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Abstract

While pre-trained language models have made
significant progress in different classification
tasks, little attention has been given to the re-
liability of their confidence scores. Calibra-
tion, how well model confidence aligns with
actual accuracy, is essential for real-world ap-
plications where decisions rely on probabilistic
outputs. This study addresses this gap in Ara-
bic dialect identification by assessing the cal-
ibration of eight pre-trained language models,
ensuring their predictions are not only accurate
but also reliable for practical applications. We
analyze two datasets: one with over 1 million
text samples and the Nuanced Arabic Dialect
Identification dataset(NADI-2023). Using Ex-
pected Calibration Error (ECE) as a metric, we
reveal substantial variation in model calibration
across dialects in both datasets, showing that
prediction confidence can vary significantly de-
pending on regional data. This research has
implications for improving the reliability of
Arabic dialect models in applications like senti-
ment analysis and social media monitoring.

1 Introduction

Arabic pre-trained language models (PLMs) have
advanced significantly in dialect identification and
classification, with most research focusing on im-
proving accuracy and dataset development. How-
ever, these efforts often overlook calibration—how
well a model’s confidence scores align with the
true probability of correct predictions(Nixon et al.,
2019). Calibration is crucial for Arabic dialect ap-
plications, where nuanced regional variations in
language can lead to significant social and cultural
implications if predictions are unreliable. In real-
world applications like sentiment analysis, social
media monitoring, and policy-making, accurate yet
calibrated predictions are essential to support in-
formed decision-making.

This study addresses this gap by evaluating the
calibration of existing Arabic pre-trained models

on dialectal text. Using 1 million text samples au-
tomatically annotated and NADI-2023 datasets, we
conduct calibration analysis exclusively on cases
where all eight models unanimously agree on di-
alect labels, focusing on high-confidence predic-
tions. We employ metrics such as Expected Calibra-
tion Error (ECE) to measure the alignment between
model confidence and accuracy, assessing the trust-
worthiness of these models in dialect classification.

By focusing on calibration, this work goes be-
yond accuracy metrics to highlight the reliability of
model predictions. Calibration evaluation not only
aids in model selection for high-stakes applications
but also informs areas for improvement, ensuring
that Arabic dialect models are both accurate and
dependable in practice.

2 Related Work

2.1 Arabic Dialect Datasets

Dialectal Arabic (DA) encompasses the diverse spo-
ken forms of Arabic used across the Arab world,
differing significantly from Modern Standard Ara-
bic (MSA) in phonology, morphology, orthogra-
phy, and syntax(Bouamor et al., 2014). DA is
typically divided into regional groups, including
Egyptian, North African, Levantine, Gulf, and
Yemeni, with each containing sub-varieties like
Tunisian, Lebanese, and Saudi dialects(Zaghouani
and Charfi, 2018). Given DA’s prevalence in daily
communication, incorporating DA resources into
LLM training is crucial for creating models that un-
derstand and generate Arabic as it is spoken in real-
world contexts. The MADAR Twitter corpus, used
in the MADAR shared task on fine-grained Arabic
dialect identification, comprises 2,980 Twitter user
profiles from 21 countries, facilitating dialect iden-
tification in Twitter user profiles (Bouamor et al.,
2019). The Gumar corpus, a large-scale collec-
tion of Gulf Arabic, includes 1,236 forum novels
totaling around 112 million words, with manual
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document-level annotations for sub-dialect infor-
mation across the Gulf Cooperation Council coun-
tries: Bahrain, UAE, Kuwait, Saudi Arabia, Oman,
and Qatar (Khalifa et al., 2016). Nuanced Ara-
bic Dialect Identification (NADI) introduced dif-
ferent datasets for Arabic dialect identification in
different level such as country or city levels(Abdul-
Mageed et al., 2022, 2023a, 2024). Baimukan et al.
(2022) introduced the first unified three-level hier-
archical schema (region-country-city) for dialectal
Arabic classification. By mapping 29 datasets to
this schema, they enabled their aggregation and
demonstrated its effectiveness by building language
models for dialect identification.

2.2 Arabic Dialect Pre-trained Language
Models

The development of dialect-specific BERT-based
models for Arabic has emerged to address the lin-
guistic diversity across the Arab world, resulting in
several models specialized for individual dialects.
SudaBERT (Elgezouli et al., 2021), for instance, fo-
cused on Sudanese Arabic, outperforming Arabic-
BERT (Talafha et al., 2020) in sentiment analy-
sis (SA) for the Sudanese dialect, though Arabic-
BERT showed stronger performance in Modern
Standard Arabic (MSA) across both SA and named
entity recognition (NER). Similarly, AraRoBERTa
was designed for seven dialects (Saudi, Egyptian,
Kuwaiti, Omani, Lebanese, Jordanian, and Al-
gerian), employing RoBERTa architecture with
various supervision approaches (AlYami and Al-
Zaidy, 2022). AraRoBERTa performed particularly
well in Saudi and Egyptian dialects due to larger
dataset availability, while semi-supervised training
improved results for certain dialects like Egyptian
and Algerian.

For the Algerian dialect, DziriBERT was trained
on over a million tweets, excelling in SA, emo-
tion classification, and topic classification tasks,
with MARBERT following closely (Abdaoui et al.,
2021). Haddad et al. (2023) introduced Tun-
BERT, targeting Tunisian Arabic, performed best
in SA and dialect identification but was outper-
formed in reading comprehension by AraBERT
(Antoun et al., 2020) and GigaBERT (Safaya et al.,
2020). Moroccan Arabic, or Darija, has also been
addressed with models like MorrBERT (Mous-
saoui and El Younnoussi, 2023), DarijaBERT,
and Atlas-Chat (Shang et al., 2024). MorrBERT
and its RoBERTa-based counterpart MorRoBERTa
achieved high accuracy in SA and dialect identifi-

cation, with DarijaBERT variants showing strong
performance in dialect identification, SA, sarcasm
detection, and topic classification. Atlas-Chat, the
latest Moroccan Arabic model, achieved notable
results in sentiment analysis and translation.

In addition, AlcLAM, a model focusing on Ara-
bic dialects in general, excelled in dialect identifi-
cation and offensive language detection compared
to other models (Ahmed et al., 2024). SaudiB-
ERT (Qarah, 2024b) and EgyBERT (Qarah, 2024a),
specifically trained on Saudi and Egyptian dialects
respectively, showed strong performances across
various tasks such as sarcasm detection, gender
identification, and event detection, often surpassing
established models like AraBERT, CAMeLBERT
(Inoue et al., 2021), and MARBERT. This growing
body of dialect-specific models demonstrates the
significance of tailoring architectures and training
data to regional linguistic features, leading to en-
hanced performance in dialect-relevant NLP tasks
across the Arab world.

2.3 Calibration of Pre-trained Language
Models

Calibrating probabilistic predictive models is es-
sential for reliable prediction and decision-making
in AI. Naeini et al. (2015) introduced Bayesian Bin-
ning into Quantiles (BBQ), a non-parametric, com-
putationally efficient calibration method that post-
processes binary classification outputs, making it
compatible with various classifiers and demonstrat-
ing high accuracy in experiments on real and sim-
ulated datasets. Desai and Durrett (2020a) exam-
ined calibration in BERT and RoBERTa models for
tasks like natural language inference, paraphrase
detection, and commonsense reasoning, evaluating
both in-domain and out-of-domain settings to ac-
count for model uncertainty. Baan et al. (2022)
introduced an instance-level calibration based on
human uncertainty, validated through a ChaosNLI
dataset case study, which examines temperature
scaling under human judgment. Neural network
classification models often rely on maximum pre-
dicted probabilities as confidence scores, which
typically require post-processing calibration to im-
prove reliability. By transforming multi-class cali-
bration into a binary surrogate task, this approach
enhances calibration efficiency and significantly
improves results across various neural networks for
image and text classification (LeCoz et al., 2024).

Jiang et al. (2021) explored language model cal-
ibration by assessing how well models like T5,
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BART, and GPT-2 match predicted probabilities
to correctness likelihoods, finding them poorly cal-
ibrated on QA tasks. Calibration methods such as
fine-tuning and post-hoc adjustments showed im-
provement in confidence accuracy across diverse
datasets. Zhang et al. (2021) extended calibration
in QA by combining confidence scores with input
context and data augmentation, achieving 5-10%
accuracy gains on reading comprehension bench-
marks and opening calibration study in open re-
trieval settings, showing robust gains across tasks.
Yang et al. (2023) benchmarked multilingual Large
Language Model (LLM) calibration on QA tasks
across languages, covering encoder-only, encoder-
decoder, and decoder-only models (110M to 7B pa-
rameters) across high- and low-resource languages.
They found that decoder-only models, like LlaMa2,
benefit from in-context learning, and incorporating
cheaply translated samples improves calibration,
particularly for non-English languages.

For stance detection, Li and Caragea (2023) used
knowledge distillation with soft labels and iterative
teacher-student learning to enhance model perfor-
mance, implementing dynamic temperature scaling
to calibrate predictions, which improved stance de-
tection results on three datasets.

3 Methodology

3.1 Dataset

We use two types of annotated datasets: auto-
matically annotated data using eight Pre-trained
Language Models(PLMs), limited to samples with
unanimous dialect labels, and manually annotated
data by human annotators.

For the automatic annotations, we compile over
1 million text samples from multiple datasets. The
first source is the Arabic Dialect Identification
dataset1, with more than 360,000 labeled Arabic
sentences, built by integrating arabic_pos_dialect
2, IADD (Zahir, 2022)3, QADI (Abdelali et al.,
2020)4, and the MADAR corpus (Bouamor et al.,
2018)5. Additionally, we select over 500,000
tweets from AraSenCorpus, a collection of 4.5
million tweets in Modern Standard Arabic and di-
alects (Al-Laith et al., 2021), and over 200,000 sam-

1https://github.com/Lafifi-24/
arabic-dialect-identification

2https://huggingface.co/datasets/arabic_pos_
dialect

3https://github.com/JihadZa/IADD
4https://github.com/qcri/QADI
5https://sites.google.com/nyu.edu/madar/?pli=1

ples from a 5.5 million tweet corpus for emotion
and symptom classification (Al-Laith and Alenezi,
2021). As the collected tweets were crawled from
social media, the data are expected to be noisy and
should be cleaned up before performing any of the
NLP tasks to get better results. We apply text pre-
processing steps, including the removal of URLs,
hashtags, mentions, and duplicate tweets.

For manual annotations, we use the NADI 2023
dialect identification dataset (Abdul-Mageed et al.,
2023b), with PLMs predicting dialects across train-
ing and development sets, totaling 15,400 samples
across 14 dialects (1,100 samples per dialect).

3.2 Pre-trained Language Models

We use the following Pre-trained Language Models
(PLMs) to conduct the Arabic dialect prediction
experiments:

1. Arabic Dialect Identification Model6
(Model 1): The model is trained to accurately
identify spoken dialects in Arabic text. It
was trained using a combination of publicly
available datasets and fine-tuned on their own
dataset. With high accuracy in identifying
Arabic dialects, the model can be utilized in a
variety of applications.

2. CAMeLBERT-MSA DID MADAR Twitter-
5 Model 7 (Model 2): The model is a di-
alect identification (DID) model specifically
designed for Arabic (Inoue et al., 2021). It
was fine-tuned from the CAMeLBERT-MSA
model using the MADAR Twitter-5 dataset,
which includes 21 labels. This model is partic-
ularly useful for identifying different Arabic
dialects in social media texts.

3. CAMeLBERT-Mix DID NADI
Model8(Model 3): The model is a di-
alect identification (DID) model that was
built by fine-tuning the CAMeLBERT-Mix
model. For the fine-tuning, we used the NADI
Coountry-level dataset9, which includes 21
labels.

6https://huggingface.co/lafifi-24/arbert_
arabic_dialect_identification

7https://huggingface.co/CAMeL-Lab/
bert-base-arabic-camelbert-msa-did-madar-twitter5

8https://huggingface.co/CAMeL-Lab/
bert-base-arabic-camelbert-mix-did-nadi

9https://sites.google.com/view/
nadi-shared-task

https://github.com/Lafifi-24/arabic-dialect-identification
https://github.com/Lafifi-24/arabic-dialect-identification
https://huggingface.co/datasets/arabic_pos_dialect
https://huggingface.co/datasets/arabic_pos_dialect
https://github.com/JihadZa/IADD
https://github.com/qcri/QADI
https://sites.google.com/nyu.edu/madar/?pli=1
https://huggingface.co/lafifi-24/arbert_arabic_dialect_identification
https://huggingface.co/lafifi-24/arbert_arabic_dialect_identification
https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-msa-did-madar-twitter5
https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-msa-did-madar-twitter5
https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix-did-nadi
https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix-did-nadi
https://sites.google.com/view/nadi-shared-task
https://sites.google.com/view/nadi-shared-task
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4. ADI-NADI-202310 (Model 4): A BERT-
based model fine-tuned to perform single-
label Arabic Dialect Identification (Keleg and
Magdy, 2023).

5. Arabic-MARBERT-dialect-Identification-
City Model11 (Model 5): The model is a
dialect identification model that was built
by fine-tuning the MARBERT model. For
the fine-tuning, I used MADAR Corpus 26
dataset, which includes 26 labels(cities).

6. Bert base arabic camelbert MSA fine-
tunedArabic Dialect Identification12

(Model 6): The model was trained on QADI
dataset from (Abdelali et al., 2020).

7. CAMeLBERT-MSA DID NADI Model13

(Model 7): It is a dialect identification
(DID) model that was built by fine-tuning
the CAMeLBERT Modern Standard Arabic
(MSA) model14. For the fine-tuning, we used
the NADI Coountry-level dataset15, which in-
cludes 21 labels.

8. NADI-2024-baseline16 (Model 8): A BERT-
based model fine-tuned to perform single-
label Arabic Dialect Identification (ADI).

3.3 Dialect Selection

Table 1 displays the range of dialects encompassed
by each of the pre-trained language models (PLMs)
discussed. Some models offer predictions of Ara-
bic dialects at the city level, we have aligned these
cities with their respective countries for a more
comprehensive understanding. Since the number
of labels varies across models and some dialects
such as the Qatari dialect has no sample annotated
by all models, we have focused our analysis on the
common labels, selecting 14 out of 22 labels shared
among all models’ label sets.

10https://huggingface.co/AMR-KELEG/
ADI-NADI-2023

11https://huggingface.co/Ammar-alhaj-ali/
arabic-MARBERT-dialect-identification-city

12https://huggingface.co/Abdelrahman-Rezk/
bert-base-arabic-camelbert-msa-finetuned-Arabic_
Dialect_Identification_model_1

13https://huggingface.co/CAMeL-Lab/
bert-base-arabic-camelbert-msa-did-nadi

14https://huggingface.co/CAMeL-Lab/
bert-base-arabic-camelbert-msa/

15https://sites.google.com/view/
nadi-shared-task

16https://huggingface.co/AMR-KELEG/
NADI2024-baseline

4 Experiments and Results

4.1 Dialect Prediction Experiment

The process of dialect prediction with Hugging
Face models involves loading a pre-trained model
and tokenizer to numerically encode the input text,
enabling model processing. The model produces
logits, which are then converted into probabilities,
with the highest probability determining the sam-
ple’s predicted label. This approach efficiently sup-
ports tasks such as text classification and named
entity recognition, offering a standardized method
for leveraging pre-trained models in NLP.

After predicting dialects for each sample with all
8 selected models, we computed the majority label
separately for both the automatically and manually
annotated datasets. Figure 1 displays the count
of models agreeing on the same label, alongside
sample counts and frequencies for each dataset. In
the automatically annotated dataset, 127,646 sam-
ples had full agreement across all 8 models (around
8.5%), while only 9,852 samples (approximately
0.66%) received 8 different labels, indicating mini-
mal consensus. In the manually annotated dataset,
2,581 samples had unanimous agreement, repre-
senting around 4%, while only 10 samples (less
than 0.01%) received 8 different labels, further un-
derscoring the rarity of full disagreement.

Figure 2 provides a detailed view of the per-
centage of samples identified per dialect and the
number of models that concurred on each label for
both datasets. In the automatically annotated data,
models most frequently agreed on labels with 2
to 5 models in agreement, while in the manually
annotated dataset, model agreement levels were
generally higher, with 4 to 8 models showing more
consistent label matches. This discrepancy high-
lights the influence of annotation style on model
consensus, with the manually annotated dataset ex-
hibiting slightly higher overall agreement among
models.

For the calibration analysis, we focus on sam-
ples that received the same label from all models
(127,646 samples) from the automatically anno-
tated dataset, while we include all samples from the
manually annotated NADI-2013 dataset for model
calibration analysis.

4.2 Expected Calibration Error (ECE)

In this experiment, we use Expected Calibration
Error (ECE), a metric that measures how well the

https://huggingface.co/AMR-KELEG/ADI-NADI-2023
https://huggingface.co/AMR-KELEG/ADI-NADI-2023
https://huggingface.co/Ammar-alhaj-ali/arabic-MARBERT-dialect-identification-city
https://huggingface.co/Ammar-alhaj-ali/arabic-MARBERT-dialect-identification-city
https://huggingface.co/Abdelrahman-Rezk/bert-base-arabic-camelbert-msa-finetuned-Arabic_Dialect_Identification_model_1
https://huggingface.co/Abdelrahman-Rezk/bert-base-arabic-camelbert-msa-finetuned-Arabic_Dialect_Identification_model_1
https://huggingface.co/Abdelrahman-Rezk/bert-base-arabic-camelbert-msa-finetuned-Arabic_Dialect_Identification_model_1
https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-msa-did-nadi
https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-msa-did-nadi
https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-msa/
https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-msa/
https://sites.google.com/view/nadi-shared-task
https://sites.google.com/view/nadi-shared-task
https://huggingface.co/AMR-KELEG/NADI2024-baseline
https://huggingface.co/AMR-KELEG/NADI2024-baseline


72

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Is Included?

Algeria ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Bahrain ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗
Djibouti ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗
Egypt ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Iraq ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Jordan ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
KSA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Kuwait ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗
Lebanon ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Libya ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
MSA ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
Mauritania ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗
Morocco ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Oman ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Palestine ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Qatar ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Somalia ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗
Sudan ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Syria ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Tunisia ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
UAE ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗
Yemen ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Arabic Dialects included in our analysis.

Figure 1: Sample proportion by number of models
agreeing to assign the same dialect.

model’s predicted probabilities reflect the true ac-
curacy (Desai and Durrett, 2020b):

ECE =
K∑
k=1

|Bk|
n

|acc(Bk)− conf(Bk)|

where K = 10 is the number of bins (confidence
intervals), |Bk| is the number of samples in bin k,
acc(Bk) is the accuracy in bin k, and conf(Bk) is
the average confidence in bin k. The ECE value
reflects how well-calibrated a model’s confidence
estimates are, with lower ECE indicating better
calibration.

4.2.1 Automatically Annotated Data
ECE is used to assess the calibration quality of
eight Arabic pre-trained language models on dialec-
tal text by comparing model confidence with ac-
tual accuracy on a subset where all models agreed
on the same label. ECE is calculated by binning
predicted confidence scores, then measuring the
discrepancy between the average confidence and
accuracy within each bin. This error quantifies how
closely model confidence aligns with observed ac-
curacy, indicating whether models tend to over-
or under-predict. By focusing on samples with
unanimous agreement, the experiment aims to re-
veal calibration disparities among models that ex-
hibit high predictive consensus, offering insights
into their reliability when applied to Arabic dialect
classification. It is shown that both Model 1 & 6
achieved a relatively low ECE of 0.07, as shown
in Figure 3, indicating that both models are reason-
ably well-calibrated. In contrast, Model 4 achieves
high ECE of 0.44, indicating that the model is not
well-calibrated.

4.2.2 Manually Annotated Data
We use the same ECE formula described in the pre-
vious section. The results of the experiment reveal
significant variation in Expected Calibration Error
(ECE) across the models, indicating differing levels
of calibration quality. Model 4 exhibits the high-
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Figure 2: Sample proportion and number of models agreeing to assign the same dialect.

Figure 3: Expected Calibration Error (ECE) values for
each model on both datasets.

est ECE at 0.45, suggesting poor calibration and a
substantial gap between predicted probabilities and
actual outcomes. Similarly, Models 2 and 5 show
relatively high ECE values of 0.21 and 0.31, respec-
tively, also pointing to weaker calibration. In con-
trast, Models 6, 7, and 8 achieve notably low ECE
scores (0.02, 0.06, and 0.02), demonstrating better
alignment between predictions and actual labels,
indicating that these models are more reliably cali-
brated. Model 3 also shows moderate calibration
with an ECE of 0.08. Overall, the results highlight
the variance in calibration performance, with some
models showing potential for practical application
due to better-calibrated predictions, while others
require further adjustment to improve reliability.
Figure 4 shows the ECE values of each model on
the NADI dataset.

5 Result Analysis and Discussion

The calibration analysis across models and dialects
reveals distinct trends in model reliability on both

automatically and manually annotated datasets.
Models 1 and 8 demonstrate more consistent cal-
ibration across dialects and datasets, suggesting
they are better suited for varied dialectal data and
annotation styles. In contrast, Models 4 and 5 show
higher calibration errors, especially on manually
annotated data, indicating a greater sensitivity to
the complexities introduced by human annotations.
This difference underscores the potential need for
fine-tuning or recalibration when applying these
models to manually annotated datasets to enhance
their predictive confidence.

Additionally, the calibration differences across
dialects reveal that certain dialects, such as Pales-
tinian and Sudanese, are more challenging for the
models to interpret consistently, displaying higher
calibration errors. This pattern suggests that these
dialects might require additional data or targeted
adjustments to improve model alignment. Overall,
these findings emphasize the importance of consid-
ering both annotation type and dialect specificity
when evaluating model calibration, as these fac-
tors can significantly impact model reliability in
multilingual and multi-dialectal applications.

6 Limitation

This work has some notable limitations that could
impact the generalizability and comprehensiveness
of the findings. First, while the analysis provides
insights into the calibration of eight pre-trained
language models, it is constrained by the choice
and availability of these models. Each model has
been pre-trained on varying datasets, which may
lack consistent or comprehensive coverage of spe-
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Figure 4: Expected Calibration Error (ECE) Values for Each Dialect and Model.

cific Arabic dialects, thereby limiting our ability to
capture the full linguistic diversity within Arabic di-
alects. Consequently, the calibration results might
reflect biases inherent in the pre-training datasets
rather than purely dialectal features.

Second, the study relies solely on Expected
Calibration Error (ECE) as the calibration metric,
which, while informative, provides only a single
perspective on model calibration quality. ECE does
not capture all aspects of prediction reliability, such
as miscalibration at different confidence levels or
the potential impacts of class imbalance in dialect
distribution. Integrating additional calibration met-
rics, like Brier Score or Maximum Calibration Er-
ror (MCE), might provide a more comprehensive
evaluation of model performance across dialects.

Additionally, the study does not consider the
contextual or pragmatic nuances present in real-
world dialectal Arabic, as these models may not
account for complex language variations or code-
switching phenomena commonly seen in Arabic di-
alects. This limitation may impact the reliability of
model predictions when applied to more dynamic
or informal Arabic text data, such as social media
posts, which often contain non-standard dialectal
expressions.

Finally, the study focuses on calibration with-
out incorporating linguistic or sociolinguistic fac-
tors that could influence model performance across
dialects. Factors such as geographical proximity,
historical language influences, and sociolinguistic
prestige of certain dialects could affect model cal-
ibration in ways that ECE alone cannot capture.
Future research could benefit from a more inter-
disciplinary approach that considers these factors,

potentially enhancing model calibration for specific
dialectal groups.

7 Conclusion and Future Work

The ECE analysis demonstrates considerable vari-
ability in model calibration performance across
both automatically and manually annotated datasets
for Arabic dialect prediction. Models 1, 6, and 8 ex-
hibit relatively lower ECE scores, suggesting they
maintain more reliable calibration across different
dialects and annotation types. Conversely, Models
4 and 5 display notably higher calibration errors,
particularly with manually annotated data, which
highlights the impact of annotation style on cali-
bration outcomes. This variability suggests that
certain models are better suited to dialectal Arabic
tasks, though a one-size-fits-all approach may not
be feasible given the complexity of the data.

Since the data in the automatically annotated
dataset was randomly sampled without balancing
dialect distribution, future work can explicitly ad-
dress this by exploring techniques like resampling
or re-weighting to assess their impact on the reli-
ability of the findings. We also plan to improve
model calibration in Arabic dialect prediction with
focus on dialect-specific calibration techniques,
with a particular emphasis on dialects that exhibit
higher calibration errors, such as Palestinian and
Sudanese Arabic. Approaches such as fine-tuning
models with dialect-specific data or applying post-
hoc calibration methods may enhance model relia-
bility for these challenging dialects. Additionally,
investigating why certain models like Models 1, 6,
and 8 perform better could yield insights into ar-
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chitectural or pre-training factors that contribute to
calibration efficacy. Incorporating domain-specific
knowledge on linguistic features unique to each
dialect may further enhance calibration, especially
for dialects with distinct phonological or lexical
characteristics.
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