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Abstract

Recent efforts in natural language process-
ing (NLP) commonsense reasoning research
have led to the development of numerous new
datasets and benchmarks. However, these re-
sources have predominantly been limited to En-
glish, leaving a gap in evaluating commonsense
reasoning in other languages. In this paper, we
introduce the ArabicSense Benchmark, which
is designed to thoroughly evaluate the world-
knowledge commonsense reasoning abilities of
large language models (LLMs) in Arabic. This
benchmark includes three main tasks: first, it
tests whether a system can distinguish between
natural language statements that make sense
and those that do not; second, it requires a sys-
tem to identify the most crucial reason why
a nonsensical statement fails to make sense;
and third, it involves generating explanations
for why statements do not make sense. We
evaluate several Arabic BERT-based models
and causal LLMs on these tasks. Experimental
results demonstrate improvements after fine-
tuning on our dataset. For instance, AraBERT
v2 achieved an 87% F1 score on the second
task, while Gemma and Mistral-7b achieved
F1 scores of 95.5% and 94.8%, respectively.
For the generation task, LLaMA-3 achieved
the best performance with a BERTScore F1
of 77.3%, closely followed by Mistral-7b at
77.1%. All codes and the benchmark is pub-
licly available. ! 2 34 3
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1 Introduction

Commonsense reasoning (CSR) plays a critical role
in understanding natural language. It involves mak-
ing inferences based on commonsense knowledge,
which encompasses general facts about the phys-
ical world and human behavior that people intu-
itively understand during communication. This im-
plicit knowledge forms the backdrop for everyday
conversations. Both humans and natural language
processing (NLP) systems require CSR to compre-
hend the flow of daily events. Therefore, Com-
monsense reasoning remains a persistent challenge
in artificial intelligence (AI) and natural language
processing, in particular, evaluating and enhancing
the commonsense reasoning capabilities of large
language models (LLMs) is essential for advanc-
ing general natural language understanding (NLU)
systems (Davis and Marcus, 2015).

Despite recent progress in creating common-
sense reasoning benchmarks, most of them are
available only in English (Davis, 2023), leaving
a significant gap in resources for evaluating Ara-
bic pre-trained language models. For example, the
Arabic benchmark proposed by Al-Tawalbeh and
Al-Smadi (2020) for commonsense validation and
explanation is merely a translation of the English
dataset from SemEval-2020’s Commonsense Vali-
dation and Explanation (ComVE) task (Wang et al.,
2019). Similarly, recent efforts by Beheitt and
Ben HajHmida (2023) have focused on translating
the Explanations for CommonsenseQA (Arabic-
ECQA) and Open Mind Common Sense (Arabic-
OMCS) datasets from English versions provided
by IBM Research (Aggarwal et al., 2021). Thus,
there is currently no dataset specifically developed
from scratch for commonsense reasoning in Arabic.
Indeed, translating English commonsense datasets
into Arabic causes many challenges because direct
translations often fail to capture cultural nuances
and linguistic subtleties, resulting in inaccuracies
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and a loss of contextual relevance. Additionally, the
structural differences between the two languages
further complicate accurate translation, undermin-
ing the effectiveness of the datasets for evaluating
commonsense reasoning in Arabic.

Developing high-performance text classification
models critically depends on the availability of
high-quality training data. However, collecting
and curating such data is often costly and time-
consuming, particularly for specialized tasks that
require domain-specific knowledge. To address
this challenge, researchers have begun exploring
the use of large language models (LLMs) to gen-
erate synthetic datasets as an alternative approach.
In this paper, we leverage the capabilities of GPT-
4 (Achiam et al., 2023) to create ArabicSense, a
dataset specifically designed for Arabic common-
sense reasoning. We focus on two natural language
understanding tasks and one natural language gen-
eration task, which are detailed below. Illustrative
examples of these tasks are provided in Figure 1.

* Task A: Commonsense Validation — The
model is presented with two sentences (S7 and
S5) that are similar in structure. The task is to
identify which one of the two sentences does
not make sense.

* Task B: Commonsense Explanation (Multi-
ple Choice) — After identifying a nonsensical
statement, the model is given three potential
reasons (71, o, and r3) explaining why the
statement contradicts commonsense. The task
is to select the correct reason. This assesses
the model’s understanding of the specific logi-
cal inconsistencies within the statement.

* Task C: Commonsense Explanation (Gen-
eration) — The model is required to generate
a coherent explanation in natural language
for why a given statement is against common-
sense. The quality of the generated explana-
tions is evaluated using BERTscore measure.

In our empirical study, we evaluate six BERT-
based models — AraBERT (Antoun et al., 2020),
ARBERT (Abdul-Mageed et al., 2021), MAR-
BERT (Abdul-Mageed et al., 2021), CamelBERT®,
ArabicBERT (Safaya et al., 2020), and mBERT
(Pires et al., 2019) — on the classification tasks
described in Task A and Task B. Additionally, we
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Task A: Commonsense Validation
Which statement among the two is against commonsense ?

S1: 120 J] @icyw Jua 5] cuaVl azg Lole Olos> £yl asy apall
8ynaill GBluoll b acludl b [3i0sl,S

(S1: The cheetah is considered the fastest animal on Earth, as its
speed can reach up to 120 kilometers per hour over short distances.)

S2! 8,20 anl placeiwl dymad wblue) Ol gudaiws >gpall
o> 58V S)lgall (o wgspdl (sle 8,56 lplezy Loo ddals i 8lixo
algg

(S2: Cheetahs can fly short distances using small wings hidden under
their skin, allowing them to easily escape from larger predators.)

Task B: Commonsense Explanation (Multiple Choice)
Select the most corresponding reason why this statement is
against common sense.

ri Lpsely cale soss Y oSlgall oo wosell @slowdl Liass sgpall
cloll (8

(r1: Cheetahs prefer swimming to escape from predators, as they rely
on their agility in the water.)

12t ll 0oLl 8yusiall gl Jnss uo VI cames slisVl golns v spall

(r2: Cheetahs can hide underground thanks to their color-changing
skin, which makes them invisible.)

13t Lpscyw csde s wngd 10l padall LpiSioy Vs dxix| lpun) s s5p0)l
Solgall o Cspll Syl (58

(r3: Cheetahs do not have wings and cannot fly; they rely on their
running speed to escape predators.)

Task B: Commonsense Explanation (Generation)
Generate the reason why this statement is against common
sense.

1 o Jy sVl o] anas s Wlpalall (sle 8,a8) ellai V sgpall

L yiaell O e Hlhall (88 adlell lpic,w (sle

r: (Cheetahs do not have the ability to fly as they lack wings; instead,
they rely on their high speed to escape predators.)

Figure 1: Samples of our dataset
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assess three state-of-the-art causal language mod-
els — Mistral-7b (Jiang et al., 2023), LLaMA-3
(Dubey et al., 2024), and Gemma’ — using both
zero-shot and fine-tuning approaches. The results
demonstrate the effectiveness and quality of Ara-
bicSense as a challenging commonsense reason-
ing benchmark for the Arabic language. Conse-
quently, we present ArabicSense to the community
as the first commonsense benchmark specifically
designed to test commonsense world-knowledge
and reasoning abilities of Arabic pre-trained lan-
guage models.

The main contributions of this paper are summa-
rized as follows:

* We present ArabicSense, the first common-
sense reasoning benchmark developed specifi-
cally for the Arabic language.

* We develop three interrelated tasks to assess
both natural language understanding and gen-
eration capabilities of pre-trained language
models in Arabic commonsense reasoning.

* We leverage GPT-4 and prompting, to auto-
matically generate high-quality synthetic data
for commonsense reasoning in Arabic.

* We conduct a comprehensive evaluation of six
BERT-based models and three state-of-the-art
causal language models using zero-shot and
fine-tuning approaches.

2 Related Work

Commonsense Reasoning Benchmarks. The
NLP community has made significant progress in
constructing commonsense datasets like Concept-
Net (Speer et al., 2017) and ATOMIC (Hwang et al.,
2021), as well as more specialized resources fo-
cused on physical (Bisk et al., 2020) and social
commonsense (Sap et al., 2019). These resources
have been widely incorporated into various down-
stream tasks (Lin et al., 2019; Guan et al., 2020; Liu
et al., 2021) to assess Al’s reasoning in common-
sense scenarios. However, most of these bench-
marks are English-centric, limiting their applicabil-
ity for evaluating other languages (Davis, 2023).
Some Arabic benchmarks have been directly
translated from English datasets (Al-Tawalbeh and
Al-Smadi, 2020; Beheitt and Ben HajHmida, 2023).
However, this approach often fails to capture the

"https://ai.google.dev/gemma/docs

unique linguistic features and cultural nuances of
the Arabic language, which are essential for accu-
rate commonsense reasoning. Some studies have
leveraged these translated datasets to evaluate the
performance of pre-trained Arabic language mod-
els. For instance, Alshanik et al. (2023) explored
commonsense validation and explanation through
their participation in the SemEval 2020 Task 4,
where their model achieved 84.7% accuracy in vali-
dation and a BLEU score of 24 for explanation gen-
eration. Finally, Khaled et al. (2023) conducted a
comparative study on several Arabic BERT models
for commonsense tasks, identifying ARBERTV2 as
the top performer with 84.4% and 74.9% accuracy
in validation and explanation tasks, respectively.

Despite initial efforts in Arabic commonsense
reasoning, the field remains significantly underex-
plored compared to English-centric research. More
work is needed to create dedicated datasets that cap-
ture the linguistic and cultural nuances of Arabic,
making it essential to develop benchmarks specifi-
cally for evaluating Arabic commonsense reason-
ing.

LLMs for Synthetic Data Generation. Large
language models (LLMs) are widely recognized for
their strong generalization ability across a broad
range of tasks (Achiam et al., 2023; Jiang et al.,
2023; Dubey et al., 2024). However, optimizing
these models for specific tasks remains a significant
challenge. While zero-shot and few-shot prompting
provide some level of flexibility (Dong et al., 2022),
fine-tuning on task-specific data generally yields
better results, particularly for specialized or out-of-
domain tasks (Liu et al., 2022). Nonetheless, creat-
ing high-quality datasets is a time-consuming and
resource-intensive process requiring specialized do-
main expertise. Synthetic data generation, which
refers to artificially created data that replicates the
characteristics of real-world data (Little, 1993),
has emerged as a crucial solution for accelerat-
ing model training, particularly for small language
models. It plays a significant role in all stages of
training, including pre-training, instruction-tuning,
and reinforcement learning from human feedback
(Mitra et al., 2024).

A dataset is considered fully synthetic when the
questions or instructions, the potential context, and
the answers are all generated artificially. Exam-
ples of such methods include Self-Instruct (Wang
et al., 2023), Unnatural Instructions (Honovich
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et al., 2023), and Alpaca®. These models gen-
erate general-purpose synthetic data, while other
approaches focus on task-specific fine-tuning by
rephrasing existing datasets (Yin et al., 2023). A
key limitation of fully synthetic data generation
is the repetition and low quality of the generated
samples. For example, Unnatural Instructions and
Self-Instruct both reported significant redundancy
in their data, with correctness rates around 54%-
56.5%, while Alpaca’s correctness rate was as low
as 17%, making much of the data unsuitable for
fine-tuning models. Indeed, partially synthetic data
generation, which incorporates human-curated in-
put, context, or output, helps improve data quality
and diversity (Maini et al., 2024). However, these
methods often depend on resource-intensive pro-
cesses and limit task flexibility because of their
reliance on human-generated components. In ad-
dition, inspired by self-instruct methods, several
works have explored various languages, including
Turkish, Arabic, English, and Italian. (Zeinalipour
et al., 2024a; Zugarini et al., 2024; Zeinalipour
et al., 2024c¢,b), Recently, Mitra et al. (2024) intro-
duced Agentlnstruct, a model that autonomously
generates diverse, high-quality synthetic data from
raw documents. It leverages powerful models like
GPT-4 and tools such as search and code inter-
preters to create large-scale datasets tailored to
both general and domain-specific skills, signifi-
cantly improving the fine-tuning process. Inspired
by Agentlnstruct, we developed the first Arabic
benchmark designed to evaluate commonsense rea-
soning in pre-trained Arabic language models.

3 ArabicSense: A New Benchmark
Dataset

The aim of this work is twofold: to create a
dataset for evaluating Arabic commonsense rea-
soning in LLMs and to improve their performance
in this area. To achieve this, we generate diverse,
high-quality data specifically designed for training
LLMs in Arabic commonsense reasoning. This
section outlines the methodology used to create
the ArabicSense dataset, followed by the human
validation process and an analysis of the dataset.

3.1 Methodology

The development of the ArabicSense dataset in-
volves transforming unstructured seed data into
three distinct tasks designed to assess various as-

8https://github.com/tatsu-lab/stanford_alpaca
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pects of commonsense reasoning in Arabic: Com-
monsense Validation, Multiple-Choice Common-
sense Explanation, and Generative Commonsense
Explanation. We use the GPT-4 model to con-
vert the seed data into diverse examples for each
task. The following outlines the main steps used
for building the dataset.

Seed Data Collection. We curated a collection
of raw seed data exclusively from Arabic-language
sources on Wikipedia ?. The seed data covers a
wide range of domains, including culture, geogra-
phy, art, history, philosophy, and other relevant top-
ics. Wikipedia is chosen for its diverse and exten-
sive coverage of these subjects in Arabic, ensuring
the dataset reflects varied contexts and knowledge
areas essential for world-knowledge commonsense
reasoning. More specifically, our data collection
process began by extracting the opening sections of
Arabic Wikipedia articles, with a specific empha-
sis on the bolded keywords found in the introduc-
tion. Alongside this keyword extraction, we also
gathered vital metadata for each article, including
details such as view counts, relevance scores, brief
summaries, key headings, related terms, categoriza-
tion information, and URLSs.

Transformation of Seed Data Using GPT-4:
To create the three tasks, we formulated specific
prompts for each task and used GPT-4 (Achiam
et al., 2023) to transform the seed data accordingly.
Each task was generated with carefully crafted
prompts that tailored the raw data into the required
format, ensuring variety and depth in the examples.

* Task A: Commonsense Validation — The
GPT-4 model was prompted to generate pairs
of sentences (57 and S3) that are similar in
wording and structure. One of the sentences in
each pair was logical, while the other was non-
sensical, designed to challenge the model’s
commonsense reasoning ability.

* Task B: Commonsense Explanation (Multi-
ple Choice) — After identifying the nonsen-
sical sentence, GPT-4 was used to generate
three possible reasons (r1, o2, and r3), one of
which was correct, explaining why the sen-
tence contradicts commonsense. This task
assesses the model’s understanding of the spe-
cific logical inconsistencies in the sentence.

9https: //en.wikipedia.org/wiki/Wikipedia:
Lists_of_popular_pages_by_WikiProject
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¢ Task C: Commonsense Explanation (Gen-
eration) — For this task, we prompt GPT-4 to
generate a coherent explanation in natural lan-
guage for why a given statement contradicts
commonsense.

3.2 Refinement and Human Validation

The dataset was iteratively refined through human
evaluations to ensure clarity, diversity, and qual-
ity across all three commonsense reasoning tasks.
We assessed human performance on each task us-
ing three expert annotators who evaluated 200 ran-
dom samples from each task. Our experts, who
are native Arabic speakers and experienced NLP
researchers, were not involved in the original data
collection. Their expertise allows them to clarify
misunderstandings in the annotation guidelines and
produce more accurate and thoughtful annotations
compared to crowd workers. The annotators were
asked to rate each response using the following
criteria:

* RATING-A (Excellent): The response is
highly accurate, insightful, and completely
relevant to the task. It shows a deep under-
standing of commonsense reasoning, provid-
ing a flawless and satisfying answer with no
erTors.

* RATING-B (Good): The response is gener-
ally correct and acceptable, but may contain
minor errors, ambiguities, or imperfections.
These issues do not significantly detract from
the quality or overall validity of the response.

* RATING-C (Adequate): The response is rel-
evant to the task but contains errors or over-
sights. While parts of the answer are valid,
significant issues reduce its reliability, and it
may veer off-topic in certain areas.

* RATING-D (Poor): The response is mini-
mally relevant or partially incorrect. It may
include some valid information but is weak in
terms of commonsense reasoning. The answer
may not fully address the task or be partially
invalid.

* RATING-E (Unacceptable): The response
is irrelevant, completely incorrect, or nonsen-
sical. It fails to demonstrate an understand-
ing of the task and does not provide a valid
answer, possibly even contradicting common-
sense knowledge.

The results revealed that 98% of the data across
all tasks was rated as "A," demonstrating the excep-
tional quality of the proposed dataset. Furthermore,
we measure the consistency of the review process
with Fleiss’s kappa'?, a statistical measure that eval-
uates inter-annotator agreement. Our expert anno-
tators achieved a near-perfect Fleiss’s kappa score,
as shown in Table 1, demonstrating high reliability
in the validation of the synthetic data. This high
level of agreement highlights the robustness and
effectiveness of our data generation method.

Tasks | Fleiss’s Kappa
Task A 0.97%
Task B 0.96%
Task C 0.97%

Table 1: Annotators agreement for the three tasks.

3.3 Dataset Analysis

The dataset used in this study is derived from
Wikipedia articles, with commonsense statements
extracted from sections of these articles. All views,
word counts, and daily averages correspond to the
statistics of these Wikipedia pages. The dataset for
Task A includes 3954 training samples, 848 valida-
tion samples, and 848 test samples, with an average
of 123,164 views per article and 217.40 words per
sample, showing similar statistics across validation
and test sets. Task B, which involves predicting the
reason a statement is non-commonsensical, uses
the same dataset sizes and maintains consistent
statistics for views, word count, and daily averages.
Task C, focused on generating explanations for
nonsensical statements, follows the same size and
structure as Task B, resulting in a balanced dataset
across all tasks. Detailed statistical information for
each task and split is presented in Table 2.

3.4 Experimental Setup

This study evaluates the performance of large lan-
guage models for Arabic commonsense reasoning
using the ArabicSense benchmark. The experi-
mental setup involves two sets of models: BERT-
based encoders (AraBERTV2 (Antoun et al., 2020),
ARBERT (Abdul-Mageed et al., 2021), MAR-
BERTV2, CamelBERT '!, ArabicBERT (base and
large) (Safaya et al., 2020), and mBERT (Pires
et al., 2019)) and three causal LLMs (Mistral-7b

https://fr.wikipedia.org/wiki/Kappa_de_Fleiss
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Task Split Count | Mean Views | Mean Word Count

Task A Train 3954 123,164 217.40
Validation | 848 126,339 220.22

Test 848 133,027 224.21

Task B Train 3954 123,164 217.40
Validation | 848 126,339 220.22

Test 848 133,027 224.21

Task C Train 3954 123,164 217.40
Validation | 848 126,339 220.22

Test 848 133,027 22421

Table 2: Dataset Statistics for the Three Tasks. The statistics correspond to the original Wikipedia articles from

which the commonsense statements were generated.

(Jiang et al., 2023), LLaMA-3 (Dubey et al., 2024),
and Gemma'?). The BERT-based encoders are eval-
uated on the first two tasks, while the causal LLMs
are assessed across all three tasks. The detailed
experimental setups for each task are described
below.

For Task A, which involves binary classification
to distinguish between commonsensical and non-
sensical statements, all BERT-based models were
fine-tuned using a batch size of 8, employing the
AdamW optimizer (Loshchilov, 2017) with a learn-
ing rate of 2¢~°. To prevent overfitting, dropout
regularization (Srivastava et al., 2014) was applied
with a rate of 0.1. Additionally, to ensure repro-
ducibility, a fixed random seed of 42 was used
across all models and random number generators
(NumPy, PyTorch).

For Task B, models were tasked with multiclass
classification, where they were required to iden-
tify the correct reason why a nonsensical statement
deviates from commonsense. Similar to Task A,
all BERT-based models were fine-tuned using a
batch size of 8 and the AdamW optimizer with a
learning rate of 2¢~°. Input sequences consisted
of three sentences, concatenated using the [SEP]
token (Devlin, 2018) and tokenized using the Au-
toTokenizer from HuggingFace, with a maximum
sequence length of 128 tokens. Regularization tech-
niques, including dropout with a rate of 0.1, is ap-
plied to prevent overfitting.

In Task C, we evaluated the performance of
LLMs to generate explanations for why nonsen-
sical statements deviate from commonsense. The
causal LLMs tested for this task included Mistral-
7b, LLaMA-3, and Gemma. Fine-tuning was per-
formed using two NVIDIA A6000 GPUs, each

Phttps://ai.google.dev/gemma/docs

equipped with 48 GB of GPU memory, which was
necessary to handle the large sequence lengths and
computation requirements for this generation task.
The models were fine-tuned for 4 epochs with a
maximum sequence length of 1024 tokens. We
applied a learning rate of 1le~*, combined with a
cosine scheduler and a weight decay of 1le~*. To
optimize memory usage, we utilized gradient ac-
cumulation over 4 steps, and employed techniques
such as gradient checkpointing and flash attention.
Additionally, we applied LoRA (Low-Rank Adap-
tation) (Hu et al., 2021) with a rank of 16 and
an alpha of 32 to further enhance memory effi-
ciency during training. The batch size for both
training and evaluation was set to 8, and model
checkpoints were saved at the end of each epoch
for reproducibility and future evaluations.

For all tasks, early stopping (Prechelt, 2002) was
used to monitor validation loss and prevent overfit-
ting.

3.5 Evaluation Measures

For the classification tasks (Task A and Task B),
we used accuracy, precision, recall, and F1-score to
thoroughly assess the effectiveness of the models.
For the text generation task (Task C), we evalu-
ated both the fluency and semantic quality of the
generated content using BERTScore (Zhang et al.,
2019). It utilizes pre-trained transformer models
to compare embeddings of the generated and ref-
erence texts, providing a more robust measure of
semantic similarity.

3.6 Results

3.6.1 Task A and Task B Evaluation Results

To verify the quality of the generated Arabic-
Sense dataset, we designed a comprehensive eval-
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uation strategy for the text classification tasks,
Task A (Commonsense Validation) and Task B
(Commonsense Explanation). The evaluation was
performed in two phases, starting with BERT-
based encoders and then extending to causal
LLMs. In the first phase, we evaluated six pre-
trained BERT-based language models—AraBERT
v2, MarBERT, CamelBERT, ArabicBERT base,
ArabicBERT large, and mBERT—on the dataset
without fine-tuning. This initial phase assessed the
baseline performance of these models, leveraging
only their pre-trained knowledge. As shown in Ta-
ble 3, the models struggled to perform well on both
tasks, with accuracy scores for Task A ranging from
0.33 to 0.34 and Task B accuracy ranging from 0.32
to 0.36. Similarly, precision, recall, and F1 scores
were generally low, indicating the difficulty these
models faced in distinguishing between sensible
and nonsensical sentences, as well as identifying
logical inconsistencies in Task B.

In the second phase, we fine-tuned the same
BERT-based models on the ArabicSense dataset
to evaluate the impact of task-specific training.
The results, as presented in Table 4, show im-
provements across all metrics for both tasks. For
Task A, AraBERT v2 achieved the highest perfor-
mance, with an accuracy, precision, recall, and F1
score of 0.87. Similarly, for Task B, AraBERT v2
also obtained an accuracy and F1 score of 0.83,
closely followed by other models like ArabicBERT
(base) and MarBERT, which achieved strong re-
sults across metrics. These findings demonstrate
that fine-tuning improves the models’ ability to per-
form commonsense reasoning in Arabic, validating
the quality and effectiveness of the ArabicSense
dataset.

Next, we extended our evaluation to causal
large language models (LLMs), including Gemma,
LLaMA-3, and Mistral-7b, testing their perfor-
mance in both zero-shot and fine-tuned settings. In
the zero-shot setting (Table 5), Gemma performed
the best, achieving an F1 score of 0.867 for Task
A and 0.921 for Task B. LLaMA-3 and Mistral-7b
showed weaker performance on Task A, with F1
scores of 0.659 and 0.601, respectively, although
they achieved moderate results on Task B, with F1
scores of 0.863 and 0.805. These results indicate
that without fine-tuning, causal LLMs face chal-
lenges in handling Arabic commonsense reasoning
tasks. After fine-tuning the causal LLMs on our
dataset (Table 6), all models showed performance
improvements. For instance, Gemma’s F1 score

increased to 0.947 for Task A and 0.944 for Task B,
demonstrating its ability to handle complex reason-
ing after fine-tuning. Similarly, Mistral-7b, which
initially performed poorly, achieved an F1 score of
0.948 for Task A and 0.934 for Task B. LLaMA-
3 also showed marked improvement, reaching F1
scores of 0.945 for Task A and 0.930 for Task
B. These results highlight the critical role of fine-
tuning in enhancing the performance of LLMs for
nuanced commonsense reasoning tasks in Arabic.

3.6.2 Task C Evaluation Results

Table 7 presents BERTscore results for Task C
(Commonsense Explanation Generation) using
both zero-shot learning and fine-tuning for three
different causal models: Gemma, LLLaMa-3, and
Mistral-7b. The BERTSscore results show that
fine-tuning on the ArabicSense dataset improves
the performance of all models—Gemma, LLaMa-
3, and Mistral-7b—compared to zero-shot learn-
ing. Gemma, which had the lowest zero-shot F1
score (0.656), saw the most improvement after
fine-tuning, with an F1 score increase to 0.759.
Similarly, LL.aMa-3 and Mistral-7b improved from
0.747 and 0.728 F1 scores to 0.773 and 0.771, re-
spectively. This highlights that the ArabicSense
dataset enhances the models’ ability to generate co-
herent explanations for why statements are against
commonsense, validating its effectiveness for Task
C. Furthermore, these results confirm the impor-
tance of fine-tuning on task-specific datasets to
achieve optimal performance, particularly for tasks
that require a deeper understanding of logical rela-
tionships.

Overall, by comparing the performance of BERT-
based models and causal LLLMs before and after
fine-tuning, we demonstrate the effectiveness of
the ArabicSense dataset in enhancing model per-
formance. The consistent improvement across both
encoder-based and causal models highlights the
robustness of our dataset for training models to
handle commonsense reasoning challenges in Ara-
bic.

4 Conclusion

In this paper, we introduced ArabicSense, the first
comprehensive benchmark designed to evaluate the
commonsense reasoning abilities of large language
models (LLMs) in Arabic. Through the creation
of three distinct tasks: commonsense validation
(task A), commonsense explanation (task B), and
commonsense explanation generation (task C), we



Model without Fine-Tuning Task A Task B
Accuracy Precision Recall F1 | Accuracy Precision Recall F1
AraBERT v2 0.33 0.21 032 0.22 0.33 0.18 0.32  0.18
MarBERT 0.34 0.34 034 034 0.36 0.35 035 035
CamelBERT 0.33 0.33 033 033 0.34 0.22 034 0.21
ArabicBERT (base) 0.34 0.22 0.33  0.19 0.34 0.34 034 034
ArabicBERT (large) 0.34 0.11 0.33 0.17 0.33 0.14 032 0.16
mBERT 0.33 0.11 033 0.16 0.32 0.10 0.33 0.16
Table 3: Evaluation of the pretrained language models without fine-tuning on Tasks A and B.
Model with Fine-Tuning Task A Task B
Accuracy Precision Recall F1 | Accuracy Precision Recall F1
AraBERT v2 0.87 0.86 0.87 0.87 0.83 0.83 0.83 0.83
MarBERT 0.81 0.78 0.85 0.82 0.83 0.83 0.83 0.83
CamelBERT 0.82 0.81 0.84 0.82 0.80 0.80 0.79  0.80
ArabicBERT base 0.84 0.82 0.87 0.85 0.81 0.82 0.81 0.81
ArabicBERT large 0.75 0.80 0.67 0.73 0.84 0.84 0.84 0.84
mBERT 0.75 0.72 0.84 0.77 0.76 0.76 0.75 0.76
Table 4: Evaluation of the pretrained language models with fine-tuning on Tasks A and B.
Model with Zero-shot Task A Task B
Accuracy Precision Recall F1 | Accuracy Precision Recall F1
Gemma 0.869 0.880 0.854 0.867 0.921 0.922 0.920 0.921
LLama-3 0.690 0.733 0.598 0.659 0.863 0.865 0.860 0.863
Mistral-7b 0.523 0.517 0.718 0.601 0.805 0.804 0.806  0.805
Table 5: Comparison results of the Causal LLMs using zero-shot on Task A and Task B.
Model with Fine-tuning Task A Task B
Accuracy Precision Recall F1 | Accuracy Precision Recall F1
Gemma 0.947 0.948 0.946 0.947 0.944 0.944 0.944 0.944
LLama-3 0.945 0.948 0.942  0.945 0.930 0.930 0.930 0.930
Mistral-7b 0.948 0.946 0.950 0.948 0.934 0.934 0.934 0.934

Table 6: Comparison results of the Causal LLMs after fine-tuning on Task A and Task B.

Model Zero-shot Fine-tuning
Precision Recall F1 Precision Recall F1
Gemma 0.641 0.672 0.656 0.765 0.754 0.759
LLama-3 0.733 0.763 0.747 0.774 0.773 0.773
Mistral-7b 0.735 0.722 0.728 0.768 0.774 0.771

Table 7: BERTscore results using zero-shot learning and Fine Tuning on Task C.

addressed the gap in commonsense reasoning re-
sources available for Arabic. The dataset was gen-
erated using GPT-4 and refined through human
validation, ensuring its quality and relevance to the
Arabic language context.

Our empirical evaluations, conducted across six
pre-trained Arabic BERT-based models and three
state-of-the-art causal LLMs, clearly demonstrate
that the models’ performance improves after fine-
tuning on our dataset. The results show that fine-

tuning these models on ArabicSense enables them
to handle the nuances of Arabic commonsense rea-
soning with good accuracy, precision, recall, and
F1 scores. These findings confirm the utility and
quality of ArabicSense as a benchmark for advanc-
ing research and model development in this do-
main. The codes and resources will be made pub-
licly available to support further exploration and
enhancement of Arabic common-sense reasoning
tasks.



5 Limitations

Despite promising results, our study has several
limitations. ArabicSense focuses on three specific
tasks of commonsense reasoning, which may not
cover the entire spectrum of commonsense knowl-
edge. Commonsense reasoning encompasses a
wide range of domains, and further expansions
to include additional reasoning dimensions (e.g.,
causal or temporal reasoning) could enhance the
benchmark’s coverage. Additionally, while the
dataset was generated using advanced models such
as GPT-4 and validated by humans to ensure qual-
ity, it remains synthetic in nature. Synthetic data
generation may introduce biases or fail to capture
certain real-world nuances that naturally occurring
datasets might better reflect. Future work could
explore hybrid approaches that combine synthetic
and real-world data to enhance the quality of the
dataset.
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