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Abstract

We investigate learning surface forms from un-
derlying morphological forms for low-resource
language varieties. We concentrate on learning
explicit rules with the aid of learned syllable
structure constraints, which outperforms neu-
ral methods on this small data task and pro-
vides interpretable output. Evaluating across
one relatively high-resource and two related
low-resource Arabic dialects, we find that a
model trained only on the high-resource di-
alect achieves decent performance on the low-
resource dialects, useful when no low-resource
training data is available. The best results are
obtained when our system is trained only on
the low-resource dialect data without augmen-
tation from the related higher-resource dialect.
We discuss the impact of syllable structure con-
straints and the strengths and weaknesses of
data augmentation and transfer learning from a
related dialect.

1 Introduction

Many of the world’s under-resourced language va-
rieties are closely related to higher-resourced vari-
eties. This suggests two possibilities for progress
on the under-resourced varieties: the development
of systems that perform better with smaller training
data, and the development of systems that lever-
age information from the higher-resource variety
to augment learning for the lower-resource one. In
this paper, we combine these two approaches: we
employ a learning technique that works well with
small amounts of data (namely, rule learning) and
we evaluate the impact of providing the the model
training data combined from both a low-resourced
variety and a similar but higher-resourced variety.

Arabic is particularly well-suited for studying
such techniques because the Arabic dialects repre-
sent a continuum of related but distinct and thriving
spoken varieties, yet most have limited computa-
tional resources available for them. On the other

kitaab+hum kaatib+iin+ha

Egyptian kitabhum katbinha
Sudanese kitaabum kaatbinna
Jordanian kitaabhum kaatbiinha
Hijazi kitaabahum kaatbiinaha

their book they/we are writing it

ቘማׇॺ॒۾ ׇቘቇحཝ༺ၕဋ

Table 1: Realizations of two words across four dialects.
The dialects share the same underlying representations.
Changes in the realized forms are highlighted as follows:
shortened vowels are bolded, epenthetic phones are
underlined, deleted phones are not shown, and finally,
realizations faithful to the underlying representations
(i.e., no change) are italicized.

hand, the dialects maintain varying degrees of mu-
tual intelligibility. A system developed for one di-
alect will may not capture everything in another di-
alect, but they are generally close enough that some
transfer learning should be feasible. Furthermore,
Arabic is morphologically rich. Even affixation in
Arabic triggers a range of morphophonological pro-
cesses which may yield surface forms that are no-
ticeably different from their underlying morpholog-
ical analyses. Uncovering these processes is crucial
for understanding Arabic morphology. Moreover,
difference in these processes account for much of
the difference between the spoken forms across di-
alects. Underlyingly identical forms across dialects
may surface very differently, as examples show in
Table 1. As a consequence, a morphological ana-
lyzer or generator developed specifically for one
dialect will not work reliably on other dialects.

In this paper, we study how we can use resources
for this relatively resource-rich dialect and apply
them to resource-poor dialects. We take on the task
of matching annotated underlying forms to attested
surface forms (Khalifa et al., 2022, 2023). Khalifa
et al. (2023) study this task for Cairene Egyptian
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Arabic (EGY), which, while not high-resourced in
absolute terms, has quite a few scholarly and cor-
pus resources available, much more than other di-
alects. They show that when only small amounts of
data are available, rule-learning approaches outper-
form neural sequence-to-sequence models. They
also perform a somewhat perfunctory study on Su-
danese Arabic (SUD). We adopt their general prob-
lem formulation, but we specifically investigate
how we can apply EGY resources to other dialects,
choosing for our study SUD and Jordanian (JOR),
two low-resource dialects. We investigate a variety
of techniques on these two dialects which are rela-
tively close to Cairene, but differ in their details.

We investigate four training conditions, which
combine transcribed spoken Arabic dialect data in
different ways. In our experience, while not natu-
rally occurring, some transcribed speech is avail-
able for many Arabic dialects, and it is more easily
obtained than the underlying representations. The
conditions are a follows. For clarification, “full
data” refers to a corpus of pairs of underlying mor-
phological representations and surface forms, while
“surface forms” only refers to a corpus which con-
tains attested forms (transcribed spoken language),
but no linguistic analysis has been performed to
create the underlying representations:

1. Only EGY Full data, with target dialectal data
only used for testing. This is the only option
Khalifa et al. (2023) explore.

2. Only EGY Full data, and in addition we have
surface forms for the target dialects.

3. Full data for EGY and the target dialects.

4. Full data for the target dialects.

Our paper makes two primary contributions:

• We present a novel approach that uses syllable
structure constraints in words to derive sur-
face forms from underlying representations.
We compare two ways of deriving such con-
straints. We show that using such constraints
nearly always helps over not using them.

• We compare and contrast the above four ways
of using combinations of higher- and lower-
resource dialectal data. For SUD and JOR, just
training on even a very small amount of di-
alectal data only outperforms including EGY

data. When we only have surface forms for
the lower-resource dialects, then using sylla-
ble constraints in conjunction with EGY out-
performs using EGY alone.

The structure of this paper is as follows. We
discuss related work in Section 2. We present the
linguistic background in Section 3 and the data in
Section 4. We present our method with details on
all steps in Section 5, and report on experimental
results in Section 6. We conclude with an analysis
and a report on ongoing and future work.

2 Related Work

2.1 Arabic Cross-Dialectal Learning

Cross-dialectal learning is a popular area of study
in Arabic NLP due to the nature of the language as
a dialect continuum (Zalmout, 2020; Khalifa et al.,
2020; Inoue et al., 2022; Micallef et al., 2024).
However, most efforts explore the task of knowl-
edge transfer through different neural network ar-
chitectures. These approaches suffer from a lack
of linguistic interpretability, which often hampers
their applicability in a scientific setting. One excep-
tion is Salloum and Habash (2014), who presented
their morphological analyzer, ADAM, for multi-
ple dialects in Arabic. ADAM extends an existing
Modern Standard Arabic (MSA) morphological
analyzer to three dialects through the mapping of
MSA affixes and clitics while assuming similar
stems: Levantine, Egyptian, and Iraqi. These map-
pings were explicit and interpretable, however, they
relied on hand-crafted rules and only addressed
morphotactics (distributions of morphemes) and
orthotactics, not morphophonology.

2.2 Learning Morphophonological Mappings

We take an explicit rule-based approach to Ara-
bic dialectal morphophonology, the interaction be-
tween morphology and phonological processes.
Rule-based learning provides interpretable outputs,
unlike off-the-shelf neural approaches, and this fa-
cilitates comparison across dialects, is valuable for
text-to-speech tasks, and supports the linguistic
analysis of less-studied language varieties. Mor-
phophonological rule learning in particular has usu-
ally been studied within computational phonology
(Antworth, 1991; Albright and Hayes, 2002; Ellis
et al., 2022). However, there has been recent work
dedicated to morphophonology learning (Khalifa
et al., 2023; Wang, 2024). Both works study dif-
ferent morphophonological phenomena through
learning constraints in different representations. In
this work, we base our core learning algorithm on
Khalifa et al. (2023), which was primarily tested
on Arabic and focused on learning morphophono-
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logical mappings between underlying morpholog-
ical representations such as those generable by a
generic Arabic morphological analyzer (URs) and
surface forms which actually appear in dialect cor-
pora (SFs). We make novel contributions in in-
corporating models of syllable structure constraint
learning from the grammatical inference literature
as well as the evaluation of transfer learning strate-
gies between multiple dialects.

3 Linguistic Background

3.1 Morphophonology

Morphophonology is the interaction between
phonology and morphology, where certain phono-
logical processes are triggered when the word
structure is modified. Studying morphophonol-
ogy across different dialects of Arabic allows
understanding different phonological processes
through morphologically related words. Such mor-
phophonological processes are governed by phono-
logical constraints on syllable structure which inter-
act with the morphology, especially concatenative
morphology. These constraints can differ drasti-
cally between different dialects resulting in notice-
ably different surface form realizations for the same
underlying morphological representation as shown
in Table 1.

3.2 Syllable Structure

Most phonological processes in dialectal Arabic are
triggered by strict dialect-specific requirements on
how segments are organized into syllables. Affixa-
tion triggers resyllabification, which in turn forces
morphophonological repairs which maintain these
restrictions.

We lay out some examples of dialectal mor-
phophonological patterns here. One requirement
shared across Arabic is that each syllable must
begin with exactly one consonant. When an un-
derlying representation begins with a vowel, that
onset consonant is supplied by insertion of a glottal
stop (hamza) when the word is in isolation. Some
dialects, such as Jordanian JOR, additionally per-
mits word initial syllables starting with a complex
consonant cluster of two consonants. A second re-
quirement is that syllables may end in no more than
one consonant (one so-called coda consonant). The
dialects differ in the strictness of this constraint:
while SUD bans them across the board, EGY and
JOR only ban them word-internally. They permit
multiple coda consonants in word-final positions.

Furthermore, dialects repair clusters of coda con-
sonants differently. As such, when concatenation
of morphemes creates a sequence of three conso-
nants, such as in the underlying representation of
the word ‘you wrote us’ /katab-t-na/, the three
dialects yield different surface forms. EGY and
SUD both insert a vowel after the second conso-
nant (which happens to differ between them) yield-
ing [katabtina] and [katabtana] respectively,
while JOR inserts it after the first consonant as in
[katabitna].

The phonological form of the affix can trigger
different repairs as well. For example, if a suffix
starts with /h/, then SUD deletes the /h/ rather
than inserting a vowel to break up the sequence
of three consonants. EGY, unlike SUD or JOR,
only permits high and low vowels to be long and
only permits them in stressed syllables. Similarly,
long vowels are restricted to open syllables except
in word-final position. Thus, underlyingly long
vowels are shortened when unstressed or in word-
medial closed syllables, and they are raised if un-
derlyingly mid. There is a myriad number of liter-
ature discussing more requirements and in-depth
analysis cross-dialectally (Hamid, 1984; Broselow,
1976, 1992; Broselow et al., 1995, 1997; Broselow,
2017; Farwaneh, 1995).

4 Data

In order to learn morphophonology mappings, the
data is represented in pairs of underlying represen-
tations (UR) which is a sequence of morphs in a
hypothetical but consistent form that could be mo-
tivated theoretically or derived from the output of
a morphological analyzer, and a surface (spoken)
form (SF), which is phonically transcribed. The
LDC transcription scheme was used for both UR

and SF. A mapping between LDC, IPA, and Arabic
script can be found in Appendix Table 7.

We augmented the character set with a symbol
for word boundaries #, a symbol for prefix bound-
aries -, and a symbol for suffix boundaries =. We
opted for only open class words, i.e., nouns, adjec-
tives, and verbs, as other categories such as proper
nouns are more likely to manifest exceptional pro-
cesses which violate the otherwise norms in their
respective dialects. In addition, we restrict learning
to concatenative morphology. We leave templatic
morphology for future studies. The major con-
sequence of this design decision is that different
templatic realizations within a given morphological
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EGY JOR SUD
UR SF UR SF UR SF

ti-kallif tikallif ti-kallif 'itkallif ta-kallif takallif

#CV CVC CVC# #CVC CVC CVC# #CV CVC CVC#

bi-ti-kallif bitkallif bi-ti-kallif bitkallif bi-ta-kallif bitkallif

#CVC CVC CVC# #CVC CVC CVC# #CVC CVC CVC#

samaH=t samaHt samaH=t samaHit samaH=t samaHta

#CV CVCC# #CV CV CVC# #CV CVC CV#

$Af=U=kI $afUki $Af=U=kI $AfUki $Af=U=kI $AfOki

#CV CVV CV# #CVV CVV CV# #CVV CVV CV#

Table 2: Examples showcasing the pairs of UR-SF of the same words in the three different dialects along with the
syllabification of each SF. In some cases dialect share the same UR but have different realizations as can be seen in
the last two rows. In other cases they can shared the same SF but with different UR as seen in the second row. The
‘-’ represent prefixes boundary and ‘=’ represent suffixes boundary. Underlining across rows indicate identical URs
and SFs across the dialects. The words are 	

­Ê¾
�
K ‘it [f.sg] costs’, 	

­Ê¾
�
JK. ‘it [f.sg] is costing’, �

IjÖÞ� ‘you [m.sg]

permitted’, ú


»ñ

	
¯A

�
� ‘they saw you [f.sg]’, respectively.

paradigm are treated as distinct unrelated stems.

4.1 EGY

We treat EGY as our high-resource dialect in our
cross-dialectal learning setup. Following (Khalifa
et al., 2023) for purposes of comparison, we use the
same dataset that was built on (ECAL; Kilany et al.,
2002), a pronouncing dictionary based on CALL-
HOME Egypt (Gadalla et al., 1997). This provided
surface forms (SF). To match these SFs with appro-
priate (UR)s, we used CALIMAEGY (Habash et al.,
2012), a morphological analyzer for Egyptian Ara-
bic, to generate (UR)s through the morphological
tokenization produced by CALIMAEGY . See (Khal-
ifa et al., 2024) for details about (UR) generation.
We use the same data splits as ECAL provides a
split into TRAIN (12,658 types), DEV (5,181 types),
and EVAL (6,976 types) sets, which we adopted.
However, since these splits were based on running
text, individual words overlap between the sets.
To account for this, we create two additional sets,
OOV-DEV (2,190 types), and OOV-EVAL, based
on DEV and OOV-EVAL (2,271 types) based on
EVAL, but without their intersections with TRAIN.

4.2 Annotation for SUD and JOR

We chose to study SUD and JOR due to their sta-
tus as under-resourced dialects compared to EGY.
EGY lies between the two both geographically
and in the dialect continuum and so shares some
properties with both. For both low-resource di-
alects, the datasets were created by picking the 700
most frequent open class words from the Multi-

Arabic Dialect Applications and Resources dataset
(MADAR; Bouamor et al., 2018), which is a 25-
way parallel corpus representing the dialects of 25
cities. SUD and JOR were taken from portions of
the Khartoum and Amman city dialects, respec-
tively. MADAR was created by translating sen-
tences from English and French from the Basic
Traveling Expression Corpus (BTEC; Takezawa
et al., 2007). The corpus is orthographic, so we cre-
ated both the underlying representation (UR) and
the dialect-specific surface forms (SF) during our
annotation.

Unlike EGY, there are no available morphologi-
cal analyzers that would have otherwise expedited
the annotation by generating potential URs. While
other phonemically transcribed corpora of Ara-
bic exist (Appen, 2006a,b, 2007; Maamouri et al.,
2007), we opted for MADAR because it is open
source and will allow us to publish the data pub-
licly. However, one caveat with using MADAR
is the potential limited diversity of the data due
to the specific domain of MADAR, which is the
travel domain. This is unlike EGY, since ECAL
was compiled from more diverse and naturalistic
spoken conversations.

For both dialects, native speakers with adequate
training in linguistics were asked to transcribe the
spoken form for each word to the best of their
ability. The speakers were then asked to provide
URs. When there were multiple plausible URs for
a given SF, we limited the analysis to one UR cho-
sen to be consistent with the rest of the annotation.
This is followed by a series of revisions and well-
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formedness checks to insure consistency between
the URs within each dialects as much as possible.

Each dialect was annotated by a single native
speaker due to logistical constraints that limited
access to additional annotators. Consequently, it
was not possible to measure inter-annotator agree-
ment. This effort resulted in a total of 710 and 771
pairs for SUD and JOR, respectively. We used 300
for TRAIN, 200 for DEV, and the rest for EVAL

for each dialect. Since these dataset were anno-
tated based on a frequency list, there are no overlap
between them.

We show examples of pairs of UR-SF of com-
mon shared words and contrast the difference be-
tween the three dialects in Table 2.

5 Methodology and Experimental Setup

Our approach extends the Pruned Abundance Rule
Learning Algorithm (PARLA; Khalifa et al., 2023)
as the primary rule learning technique; our contri-
butions lie mainly in exploring several aspects of
cross-dialectal learning. Our research focus is on
new data augmentation techniques for dialect trans-
fer, improved rule learning scope, and the inclusion
of syllables structure as a linguistically motivated
signal for rule learning.

System R R% TRAIN DEV OOV-DEV
Kh ’23 2,922 23.1 97.2 89.4 80.4
Ours 1,721 13.6 95.9 88.9 81.6

Table 3: A comparison between our implementation and
prior work (Kh’23 Khalifa et al., 2023) in terms of the
number of rules (R) and their ratio with respect to the
size of the TRAIN (R%), and accuracy on each split of
the data.

5.1 Rule Learning Algorithm

We reimplemented PARLA as a base and made sev-
eral additions. Our implementation outperforms
the system of Khalifa et al. (2023) on EGY, as
presented in Table 3.

First, we enhanced the rule extraction step by
enforcing morpheme boundaries on the SF before
rule extraction, this was inspired by a similar tech-
nique in (Antworth, 1991). This was implemented
through character alignment between the UR and
SF to approximate morpheme boundaries using
(Khalifa et al., 2021). It greatly reduced the num-
ber of rules by eliminating any superficial rules
that resulted from encoding morpheme deletion as
an actual change. We increased the left and right

context windows from PARLA’s 1 to 2 in order to
accommodate the extra boundary characters that
are retained in the SF at this step.

Second, we include syllable structure informa-
tion to assess the well-formedness of prediction
SFs when selecting rules at inference time. Dialect-
specific syllable structure constraints are learned
from the set of SFs in the training data. We eval-
uate two different approaches based on learning
positive or negative constraints as expounded in
Section 5.5.

5.2 Data Utilization

We explore three methods of training augmentation
with data from the (relatively) high-resource dialect
TRAINEGY using three methods.

High Resource + Surface-Only Low Resource
In this transfer learning setup, we simulate a sit-
uation where no training data exist for the target
dialect, but only surface form. Therefore, PARLA

is trained using only TRAINEGY , and the surface-
only low-resource is used for syllable structure con-
straint as we will explain shortly.

Low Resource Only Here, we assume we only
have a small training dataset for each of the tar-
get dialect, i.e., TRAINSUD and TRAINJOR. These
datasets will be used to train PARLA and to extract
syllable structure constraints.

High and Low Resource We look at two meth-
ods for combining training data from a high- and
low-resource dialects: a) naive concatenation of the
datasets, i.e., TRAINEGY+SUD and TRAINEGY+JOR,
b) concatenation of only the compatible entries of
TRAINEGY with respect to the target dialect. Com-
patibility is based on both UR and SF: Entries from
TRAINEGY are removed if they share a UR with an
entry in the target dialect training set or if their SF

has a syllable structure that is invalid in the target
dialect. We call these training sets TRAINEGY’+SUD

and TRAINEGY’+JOR.

5.3 Training Scope

The core mechanism of our rule-learning approach
is the rule evaluation step, where each extracted
rules is evaluated against the the entire training set.
However, it is not immediately obvious how this
should be performed when the training set mixes di-
alects, since evaluating a rule for one dialect against
data from another could mislead the system. We
consider three alternative approaches:
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Default Every extracted rule is evaluated against
the entire training set regardless of the source di-
alect of the data point corresponding to the rule.

Partitioned Each rule is evaluated only against
the portion of the training data that matches the
dialect of the data point that it was extracted from.
This is practically equivalent to training on each
dialect separately and combine the resulting rules.

Target Only Each rule is evaluated only against
the portion of the training set matching the target
dialect regardless of which dialect original data
point is from.

5.4 Rule selection
At inference time, the rules learned during training
are sorted by their specificity and are traversed se-
quentially until some rule’s left-hand side matches
the context of the input UR (Khalifa et al., 2023).
Given the mixed training, we experiment with the
additional sorting criterion in which rules that have
been extracted from the target dialect’s training
data are ranked ahead of those extracted from EGY.

5.5 Syllable Structure
Most phonological changes associated with mor-
phological processes in Arabic are in fact resyl-
labification as discussed in Section 5.5, therefore,
we posit that leveraging syllables structure should
boost performance. We use learned syllable struc-
ture constraints at inference time to probe the well-
formedness of generated SFs in or to filter out in-
valid predictions. When an invalid SF is produced,
the system moves onto the next applicable rule. If
all applicable rules yield ill-formed structures, then
it is assumed no change happens.

We evaluate two types of syllable structure con-
straints, positive constraints that license structures
that are attested among the surface forms of a di-
alect’s training data, and negative constraints which
ban structures absent in the training data. Low-
resource languages provide a particular challenge
here, since learned constraints are highly sensitive
to the size and syllabic diversity of the training data.
A small training set may result in an excessively
restrictive grammar due to accidental gaps. Never-
theless, we find syllable structure constraints to be
helpful in practice. For both approaches, we first
automatically syllabify a dialect’s surface forms
using (Kodner, 2016). Syllabification itself is fairly
trivial, especially for Arabic since syllables with-
out onsets are prohibited. Example 1 shows surface

forms along with their syllabification, and the ab-
stracted syllabic structure. Consonants and vowels
are abstracted to C and V, and a long vowel is repre-
sented with VV. Word boundaries are represented
with a ‘#’.

(1) kitaab ki.taab #CV CVVC#
qalam qa.lam #CV CVC#
kutub ku.tub #CV CVC#
kibiir ki.biir #CV CVVC#

Positive Syllable Grammar (G+) We extract
a positive grammar by syllabifying the SF from
the training data and then extracting all attested
syllable structures. For example, the surface forms
in Example 1 will generate the following grammar
of two permissible syllable sequences:

(2) {[#CV CVVC#],[#CV CVC#]}

The G+ in (2) is used as follows: if the syllable
structure of a predicted SF at inference time does
not match in any instance in the set, it is rejected
as invalid.

Negative Syllable Grammar (G−) We apply
the Bottom-Up Factor Inference Algorithm (BU-
FIA; Chandlee et al., 2019)1 to extract negative
constraints in the form of forbidden factors. We
present BUFIA with the same syllabified represen-
tation for SFs as above. Using the same example,
BUFIA generates the following negative grammar:

(3) {[CV CV], [CV #], [CVC CV],
[CVC CVC], [CVC CVVC],
[CVVC CV], [CVVC CVC],
[CVVC CVVC], [# CVC],
[# CVVC], [# #]}

The G− in (3) is used as follows: if the syllable
structure of the predicted SF includes any sequence
in the is rejected as invalid. Using very little data,
such as in the toy example above, we generate
extremely conservative grammars and are likely ac-
cept similar output. However, as the data increases,
we expect G− to be more general.

6 Evaluation

We organize the evaluation discussion according to
our data setups introduced in Section 5.

1https://github.com/heinz-jeffrey/bufia

https://github.com/heinz-jeffrey/bufia
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6.1 Baselines

We consider two baselines. These have different
goals and elucidate different aspects of the task.

DONOTHING: Not all underlying forms undergo
morphophonological alternations, since not all af-
fixation requires repair. This baseline is the pro-
portion of test SFs which undergo no change be-
yond removing morpheme boundaries from their
corresponding URs, or in other words, the per-
formance achieved when nothing is done. Thus,
DONOTHING establishes a hard lower bound on
performance. A model should not perform worse
than doing nothing.

NEURAL: The task of mapping URs to SFs is
conceptually similar to a grapheme-to-phoneme
task in how it maps one similar string to another.
We train and evaluate a state-of-the-art a neural
character-based transformer for this task (Wu et al.,
2021). Ideally, a rule based model should perform
competitively with the neural model, especially in
low-resource data settings.

6.2 High Resource + Surface-Only Low
Resource

The first set of experiments rely on TRAINEGY

alone for annotated data, while syllable structure
constraints are learned from unannotated dialect
SFs. The EGY columns in Table 4 showcases the re-
sults for this scenario. Using any syllable informa-
tion helps and improves upon base PARLA trained
only on EGY with no syllable structure informa-
tion. As expected, the improvements are greater
when the constraints are learned from the target
dialect’s SFs than from EGY. Both G+ and G−
yield improvements over basic PARLA, though G−
underperforms G+. The weak performance of G−
constraints for JOR is likely due to the sparsity in
the syllable structures in its training. While the
training data shows that SUD has 74 unique sylla-
ble structures and JOR has 61, JOR has 11 syllable
shapes while SUD has only 8. This affects the
restrictive behavior or G−, BUFIA extracted 80
negative factors for SUD and a 100 for JOR.

From this experiment, we can conclude that
transfer from the high-resource dialect to the low-
resource target dialect is effective. It sometimes
even surpasses the NEURAL baseline, even with
no additional information. Adding syllable struc-
ture information from even a small amount of data
in the target dialect further improves performance.

Such data is available for many Arabic dialects
(Appen, 2006a,b, 2007; Maamouri et al., 2007).

6.3 Low Resource Only
In this scenario, we train PARLA only on the lim-
ited annotated training data available for the target
dialect. The second column in Table 4 showcases
the results. Training on limited target data directly
greatly outperforms all settings including EGY as
well as the NEURAL and DONOTHING baselines.
Using G− yields a further small improvement for
both dialects, while G+ does not.

6.4 High and Low Resource
In this setup, we leverage all available training
data by concatenating TRAINEGY with each dialect
using two settings. The first, is naive concatena-
tion while the second is concatenating a filtered
TRAINEGY as described in Section 5.2. The last
column for each dialect in Table 4 showcases the
results for the the naive concatenation setup. The
general trend seems to be that concatenating the
data does not help when compared with training us-
ing the dialect alone. Results with syllable structure
information follow similar trends as the previous
experiment. We trained NEURAL on the naive con-
catenated set and it outperformed PARLA+G− for
both dialects in the same setup, however, it still
lags behind the best performing setup for both di-
alects which is inline with previous findings on
the value of rule learning approaches for extremely
low-resource setups. Additionally, the performance
of NEURAL appears correlated with that of PARLA

on a by-dialect basis.
Following the discussion in Section 5.3, we

perform additional training experiments using
TRAINEGY’+DIA for each dialect. Even though the
performance using the concatenation techniques
was similar, we opted for TRAINEGY’+DIA since it
learns fewer rules from a smaller set of data as we
will show in the discussion section. Table 5 shows
the results for all three setups in Section 5.3. In
all setups except for TRAINEGY’+DIA, we ordered
the rules at inference time as described in Sec-
tion 5.4. The effect of the sorting alone is indi-
cated in the difference in performance between the
first two columns of each dialect in Table 5. Par-
titioned training, as shown in columns ‘PART’ in
Table 5, boosts the performance for SUD but not
as high as training on TRAINSUD alone, unlike the
case with JOR where in fact it hurts the perfor-
mance quite noticeably. For both dialect, using



164

SUDanese JORdanian
Sys/Train EGY SUD EGY+SUD EGY JOR EGY+JOR
PARLA 67.5 85.0 73.0 68.0 76.0 70.0
   +EGY_G+ 69.5 - - 69.5 - -
   +EGY_G- 68.5 - - 68.0 - -
   +DIA_G+ 71.5 79.0 69.5 70.0 75.5 71.0
   +DIA_G- 72.0 85.5 73.0 68.5 77.0 71.5

NEURAL 73.5 50.5 79.0 65.0 37.5 74.5
DoNoth 60.0 58.5

Table 4: Accuracy (%) results when training PARLA using different training sets in addition to using positive and
negative syllable structure grammars at inference time and testing on the DEV of the respective target dialects
SUD and JOR. +EGY indicates syllable structure constraints trained on Egyptian, +DIA indicates syllable structure
constraints trained on the target dialect. G+ indicates positive constrains and G− indicates negative constraints. Our
baselines are reported as DONOTHING and NEURAL. Note that DONOTHING is independent of any training data.

G− boosts the performance. In the last setup, rules
are extracted from both datasets but only evaluated
against the target dialect. In this setup, as shown
in last columns for each dialect, SUD reaches peak
performance with the boost from G−. The perfor-
mance of JOR while relatively high, it is still a tad
behind TRAINJOR+G− on its own.

7 Analysis and Discussion

7.1 Acquired Knowledge

In this section we take a closer look into the
system’s “knowledge” in terms of rules that are
learned and their relationship with the training data.
This is summarized in Table 6. For both TRAINSUD

and TRAINJOR the trend in the number of rules
is clearly related to data paucity. This also mani-
fests in the poor DONOTHING baselines and the
size of G− as discussed in Section 6.2. Addition-
ally, it seems that TRAINEGY’+SUD with the parti-
tion (+PART) configuration acquires the same set
of rule as TRAINSUD with evidence in the simi-
lar performance. However, TRAINEGY’+JOR with
the same configuration learns more rules and the
performance stays relatively the same.

Additionally, training using both TRAINEGY+SUD

and TRAINEGY+JOR yielded more rules than
TRAINEGY alone, suggesting that the system
learned rules from the target dialect as well as EGY.
While it improved the performance over TRAINEGY ,
it was still substantially lower than training on the
dialect alone. This could be due to the relative at-
testation of each dialect in the combined training

set. With EGY being much larger, its contribution
to the rule set “washed out” the contribution of the
target dialect.

7.2 Effect of Augmenting with EGY

Syllable structure proved beneficial for cross-
dialectal learning, on the other hand, data aug-
mentation did not meet our expectations. We an-
alyzed the errors that differentiated training on
TRAINDIA and TRAINEGY’+DIA for both dialects.
For JOR, most of the errors that were unique to
TRAINEGY’+JOR were on entries that should have
been copied from from UR (DONOTHING pre-
dicts the correct SF), because rules extracted from
EGY applied unnecessarily. Most of these rules
were long vowel shortening and high vowel dele-
tion rules which are prevalent in EGY phonology
but not JOR. On the other hand, TRAINEGY’+JOR

did pick up a few cases with the help of rules
from EGY that were not recovered on TRAINJOR.
While these rules covers similar linguistic phenom-
ena, the JOR rules had more specific context com-
pared to those from EGY, which could lead to over-
application. The difference between TRAINSUD

and TRAINEGY’+SUD is more substantial. In addi-
tion to types of errors similar to those found in
JOR, rules enforcing resyllabification of final com-
plex codas were not extracted because the evidence
from the SUD component of the combined training
set was insufficient in the face of counterexamples
in the EGY component.
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SUDanese JORdanian
Sys/Train EGY'+SUD DEF PART SUD-only EGY'+JOR DEF PART JOR-only
PARLA 73.0 76.0 80.0 85.0 69.5 69.5 67.0 75.0
   +DIA_G+ 69.0 70.0 75.5 79.0 70.5 71.0 71.0 75.5
   +DIA_G- 73.0 76.0 81.5 85.5 71.0 72.5 71.5 76.5

DoNoth 60.0 58.5

Table 5: Accuracy (%) results when training PARLA using TRAINEGY’+DIA with different training methodologies.
Evaluation is on the DEV of the target dialects SUD and JOR. We also report accuracies when using both positive
and negative grammars for each setup. We also report DONOTHING which is independent of any training data.

Train ACC@ R R%
TRAINEGY 40% 1,721 13.6
TRAINSUD 60% 49 16.7
TRAINEGY+SUD 60% 1,759 13.6
TRAINEGY’+SUD 60% 1,639 13.5

+DEF 60% 1,640 13.5
+PART 60% 49 0.4

TRAINJOR 40% 80 26.7
TRAINEGY+JOR 40% 1,772 13.7
TRAINEGY’+JOR 40% 1,337 12.9

+DEF 40% 1,351 13.0
+PART 40% 95 0.9

Table 6: The number of Rules (R) for each training
setup using PARLA in addition to their ratio, (R%),
with respect to the training size.

8 Conclusion and Future Work

In this work we investigated cross-dialectal learn-
ing of morphophonology of three Arabic dialects –
Egyptian, Sudanese, and Jordanian – through rule
learning, where we generate a spoken form from an
underlying morphological representation. We ex-
plored different scenarios of data availability where
Egyptian is taken to be the rich-resource dialect
while Sudanese and Jordanian are under-resourced.
We found that training on the under-resourced di-
alect alone outperformed transfer from the higher-
resourced dialect, alone or in combination with
the under-resourced dialect. Furthermore, we in-
troduced learned syllable structure properties as
an additional linguistic well-formedness measure,
which nearly always boosted performance, partic-
ularly when used in the absence of training data
from the under-resource dialect.

Some of the analyses suggest that cross-dialectal
learning using high resource data that is potentially
contradictory with the target dialect is needed. Po-

tential techniques we plan to explore involve rein-
forcement learning and active learning. We addi-
tionally plan on carrying more careful analysis of
the rules and how they compare across the dialects.
We will also explore incorporating more linguistic
signals such as stress assignment since it is closely
tied with some phonological processes. Addition-
ally, we are working on investigating more dialects
across the continuum as more data become avail-
able. Finally, we plan to investigate ways to unify
underlying representations in reasonable ways to al-
low a clearer classification of the rule types across
dialects.
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A Appendix

Arabic IPA LDC
Z 
ø



ð



@ @



/Pa/ ’

H. /b/ b

ø



/j/ j

X /d/ d

è /h/ h

ð /w/ w
	P /z/ z

h /è/ H

  /tQ/ T

ø



/y/ y

¼ /k/ k

È /l/ l

Ð /m/ m
	
à /n/ n

� /s/ s

¨ /Q/ c
	

¬ /f/ f

� /sQ/ S
�
� /q/ q

P /r/ r
�

� /S/ $
�
H /t/ t
�
è /-a(t)/ a,at
�
H /T/ v

p /x/ x
	
X /D/ ∗
	

� /dQ/ D
	
¨ /G/ g
	
  /DQ/ Z
�
* /a/ a
�
* /u/ u

*� /i/ i

ø @ /a:/ A

ð /u:/ U

ø



/i:/ I

Table 7: Transcription Map
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