is referred to as the word rate model
in previous study, this study extends the word rate
model to a token rate model since not all language
models treat words as tokens.

3.6 Beam Search Decoder
Evaluating all possible word sequences is compu-
tationally impractical, so the decoders use a beam
search algorithm to approximate the most likely
sequence.

When a new token is detected by the token rate
model, the language model generates candidate
continuation words for each beam. The encoding
model is then used to estimate the predicted brain
state for all candidates. The likelihood of a can-
didate word sequence given the observed brain re-
sponse is calculated using a multivariate Gaussian
distribution, and the most likely word sequence is
kept in the beam.

3.7 Evaluation Method
To evaluate how well the decoders reconstruct sen-
tences from brain activity, we measure the similar-
ity between the decoder-generated sentences and
the actual stimuli the participants heard. Previous
study used metrics such as word error rate (WER),
BLEU, METEOR, and BERTScore (Zhang et al.,
2020) for evaluation. However, considering that
the language model used in previous study was
fine-tuned on the same corpus used for testing
and had vocabularies closely matching the ac-
tual stimuli, it is more challenging for the three
new models, which were trained on entirely dif-
ferent corpora, to perfectly match the decoded
words with the actual stimuli. As WER, BLEU,
and METEOR are low-level metrics based on
word matching, they proved less meaningful for
the three new models (see Figure A5). There-
fore, we focus on BERTScore, a higher-level met-
ric that evaluates the semantic similarity between

the generated and reference texts. We calculate
BERTScore in the same manner as described in
previous study, using inverse document frequency
(IDF) weights derived from the training dataset
and computed the recall score. In order to provide
a more accurate evaluation, this study adopt the
750M DeBERTa (He et al., 2021) xlarge model
which has been reported by the BERTScore au-
thors to achieve the best performance, while pre-
vious study used the 355M RoBERTa (Liu et al.,
2019) large model to calculate BERTScore.

In addition to BERTScore, this study incor-
porates sentence similarity evaluation using an
embedding model. Although we have not di-
rectly compared accuracy with the model used
for BERTScore, LLM-based embedding models
have become widely used in tasks such as clus-
tering, search, and retrieval-augmented generation
(RAG) (Lewis et al., 2021) in recent years (Lee
et al., 2024). We use OpenAI’s embedding model3

to extract embeddings for each sentence, and the
similarity between the actual stimulus and the de-
coded sentence is assessed by calculating the Pear-
son correlation coefficient between their embed-
dings.

Sentence similarity is evaluated in terms of both
window similarity and story similarity. Following
previous research, window similarity is calculated
based on word sequences within a 20-second win-
dow, while story similarity is calculated by averag-
ing the window similarities.

4 Experiments

4.1 Performance of Encoding Model

Figure 2 shows the performance of encoding mod-
els built for three participants using different lan-
guage models, evaluated with Pearson correlation

3text-embedding-3-small
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on the test dataset. For each participant, the av-
erage correlation between the predicted and ob-
served test brain data was calculated across corti-
cal voxels that met the false discovery rate (FDR)
threshold (q < 0.05). The gray bars represent
the average values across all participants (n =
3). Encoding models constructed with Llama3
and OPT outperformed those built with GPT mod-
els in their highest-performing layers. This re-
sult aligned with previous studies showing that
larger language models tend to achieve better accu-
racy in predicting BOLD signals (Antonello et al.,
2024). Additionally, GPT and OPT models were
reported to peak in deeper layers, while Llama
family model showed peak performance in shal-
lower layers, consistent with prior findings (An-
tonello et al., 2024; Wang et al., 2024).

Figure 3 presents a cortical flat map showing
the accuracy of the encoding model for participant
S02 using the Fine-tuned GPT(q(FDR) < 0.05).
Results for other participants and language models
can be found in Figure A6. As observed in prior
work with the same dataset (LeBel et al., 2023), re-
gions like the parietal cortex, temporal cortex, and
prefrontal cortex showed high accuracy.

The encoding models used in the decoders were
chosen based on the layers that exhibited the high-
est prediction accuracy in an initial analysis with-
out test data. For Fine-tuned GPT, Layer 9 was
used; for Pre-trained GPT, Layer 10; for Llama3,
Layer 13; and for OPT, Layer 22.

4.2 Performance of Token Rate Model

The accuracies of the token rate model on the test
data, measured by Pearson correlation, are shown
in Table 2 (n = 3).

Model Pearson correlation
FT GPT 0.740±0.012
PT GPT 0.708±0.011
Llama3 0.722±0.009

OPT 0.729±0.008

Table 2: The Pearson correlation coefficients for the
token rate models of each language model.

4.3 Decoder Setting

In this study, we used top-p sampling as the can-
didate word generation strategy for the generative
model. Specifically, we used the probability mass

parameter Pmass, which was set to 0.9, to repre-
sent the cumulative probability of the candidate
words, and the relative probability threshold pa-
rameter Pratio, set to 0.1, to evaluate whether a
candidate word retains sufficient probability com-
pared to the most probable word. This approach
prioritized high-probability vocabulary while min-
imizing the loss of generation diversity.

Large language models typically include a spe-
cial token to indicate the beginning of a sentence.
However, to align with the settings of previous
studies, the sentences generated by the decoders
were set to begin with one of the following pro-
nouns: ‘He,’ ‘I,’ ‘It,’ ‘She,’ or ‘They,’ and decod-
ing was performed using beam search with k = 5.

The top 10,000 voxels with the highest accuracy
in cross-validation were used for each participant
to calculate the likelihood P(S|R) of each candi-
date word sequence S given the observed brain
state R.

4.4 Statistical Testing
We evaluated 300 sentences generated by the same
language models used for the decoders without us-
ing brain activity, in order to assess whether the
decoder-generated sentences scored significantly
higher. Null distributions were established by cal-
culating the similarity between each of the 300
generated sentence and the actual sentences. We
then conducted a hypothesis test under the null hy-
pothesis that the decoder cannot reconstruct sen-
tences reflecting brain activity. The p-value was
calculated as the proportion of the 300 sentences
that had a score equal to or higher than those gen-
erated by the decoders, with multiple comparisons
corrected using FDR.

4.5 Decoding Results
Figure 4a illustrates the results for story similar-
ity, demonstrating whether the entire decoded sen-
tence is significantly similar to the actual stimu-
lus sentence. The null distribution, depicted as
Chance, is composed of sentences generated by
each language model without brain data and thus
varies across models. For all language models and
participants, the reconstructed sentences were sig-
nificantly more similar to the actual stimuli than
chance level (q(FDR) < 0.05). Figure 4b illus-
trates the results for window similarity, demon-
strating whether the decoded sentence at each time
point is significantly similar to the actual stimu-
lus sentence (results for other participants are pro-
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Figure 3: The encoding model accuracy mapped onto
the cortical surface for a single participant (q(FDR) <
0.05).

vided in Figure A7). BERTScore analysis of win-
dow similarity revealed that Fine-tuned GPT ex-
hibited significant similarity at most time points
(94%), whereas the other three models showed
significant similarity at only 28-44% of the time
points. Evaluations of window similarity using
the embedding model showed significant scores
at most time points for all language models (58-
82%).

The actual sentences heard by the participants
and the corresponding parts generated by each de-
coder are shown in Table 3 (see more in Table
A5-A8). Decoders based on larger models, like
Llama3 and OPT, produced more “rich” sentences,
with distinctions between uppercase and lower-
case letters and the inclusion of symbols. How-
ever, for evaluation, the text was standardized to
match the dataset’s notation, with all text con-
verted to lowercase and punctuation (except apos-
trophes) removed. For all language models, we
observed that the highlighted portions of the re-
constructed sentences contained word sequences
that closely resembled the meaning of the actual

stimuli. For instance, in Example 1, the word light
was matched with terms such as candle and screen
was brighter, and a scene involving multiple peo-
ple conversing was also reconstructed. In Exam-
ple 2, for a stimulus sentence containing words
like car and road, the decoders reconstructed sen-
tences with terms such as car, road and drive
which also suggests the concept of a vehicle.

5 Discussion

5.1 BERTScore vs. Embedding score

When examining the BERTScore for both story
similarity and window similarity, we observed that
the decoder using the Fine-tuned GPT yielded sig-
nificantly higher scores than the decoder scores
based on the other three language models (Figure
4a, b). The null distribution generated without us-
ing brain activity for Fine-tuned GPT, also yielded
higher scores than the scores for the other decoder
(Figure 4a), suggesting that the sentences gener-
ated by Fine-tuned GPT tended to be more simi-
lar to the actual stimuli compared to those gener-
ated by the other language models. We hypoth-
esize that this is attributable to two factors: (1)
the inclusion of a dataset in the training of Fine-
tuned GPT that closely resembles the actual stim-
uli (though not used in the fMRI experiment), and
(2) the relatively limited vocabulary size of Fine-
tuned GPT compared to the other language mod-
els, which facilitates the frequent appearance of
words and phrases from the actural stimuli in the
generated sentences. These result in higher scores
for both the decoded sentences and the null distri-
bution in the Fine-tuned GPT.

In the evaluation using the embedding model,
while there was no change in the rankings, the dif-
ferences across the language models are smaller
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Figure 4: Score of sentence reconstruction by the decoders. (a) Story similarity, representing the overall similarity
of reconstructed sentences. Box plots indicate the null distribution, and stars denote significantly higher scores
(q(FDR) < 0.05). (b) Window similarity, representing the similarity within a 20-second window for an single
participant. Lines above the graph indicate time points where each language model achieved significantly higher
scores (q(FDR) < 0.05).

Example 1 Example 2

Actual in that little crack of light and i hear the man and he says where
were you and she says never mind i’m back and he says you alright

the roads are getting wider and wider and there’s more cars and i
see um lots of stores you know laundromats and

FT GPT the windshield a minute later and the guy said to me are you okay
and i replied well i’m fine and he says ok

little trail and then the main road and the trees and there are houses
and some kind of town hall and a gas station

PT GPT candle in the foyer burning bright is it time to leave yet no i’ll be
back soon

i’ll rent a car and drive my first step is to find a car rental agency a
small town a bank and

Llama3 my phone’s screen was brighter than the sun it’s time to sleep i’ll
see you soon okay i love you

as we drive i explain what we’ll do when we arrive the warehouse is
an old military surplus store now a gun shop

OPT dozen different calls how long are you here i have to go i’m sorry i’ll
see

i drove i drove to the only place i knew of a diner a greasy spoon a
diner in a strip

Table 3: The actual stimulus sentences and the sentences reconstructed by the decoders of each language model at
two different time points for a single participant. Parts with similar expressions are highlighted in bold.

than those observed with BERTScore for both
story similarity and window similarity. Even with
BERTScore, a method that compares the hidden
states of models and measures the semantic sim-
ilarity between tokens in two sentences, we be-
lieve that the high scores are likely observed due
to the presence of identical words, especially con-
sidering that DeBERTa XL, the model used to
calculate the scores, is not a “large” model. On
the other hand, the evaluation using the embed-
ding model is considered to measure similarities in
higher-level semantic representations rather than
at the word/token level. In this evaluation, all lan-
guage models demonstrated accuracy surpassing
the null distribution of Fine-tuned GPT. It can be
concluded that all language models were able to
reconstruct sentences that were significantly sim-
ilar to those the participants might have heard or
imagined.

5.2 Factors Underlying Variations in Scores

When comparing Pre-trained GPT with two larger
models (Llama3 and OPT), despite the higher ac-
curacy of the encoding models in the larger mod-
els (Figure 2), indicating better predictions of
brain states, the decoder based on Pre-trained GPT
achieves slightly higher accuracy (Figure 4a). We
hypothesize that this discrepancy is attributable
to differences in the training datasets used for
each model. Larger models typically require vast
amounts of training data, which often includes
datasets that differ significantly from the autobi-
ographical stories used as actual stimuli. In con-
trast, Pre-trained GPT was trained on story-like
data, making it more likely to generate sentences
similar to the actual stimuli. The null distribution
of Pre-trained GPT being positioned higher than
that of the larger language models further supports
this assumption.
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It is important to note that while a larger lan-
guage model may improve the accuracy of brain
state estimation, it does not necessarily guaran-
tee to more precise reconstructions of the brain’s
representations. In scenarios like the this study,
where the stimulus dataset applied to the decoder
is already well-defined, using a language model
capable of generating outputs similar to the stimu-
lus dataset allows for more precise reconstructions.
On the other hand, when the stimulus dataset is not
clearly defined in the fMRI experience, employing
a language model with a larger vocabulary or one
trained on diverse datasets may be crucial, as it al-
lows for the generation of a wider array of possible
outputs.

6 Conclusion

In this study, we examined and expanded upon
Tang et al.’s research, which proposed the use of
language models for brain decoding. Specifically,
in addition to the Fine-tuned GPT model used
in previous study, we constructed decoders using
three additional language models, clarified the ac-
curacy of the encoding models and the token rate
models used in the decoders, and compared their
decoding performance.

Regardless of the language model used, we con-
firmed that the decoders could significantly recon-
struct sentences similar to the actual stimuli pre-
sented to participants. Although larger models like
Llama3-8B and OPT-6.7B demonstrated superior
performance in predicting brain activity, we found
that the GPT (120M) models achieved higher de-
coding scores. We hypothesize that this result is
attributable, at least, to the training dataset of the
GPT models being more similar to the actual stim-
ulus sentences.

Moreover, this study added a similarity evalu-
ation metric using an embedding model by com-
puting higher-level semantic similarities between
sentences, demonstrating that all language models
successfully reconstructed sentences with signifi-
cantly high scores at most time points.

While this study focused solely on evaluating
the similarity between the actual stimulus sen-
tences and the decoded sentences, such similarity
does not necessarily guarantee an accurate reflec-
tion of brain status. Unlike this study, when the
stimulus dataset in the fMRI data is not explicitly
known, using language models trained on more di-
verse datasets could potentially result in a better

reconstruction of brain states.

7 Limitation

In this study, we examined whether decoders
reported in previous research function similarly
across different language models and compared
the decoding accuracy between them. Although
this decoder’s main objective is to reconstruct sen-
tences that participants are likely hearing or imag-
ining, the sentences participants are hearing are
clearly defined in the experiment while the sen-
tences they may be imagining remain unknown.
We confirmed the decoder’s accuracy by assess-
ing the similarity to the sentences the partici-
pants are hearing, but if participants are imagin-
ing sentences that differ from the given stimuli
(e.g., based on personal experiences or different
contexts), a decoder closely matching the stimu-
lus sentences may not necessarily be ideal. To
evaluate the similarity with the sentences partic-
ipants are imagining, relying solely on similar-
ity measures between the actual and decoded sen-
tences would be insufficient, and additional evalu-
ations, such as comparing the similarity between
predicted brain responses from the decoded sen-
tences and actual brain responses, would likely be
required.

This study also supported the differences in de-
coder performance due to variations in the training
dataset. However, identifying the differences in
performance based on model size remains a chal-
lenge for future work.

Finally, while we confirmed the decoder’s effec-
tiveness by applying it to data from the same par-
ticipants used for training, the performance of the
decoder across different participants remains un-
verified.

Acknowledgments

This study was supported by JSPS KAKENHI
(23K18489).

References
Richard Antonello, Aditya Vaidya, and Alexander G.

Huth. 2024. Scaling laws for language encoding
models in fmri. Preprint, arXiv:2305.11863.

Charlotte Caucheteux, Alexandre Gramfort, and Jean-
Rémi King. 2021. Gpt-2’s activations predict the de-
gree of semantic comprehension in the human brain.
bioRxiv.

60



Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. Preprint, arXiv:1810.04805.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-
enhanced bert with disentangled attention. Preprint,
arXiv:2006.03654.

Amanda LeBel, Lauren Wagner, Shailee Jain, Aneesh
Adhikari-Desai, Bhavin Gupta, Allyson Morgenthal,
Jerry Tang, Lixiang Xu, and Alexander G. Huth.
2023. A natural language fmri dataset for voxelwise
encoding models. Scientific Data, 10(1):555.

Amanda LeBel, Lauren Wagner, Shailee Jain, Aneesh
Adhikari-Desai, Bhavin Gupta, Allyson Morgenthal,
Jerry Tang, Lixiang Xu, and Alexander G. Huth.
2024. "an fmri dataset during a passive natural lan-
guage listening task".

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan
Raiman, Mohammad Shoeybi, Bryan Catanzaro,
and Wei Ping. 2024. Nv-embed: Improved tech-
niques for training llms as generalist embedding
models. Preprint, arXiv:2405.17428.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2021.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. Preprint, arXiv:2005.11401.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Diego Lopez-Bernal, David Balderas, Pedro Ponce,
and Arturo Molina. 2022. A state-of-the-art review
of eeg-based imagined speech decoding. Frontiers
in Human Neuroscience, 16:867281.

Sean L. Metzger, Jessie R. Liu, David A. Moses,
Maximilian E. Dougherty, Margaret P. Seaton,
Kaylo T. Littlejohn, Josh Chartier, Gopala K. Anu-
manchipalli, Adelyn Tu-Chan, Karunesh Ganguly,
and Edward F. Chang. 2022. Generalizable spelling
using a speech neuroprosthesis in an individual with
severe limb and vocal paralysis. Nature Communi-
cations, 13:6510.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. Preprint, arXiv:1310.4546.

Yuko Nakagi, Takuya Matsuyama, Naoko Koide-
Majima, Hiroto Q. Yamaguchi, Rieko Kubo, Shinji
Nishimoto, and Yu Takagi. 2024. Unveiling multi-
level and multi-modal semantic representations in
the human brain using large language models. In
Proceedings of the 2024 Conference on Empirical

Methods in Natural Language Processing, pages
20313–20338, Miami, Florida, USA. Association
for Computational Linguistics.

Thomas Naselaris, Kendrick N. Kay, Shinji Nishimoto,
and Jack L. Gallant. 2011. Encoding and decoding
in fmri. NeuroImage, 56(2):400–410.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018a. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2018b. Lan-
guage models are unsupervised multitask learners.

Martin Schrimpf, Idan Asher Blank, Greta Tuckute, Ca-
rina Kauf, Eghbal A. Hosseini, Nancy Kanwisher,
Joshua B. Tenenbaum, and Evelina Fedorenko. 2021.
The neural architecture of language: Integrative
modeling converges on predictive processing. Pro-
ceedings of the National Academy of Sciences,
118(45):e2105646118.

Jerry Tang, Amanda LeBel, Shailee Jain, and Alexan-
der G. Huth. 2023. Semantic reconstruction of con-
tinuous language from non-invasive brain record-
ings. Nature Neuroscience, 26(5):858–866.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin,
Edouard Grave, and Guillaume Lample. 2023.
Llama: Open and efficient foundation language mod-
els. Preprint, arXiv:2302.13971.

Yuejiao Wang, Xianmin Gong, Lingwei Meng, Xixin
Wu, and Helen Meng. 2024. Large language
model-based fmri encoding of language functions
for subjects with neurocognitive disorder. Preprint,
arXiv:2407.10376.

Francis R. Willett, Erin M. Kunz, Chaofei Fan, Don-
ald T. Avansino, Guy H. Wilson, Eun Young
Choi, Foram Kamdar, Matthew F. Glasser, Leigh R.
Hochberg, Shaul Druckmann, Krishna V. Shenoy,
and Jaimie M. Henderson. 2023. A high-
performance speech neuroprosthesis. Nature,
620(7976):1031–1036.

Tianyi Zhang, Varsha Kishore*, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

61



A Appendix

A.1 Language Models On Hugging Face

The Hugging Face model IDs used are listed in
Table 4.

Model ID
GPT openai-community/openai-gpt

Llama3 meta-llama/Meta-Llama-3-8B
OPT facebook/opt-6.7b

Table 4: The IDs of the Hugging Face models used.

A.2 Other Similarity Evaluation Metrics

As discussed in Section 3.7, the previous study
has evaluated performance using metrics such as
WER, BLEU-1, and METEOR. In our experi-
mental setting, summarized in Figure 5, only the
Fine-tuned GPT decoder, optimized for generat-
ing sentences closely resembling the actual stim-
uli, achieved statistically significant scores across
all metrics. It consistently outperformed the other
three language models, showing a much higher de-
gree of word-level similarity. The lower scores ob-
served for the other models suggest that generating
identical words poses a greater challenge for them.

A.3 Performance of Encoding Model

Figure 6 presents the results of the encoding mod-
els constructed for each subject and each language
model. Across all language models, higher accu-
racies were consistently observed in regions such
as the parietal cortex, temporal cortex, and pre-
frontal cortex, with no discernible differences be-
tween the language models.

A.4 Window Similarity Between Actual and
Reconstructed Sentences

The window similarity between the stimulus sen-
tences heard by the participants and those re-
constructed by the decoder was computed using
the procedure outlined in Section 3.7. Figure 7
presents the results for participants not included in
the main text. As detailed in Section 5.1, the Fine-
tuned GPT exhibited significantly higher scores in
the BERTScore evaluation. On the other hand,
the differences in performance were not as pro-
nounced in the evaluation using the embedding
model.

A.5 Decoder predictions for a perceived story
The reconstructed sentences produced by each de-
coder are presented in Table 5-8. Line breaks were
removed during preprocessing to improve read-
ability.
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Actual S01 S02 S03

she digs back in the front
again deep deep and she
pulls out a pack of matches
that had been laundered at
least once ukgh we open

got down to my underwear
and pulled it out of his pants
to find a huge pile of cash
that was probably on the
floor he

had to go back to the apart-
ment or even look for any-
thing i was homeless in a re-
ally nice area so i had some

pulled the top of the bag
aside and found a large
amount of weed that was
probably half a pack the
guy had

it up and there is one match
inside ok oh my god this
takes on it’s like nasa now
we got to like oh how are
we gonna do it ok and we
we hunker down

took it all and said i’m
so sorry about this i don’t
think anyone can help you
now it’s all done now so it’s
really good to be

money saved up and had
enough for a few drinks to
take the edge off so i de-
cided to just sit in the car
with my feet on the

to get some and i was like
ok we need some you know
how you want to go with
the flow so we did this thing
where you put your

we crouch on the ground
and where’s the wind com-
ing from we’re stopping i
take out my cigarettes let’s
get the cigarettes ready oh
my brand she says not sur-
prising and

able to see the light on the
way out my mom says ok
let me go grab the rest of the
food i am pretty sure this

seat and the engine running
i took my hand out and said
you can help me with the
gas my dad was right there
at that point

feet up and then you lean
over to get your balance and
the guy says can you grab
your seat belt i got you my
friend and he does this i
take

we both have our cigarettes
at the ready she strikes once
nothing she strikes again
yes fire puff inhale mm
sweet kiss of that cigarette

is my mother so i do i start
eating and it is delicious it
tastes like heaven i feel so
relaxed and happy

so we put it in and it blew
up with a little pop and a
puff of smoke in it and the
woman

it and we start to roll he
pulls it tight and the ball
explodes with a loud explo-
sion of blood and

and we sit there and we’re
loving the nicotine and we
both need this right now
i can tell the night’s been
tough immediately we start
to reminisce

as we sit and drink we have
the perfect time to be to-
gether as a family i remem-
ber this when i was about
we had been married for

got on her hands and knees
and tried to get my friends
to do it too because it was
such a huge problem we all
stood around for

gore and i feel this over-
whelming need to cry for
my family that i am in such
pain over i think the last
months of my life

about our thirty second rela-
tionship i didn’t think that
was gonna happen me nei-
ther oh man that was close
oh i’m so lucky i saw you
yeah then she

about six months and the
day i asked him why he
said you know what you did
right and i didn’t and then i

about minutes thinking how
stupid this was we didn’t
see a damn thing i said hey
guys get over here you two
and i heard

was spent being afraid to
ask what happened to me to
make you hate me and what
have you my friend and i
were

surprises me by saying
what was the fight about
and i say wha what are
they all about and she said
i know what you mean she
said was it a bad one and
and i said

got an email from her ask-
ing me if i knew the guy
that did this i replied no i
did not know him i don’t
think you

a few of us say to each other
are you sure i said some-
thing like you don’t know i
think he meant you did you
see his

talking about when he told
me what was happening i
said what did you mean by
that he replied oh nothing
really i don’t remember he
was

Table 5: The reconstructed sentences by the Fine-tuned GPT decoder.
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Actual S01 S02 S03

she digs back in the front
again deep deep and she
pulls out a pack of matches
that had been laundered at
least once ukgh we open

i put it in a small envelope
and sealed it with a plas-
tic wrapper, hoping the lit-
tle bit of gold was still in
there.

last time i went back to
the museum, it was full
of creepy old people and
weird stuff, but i got my

he reached back and found
the nearest box. it was
full of empty bottles, which
meant the bottle would have
to

it up and there is one match
inside ok oh my god this
takes on it’s like nasa now
we got to like oh how are
we gonna do it ok and we
we hunker down

he closed it and went on. "i
don’t know how it is that
you can walk so slowly, but
it’s amazing. i could never

own place, so i’ve had a lit-
tle extra to go around, so
i’m just trying to keep my
balance, "he replied, sitting
up and

be filled. i grabbed two.
"okay, i’ll drink my fill of
the whole thing, but i’m go-
ing to take my chances." i
leaned

we crouch on the ground
and where’s the wind com-
ing from we’re stopping i
take out my cigarettes let’s
get the cigarettes ready oh
my brand she says not sur-
prising and

walk so slowly, i have to
carry my bag and the wa-
ter bottle with me, but i will
take the first water bottle, as
i will

adjusting the sleeping bag,
then reaching for the fire
starter. "you could have
brought your own lighter,"
she said to the room at large.
she needed

over the bar to get a shot,
and she held my hand for
me to get her another. i got
the shot and the bartender
asked if she was a

we both have our cigarettes
at the ready she strikes once
nothing she strikes again
yes fire puff inhale mm
sweet kiss of that cigarette

be taking the other, so i
give it a shake and it pops
open, water splashing out in
a cloud around me.

the flame to go out, and
it did. she extinguished it
with a few puffs of smoke
from her pipe and held the

fan of my song, so she took
the shot and shot it in the
mouth and let the alcohol
slide down the throat,

and we sit there and we’re
loving the nicotine and we
both need this right now
i can tell the night’s been
tough immediately we start
to reminisce

i sit on the ground and wait,
waiting to be able to see
what i’m up against. the
world seems to have gone
on for a

pipe in her mouth as she
smoked, waiting for me to
join her. i was glad to have
a cigarette after the long
day. i found myself

letting it settle in and relax
me, relax me until the alco-
hol took over and i was feel-
ing everything i’d been feel-
ing since i walked into his
office the morning

about our thirty second rela-
tionship i didn’t think that
was gonna happen me nei-
ther oh man that was close
oh i’m so lucky i saw you
yeah then she

hundred years without me
being there to tell you that
you have to stop blaming
yourself, you know that,
right ?" i turned

wondering how much
longer i could last out here.
it was like a war zone here.
"where are you, son ?"

after our little "break-in". i
couldn’t have been happier
for him and his friends to
see me. he told me to come
to

urprises me by saying what
was the fight about and i say
wha what are they all about
and she said i know what
you mean she said was it a
bad one and and i said

to see if she was talking
about her friend. "who ?" "i
didn’t ask you who it was, i
asked you if you

a man asks me. "don’t you
think the answer is obvious
?" "what is obvious is that
he didn’t come home

his house when he got
home. i asked him what
happened, he said it wasn’t
you who did it, he said it
wasn’t you and

Table 6: The reconstructed sentences by the Pre-tuned GPT decoder.
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Actual S01 S02 S03

she digs back in the front
again deep deep and she
pulls out a pack of matches
that had been laundered at
least once ukgh we open

went through the bag and
found a plastic bag inside
it with a few packets of in-
stant noodles and biscuits.
They were probably thrown
away,

back to see if the tree grew
up and turned into a fairy
tale castle or something like
that, but the house just

it wide and reached in, find-
ing a plastic bag that was
almost certainly filled with
cocaine. He’d have to throw

it up and there is one match
inside ok oh my god this
takes on it’s like nasa now
we got to like oh how are
we gonna do it ok and we
we hunker down

and I’m glad. I hate when
people try to be clever. This
is a game. Let’s all play. It’s
not about getting

got a few coats of paint, so
I’m going to take my time
with this and let it dry. So I
got my 6š ladder and

it away. Right. Okay. We
can’t let that happen. Let’s
do some brainstorming on
the fly and try to get our
ducks in a row

we crouch on the ground
and where’s the wind com-
ing from we’re stopping i
take out my cigarettes let’s
get the cigarettes ready oh
my brand she says not sur-
prising and

to the top of the ladder
and then pushing the ladder
away and telling the kids
you’ll find another ladder.
(Yes, I was the parent

climbed up. I placed the
nozzle of the hose just right
and was ready to spray. My
wife and daughter had no
idea I had this set up

so that we can get the next
three out the door. We need
to get a hold of our ducks.
He wasn’t a fan of the new
marketing

we both have our cigarettes
at the ready she strikes once
nothing she strikes again
yes fire puff inhale mm
sweet kiss of that cigarette

with the ladder.) So we
all climbed up and down
and up and down until the
tree was stripped bare. My
mother and

and when I hit the button, it
sprayed out with a satisfy-
ing hiss and a puff of steam.
I grabbed the towel

term. He’d tried it a
few times, and the word
made his tongue feel fat and
heavy, and he swallowed

and we sit there and we’re
loving the nicotine and we
both need this right now
i can tell the night’s been
tough immediately we start
to reminisce

I would stand and watch in
silence, holding hands. I
knew we were in a good
place when my mother
would go into a trance of
sorts and

and held it out for her to dry
her face. I wanted her to do
this for me. The rain had
stopped, and we had a little

it down and let it stay
there, warm and sweet
and making him feel bet-
ter. The whole day seemed
to change for him when he
took a break from the pres-
sure

about our thirty second rela-
tionship i didn’t think that
was gonna happen me nei-
ther oh man that was close
oh i’m so lucky i saw you
yeah then she

begin speaking to my father,
saying things like you will
do this and you will do that.
And then I got

more daylight left. I knew
I’d never see this place
again. It was a shame. Hey,
look at that! I

of the exam to talk about
the weather with us. We all
felt good for him and happy
that he’d come to talk to us.

urprises me by saying what
was the fight about and i say
wha what are they all about
and she said i know what
you mean she said was it a
bad one and and i said

a text from someone who
knew that I was a Christian
and they said, "I’m not sure
if you know this but God
doesn’t hate you

heard a woman exclaim.
What do you mean, not all’?
Of course he was a woman.
I saw his face

Where are you going to
school now? Why do you
ask? Did I do something
wrong? Did I? You look dif-
ferent

Table 7: The reconstructed sentences by the Llama3 decoder.
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Actual S01 S02 S03

she digs back in the front
again deep deep and she
pulls out a pack of matches
that had been laundered at
least once ukgh we open

I pulled down the zipper
and found a pocket of tis-
sue paper and a couple of
loose pieces of gum. The
gum was already

like and to imagine them
living and working in this
beautiful, richly-wooded
country. I had a little
money,

it over and found a little flap
that was easily ripped open
with a sharp knife. The plas-
tic was already broken,

it up and there is one match
inside ok oh my god this
takes on it’s like nasa now
we got to like oh how are
we gonna do it ok and we
we hunker down

gone. "Oh, man, this is
crazy. It’s not funny, but it’s
not not funny. It’s like when

so I bought a few bottles
of wine. It was fun to mix
them and then we all had a
drink. I just sat on the floor
with

so I used a little glue and
it worked! I will definitely
use this idea! I was so
proud of my creation, I took
it outside and held it

we crouch on the ground
and where’s the wind com-
ing from we’re stopping i
take out my cigarettes let’s
get the cigarettes ready oh
my brand she says not sur-
prising and

a clown is running through
the audience and he acci-
dentally slips on the banana
peel. I’ll take the banana
peel. Oh, great.

my legs dangling and had
my friend hold my drink for
me. You can always use
your own cup! I don’t get
this thing that you have

in the air to get the best pic-
ture. I then got my son to
help me with the light me-
ter. He was not impressed.
My daughter’s

we both have our cigarettes
at the ready she strikes once
nothing she strikes again
yes fire puff inhale mm
sweet kiss of that cigarette

So I’ll just slip and slide
and then slide and slip and
slide until I’m a quivering
mass of ice.

to wait for the bar to get
empty. Just pour a shot into
the cup, put a straw in, and
put

light meter is much better.
She took one shot, set it to
100 and let it sit on my face
for

and we sit there and we’re
loving the nicotine and we
both need this right now
i can tell the night’s been
tough immediately we start
to reminisce

I sit down and watch the
boys play, my hands trem-
bling. I know what I saw. A
long time ago I wrote a se-
ries

the cup in front of her, and
let her drink. "This is all I
could spare. I had no more
than two coins left after

a bit. The warmth and mois-
ture help me wake up and
get my day going. I find
that when I am in the office,
the morning routine is often
interrupted

about our thirty second rela-
tionship i didn’t think that
was gonna happen me nei-
ther oh man that was close
oh i’m so lucky i saw you
yeah then she

of poems, beginning with
the line, I will never know
what you do not know. But
this

I got home." "You can’t
leave now! There are
so many people here!" I
shouted back at him,

by people wanting to chat
about the previous night. I
love it when people are
happy to see you, and it’s
just nice to see you.

urprises me by saying what
was the fight about and i say
wha what are they all about
and she said i know what
you mean she said was it a
bad one and and i said

time, when the woman
asked me if I was gay, I said
"I don’t have to answer that,
but no I’m not gay".

and I heard someone say,
"Are you serious? Why is
that a question? She’s obvi-
ously a lesbian. Why else

"When I heard you were in
town, I said, ’Why, she’s
not the one, is she?’ ’No,
she

Table 8: The reconstructed sentences by the OPT decoder.
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