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Abstract

Reliable slot and intent detection (SID) is
crucial in natural language understanding for
applications like digital assistants. Encoder-
only transformer models fine-tuned on high-
resource languages generally perform well on
SID. However, they struggle with dialectal data,
where no standardized form exists and training
data is scarce and costly to produce. We explore
zero-shot transfer learning for SID, focusing on
multiple Bavarian dialects, for which we re-
lease a new dataset for the Munich dialect. We
evaluate models trained on auxiliary tasks in
Bavarian, and compare joint multi-task learn-
ing with intermediate-task training. We also
compare three types of auxiliary tasks: token-
level syntactic tasks, named entity recognition
(NER), and language modelling. We find that
the included auxiliary tasks have a more pos-
itive effect on slot filling than intent classifi-
cation (with NER having the most positive ef-
fect), and that intermediate-task training yields
more consistent performance gains. Our best-
performing approach improves intent classifi-
cation performance on Bavarian dialects by 5.1
and slot filling F1 by 8.4 percentage points.

1 Introduction

Most research on natural language processing
(NLP) for digital assistants has focused on stan-
dardized languages, despite the large degree of
dialectal variation exhibited by many languages
and the positive attitude towards dialectal versions
of such technologies expressed by some speaker
communities (Blaschke et al., 2024b).

A core task of natural language understanding
(NLU) is to detect the intent of an input to a digital
assistant (e.g., the instruction “delete all alarms”
belongs to the cancel alarm class) and to tag it
for specific slots (e.g., “all” should be tagged as
the reference associated with the intent). How-
ever, classifying dialectal inputs is still challenging
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Figure 1: Overview of evaluated setups. We fine-
tune pre-trained language models (PLMs) on English
SID data (grey ○) and evaluate them on Bavarian
(red ○). We compare multiple setups: a) no auxiliary
tasks, b) multi-task learning by jointly training on En-
glish SID data and Bavarian auxiliary tasks (“aux”),
c) intermediate-task training on Bavarian, then fine-
tuning on English SID data.

as contemporary models are less proficient due
to the scarcity of low-resource and especially di-
alectal training data (Zampieri et al., 2020). To
overcome this issue, transferring task knowledge
cross-lingually from high-resource language data
to low-resource varieties is a strategy widely used
in NLU (Upadhyay et al., 2018; Schuster et al.,
2019a; Xu et al., 2020, inter alia). While many
approaches have focused on cross-lingual transfer
via embedding transmission and machine transla-
tion, van der Goot et al. (2021a) use non-English
auxiliary task data for zero-shot transfer to other
languages.

Inspired by this setup and by intermediate-task
training procedures (Pruksachatkun et al., 2020),
we use auxiliary tasks to analyze and improve zero-
shot transfer learning for slot and intent detection
(SID) for Bavarian dialects (Figure 1). To account
for intra-dialectal variation, we evaluate on two pre-
viously released Bavarian datasets and introduce a
third test set. For the auxiliary tasks, we use three
recent Bavarian datasets for syntactic annotations,
named entity recognition (NER), and masked lan-
guage modelling (MLM).
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We make the following contributions:

• We release a new Bavarian slot and intent de-
tection evaluation dataset (§4.1).1

• We examine how training on auxiliary
NLP tasks in Bavarian affects SID perfor-
mance (§6.2). We compare both the in-
tegration of the auxiliary tasks into the
training setup (joint multi-task learning vs.
intermediate-task training) and the tasks them-
selves.

• To analyze the robustness of the results, we
examine performance and data differences be-
tween the dialectal test sets (§6.3, 6.4) and
include additional datasets (§6.5).

We share our code publicly.2

2 Related Work

Slot and intent detection for dialects and non-
standard varieties Research on SID for low-
resource languages, including non-standard and
dialectal varieties, has started receiving more at-
tention. This trend starts with van der Goot et al.
(2021a), who introduce a multilingual SID dataset,
xSID, containing South Tyrolean, a Bavarian di-
alect (more details in §4.1). xSID has since been
extended with dialectal data from Upper Bavaria
(Winkler et al., 2024), data in Bernese Swiss Ger-
man and Neapolitan (Aepli et al., 2023), and eight
Norwegian dialects (Mæhlum and Scherrer, 2024).

Similarly to our study, van der Goot et al. (2021a)
experiment with multi-task learning, although they
only have Standard German auxiliary data at their
disposal for the South Tyrolean test data. Other
approaches focus on tokenization issues or data
augmentation. Srivastava and Chiang (2023) tackle
tokenization issues caused by spelling differences
by injecting character-level noise into standard-
language training data, which improves the per-
formance on the dialectal test sets. Muñoz-Ortiz
et al. (2025) find that encoding text with visual rep-
resentations (rather than ones based on subword
tokens) improves transfer from Standard German to
German dialects for intent classification. Abboud
and Oz (2024) fine-tune a masked language model
on dialectal data to generate synthetic training data
for German and Arabic dialects. Malaysha et al.

1To be included in https://github.com/mainlp/xsid.
2https://github.com/mainlp/

auxtasks-bavarian-sid

(2024) organized a shared task on intent detection
in four Arabic dialects, where the top systems all
involve model ensembling and translating the train-
ing data into the test dialects (Ramadan et al., 2024;
Elkordi et al., 2024; Fares and Touileb, 2024).

In the context of spoken intent classification,
other work focuses on variation in spoken Italian
(Koudounas et al., 2023) and English (Gerz et al.,
2021; Rajaa et al., 2022; He and Garner, 2023).

Multi-task learning (MTL) Joint MTL learn-
ing involves jointly training a model on several
tasks. Ruder (2017) provides a general overview.
Martínez Alonso and Plank (2017) find that tasks
with non-skewed label distributions lend them-
selves best as auxiliary tasks for sequence tagging.
Schröder and Biemann (2020) show that auxiliary
tasks which are more similar to the target tasks
result in better target performance.

Regarding MTL for SID, Wang et al. (2021) train
a transformer model on dependency parsing, POS
tagging, and SID, with different layers attending
to the different tasks. They find that the syntactic
tasks improve SID performance (especially when
both are included), and that jointly producing slot
and intent labels is also beneficial.

Van der Goot et al. (2021a) use English training
data for SID but additionally exploit non-English
auxiliary task data, hypothesizing that this helps
their models to learn additional linguistic proper-
ties of the target language. They find syntactic
tasks to be useful for slot filling for one pre-trained
language model but not another, and harmful for
intent detection. Similarly, they find masked lan-
guage modelling (MLM) to be of use for slot filling
but not intent classification. Machine translation as
auxiliary task yielded worse performance.

Intermediate-task training While MTL is about
fine-tuning a model simultaneously on multiple
tasks, intermediate-task training concerns first fine-
tuning a model on one or more auxiliary tasks and
subsequently fine-tuning it on the target task. In
a similar vein to some MTL results, Poth et al.
(2021) and Padmakumar et al. (2022) find the simi-
larity between the intermediate and target task to be
important. Similarly, Pruksachatkun et al. (2020)
evaluate models on inference and reading under-
standing tasks and find including intermediate tasks
also related to reasoning to be useful. Padmakumar
et al. (2022) further find that including multiple in-
termediate tasks at once often yields better results
than only including one, although the interactions

https://github.com/mainlp/xsid
https://github.com/mainlp/auxtasks-bavarian-sid
https://github.com/mainlp/auxtasks-bavarian-sid
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Figure 2: The Upper German dialect groups Bavar-
ian (blue, right) and Alemannic (green, left), based on
Wiesinger (1983). The red dots show the xSID datasets
included in this study and our new dataset, de-muc.

of tasks are difficult to predict.
In the context of cross-lingual evaluation,

Samuel et al. (2022) find that continued pre-
training via target-language MLM has mixed re-
sults. Phang et al. (2020) show that even in cross-
lingual scenarios, intermediate-task learning on the
source language can be beneficial.

Some recent studies include both MTL and
intermediate-task training. Weller et al. (2022) find
that MTL with several auxiliary tasks tends to per-
form worse than with just one additional task, and
that MTL beats intermediate-task training when
the target task has less data than the auxiliary task.
Montariol et al. (2022) focus on cross-lingual hate
speech detection and add auxiliary tasks in multi-
ple languages (including the target language). They
find joint MTL setups to outperform intermediary
task training, and semantic auxiliary tasks to be
more beneficial than syntactic ones.

3 Background: Bavarian Dialects

Bavarian dialects differ from Standard German
in phonetics, phonology, word choice, and mor-
phosyntax (Merkle, 1993). There is no estab-
lished orthography or standard variety of Bavar-
ian. The Bavarian dialects belong to the Upper
German dialect group and are split into three ma-
jor subgroups (Northern, Central, and Southern
Bavarian; Figure 2), mostly based on sound differ-
ences (Wiesinger, 1983). There is also phonetic/
phonological and lexical variation within these
groups (Rowley, 2023, passim). The pronuncia-
tion differences are also reflected in the spelling
choices made in the different training and evalua-
tion datasets in our study, although the spellings

also reflect idiosyncratic preferences. We compare
the Bavarian SID test sets in §6.4.

Some of the morphosyntactic differences be-
tween Bavarian and Standard German (cf. Blaschke
et al., 2024a) are relevant for SID, and recent work
(Artemova et al., 2024) has shown that slot filling
performance in German is negatively affected by
dialectal syntactic structures. Person names are typ-
ically preceded by definite articles, and the given
name generally follows the family name (Weiß,
1998, pp. 69–71) – this has been analyzed in the
context of NER (Peng et al., 2024) and might also
be relevant for slot filling. Furthermore, many NLU
queries contain infinitive constructions of the form
“remind me to [do X]”. Such cases are often ex-
pressed with a nominalized infinitive construction
(Bayer, 1993; Bayer and Brandner, 2004; see, e.g.,
Table 10) that does not exist in Standard German.

Additionally, as in many other German dialects
(Weise, 1910), temporal expressions (relevant for
datetime slots) can be expressed in ways that are
not grammatical in Standard German, e.g., fia fünfe
heid auf Nacht “for 5PM tonight” (lit. “for five
today at night”) or um 3 nammiddog “at 3PM” (lit.
“at 3 afternoon”).

4 Data

4.1 Slot and Intent Detection Data
xSID We use xSID 0.5 (van der Goot et al.,
2021a; CC BY-SA 4.0), which provides develop-
ment and test sets (300 and 500 sentences, respec-
tively) for slot and intent detection in a range of
languages, as well as a large English training set
(44k sentences). It covers 16 intents and 33 differ-
ent slot types. The data consist of re-annotated En-
glish sentences from SNIPS (Coucke et al., 2018)
and a Facebook dataset (Schuster et al., 2019b).
The non-English development and test splits are
translations.

xSID 0.5 contains multiple Upper German di-
alects (Figure 2), none of which are standardized:
South Bavarian as spoken in South Tyrol (de-st; in-
cluded in the first xSID release), Central Bavarian
as spoken in Upper Bavaria (de-ba; Winkler et al.,
2024), and Swiss German as spoken in Bern (gsw;
Aepli et al., 2023). We focus on the Bavarian test
sets, but include the Swiss German data as well
as the Standard German (de) and English (en) test
sets in an additional evaluation (§6.3).

Munich Bavarian evaluation data To investi-
gate the effect of intra-dialectal variation and differ-

https://github.com/mainlp/xsid/blob/main/LICENSE
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ent translation choices, we create a second Cen-
tral Bavarian translation. The new test and de-
velopment set is in the dialect spoken in Munich
(de-muc), translated by a native speaker (one of the
authors). The translation is directly from English,
without referencing either the Standard German or
dialectal versions, as was also done for the other di-
alect translations. The (sentence-level) intent labels
are the same as in English and the other languages;
the (token-level) slot spans were annotated by the
translator. As there is no Bavarian orthography,
de-muc represents the spelling preferences of the
translator. The grapheme–phoneme mapping is
similar to that of Standard German and reflects the
translator’s pronunciation. Most words are lower-
cased, also nouns that would be capitalized in Ger-
man. Named entities are left untranslated and, per
the xSID guidelines, grammatical mistakes in the
original sentences are also adopted in the transla-
tions.

Our Munich Bavarian translations are the most
similar to the other Central Bavarian ones (de-ba)
on a word and character level (see Appendix A).

We share a data statement (Bender and Friedman,
2018) in Appendix B.

Additional evaluation data To evaluate whether
some of our findings generalize to other Bavarian
datasets, we use test sets provided by Winkler et al.
(2024). They collected naturalistic data by ask-
ing Bavarian speakers to come up with queries for
a digital assistant that match xSID’s intents, and
translated a subset of MASSIVE (FitzGerald et al.,
2023) with the labels mapped to match xSID’s. The
translator for MASSIVE is the same as for xSID’s
de-ba set, and the contributors to the naturalistic
data also come from the same region.

4.2 Auxiliary Task Data Sets
We use three Bavarian datasets for auxiliary NLP
tasks. These tasks are similar to ones explored in
related work on MTL for SID (§2) and are addi-
tionally motivated by data availability.

Syntactic dependencies and POS tags (UD) As
token-level information and linguistic structure
might be useful for slot annotations, we include
two syntactic tasks: dependency parsing and part-
of-speech (POS) tagging. The Universal Dependen-
cies v2.14 (UD; de Marneffe et al., 2021) treebank
MaiBaam (Blaschke et al., 2024a; CC BY-SA 4.0)
provides such dependency annotations and POS
tags for Bavarian dialects from all three Bavarian

dialect groups, including varieties spoken in South
Tyrol, Upper Bavaria, and Munich. MaiBaam con-
tains some sentences from xSID, which we exclude
from our experiments, leaving 975 sentences that
we randomly divide into training and development
data using a 90:10 split.

Named entity recognition (NER) Similarly to
slot filling, NER concerns identifying and la-
belling spans of tokens as a sequence tagging task.
BarNER 1.0 (Peng et al., 2024) provides such an-
notations for named entities in Wikipedia articles
(CC BY-SA 4.0) and tweets. Based on the inspec-
tion of a small data sample, Peng et al. state that the
most represented Bavarian dialect group is Central
Bavarian (to which both de-ba and de-muc belong).
We use the predefined training and development
splits (9k and 918 sentences, respectively), and use
the fine-grained label set.

Masked language modelling (MLM) We also
include MLM, as it is a common pre-training objec-
tive.3 We use a subset of the Bavarian Wikipedia
(1.5k sentences, divided into 90% training and 10%
development data), as pre-processed by Artemova
and Plank (2023).

5 Methodology

We fine-tune pre-trained language models (PLMs)
on xSID’s English training data using MaChAmp
0.4.2 (commit 9f5a6ce; van der Goot et al., 2021b)
with the same hyperparameters as van der Goot
et al. (2021a) did for their SID experiments.

We evaluate slot predictions with strict slot F1,
intent predictions with accuracy, and also calculate
the proportion of sentences with fully correct pre-
dictions. We treat SID itself as a multi-task setup
as we jointly predict the slots and intent labels, and
treat slot detection as a basic sequence labelling
task with a final softmax layer. We use the fol-
lowing task types for MaChAmp (van der Goot
et al., 2021b): seq (slot filling, NER, POS tag-
ging), classification (intent classification), mlm
(MLM), and dependency (dependency parsing).
The loss for each task is weighted equally. We use
MaChAmp’s default loss functions (cross-entropy
loss for all tasks except dependency parsing, which
uses negative log likelihood). We provide mean
scores across three runs for each experiment.

3We note however that mDeBERTa v.3 is pre-trained on
replaced token detection rather than MLM (He et al., 2021a).

https://github.com/UniversalDependencies/UD_Bavarian-MaiBaam/blob/master/LICENSE.txt
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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We compare three types of experimental setups
(Figure 1):

Baseline We compare four commonly used
PLMs, which we finetune on SID data without
auxiliary tasks: the monolingual German GBERT
(Chan et al., 2020), and the multilingual mod-
els mBERT (Devlin et al., 2019), XLM-R (Con-
neau et al., 2020), and mDeBERTa v.3 (He et al.,
2021a,b).

Notably, mBERT’s pretraining data also includes
the Bavarian Wikipedia, which contains articles in
all three of our test dialects. XLM-R and mDe-
BERTa were pre-trained on the CC-100 dataset
(Conneau et al., 2020), which does not contain
Bavarian data. GBERT’s pretraining data is in Stan-
dard German. To limit computation costs, we use
the base-sized versions.4 In the remaining setups,
we only use mDeBERTa because of its strong per-
formance as a baseline PLM (§6.1).

Multi-Task Learning We train the model to
jointly predict labels for SID and at least one aux-
iliary task. We use × to denote these setups, e.g.,
NER×SID refers to training a model to simultane-
ously predict named entity labels, slots and intents.

Intermediate-Task Training We first train the
model to predict labels for an auxiliary task, re-
move the task-specific head, optionally repeat this
for a second auxiliary task, and then finally train
the model to predict SID labels. We use → to de-
note these setups, e.g. NER→SID refers to first
training a model on NER data, then on SID data.
As a special case, we train some models first jointly
on auxiliary tasks and then afterwards on SID (e.g.,
MLM×NER→SID).

We apply each auxiliary task dataset to both fine-
tuning setups. For the settings with multiple aux-
iliary tasks, we select combinations that appear
promising based on the results already obtained.
We were not able to examine all possible combina-
tions due to computational restraints.

6 Results and Analysis

We first present the results of the baseline mod-
els (§6.1), and then discuss the impact of fine-
tuning the model on auxiliary Bavarian NLP
tasks (§6.2). We next compare performances across

4We use deepset/gbert-base (license: MIT), google-bert/
bert-base-multilingual-cased (Apache 2.0), FacebookAI/xlm-
roberta-base (MIT), and microsoft/mdeberta-v3-base (MIT).
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Figure 3: Slot and intent detection results for the
different models, in %. The results are averaged over
the three Bavarian dialect test sets and three random
seeds (standard deviations shown as error bars). Mean
scores and standard deviations per individual dialect are
in Appendix D. The dashed lines denote the scores of
the baseline model (no auxiliary tasks). The setups with
auxiliary tasks also use mDeBERTa. The three pale
entries at the top are worse-performing baseline models
with alternative PLMs.

https://huggingface.co/deepset/gbert-base
https://opensource.org/license/mit
https://huggingface.co/google-bert/bert-base-multilingual-cased
https://huggingface.co/google-bert/bert-base-multilingual-cased
https://choosealicense.com/licenses/apache-2.0/
https://huggingface.co/FacebookAI/xlm-roberta-base
https://huggingface.co/FacebookAI/xlm-roberta-base
https://opensource.org/license/mit
https://huggingface.co/microsoft/mdeberta-v3-base
https://opensource.org/license/mit
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Intents Slots

∆ to baseline ∆ to baseline
Avg

ITT MTL UD NER MLM
Avg

ITT MTL UD NER MLM
(→SID) (×SID) (→SID) (×SID)

SID (mDeBERTa) 73.5 45.3

UD→SID 73.8 +0.3 +0.3 49.3 +3.9 +3.9
UD×SID 48.9 –24.6 –24.6 42.1 –3.2 –3.2
NER→SID 76.5 +3.0 +3.0 53.1 +7.8 +7.8
NER×SID 76.2 +2.7 +2.7 53.8 +8.4 +8.4
MLM→SID 71.8 –1.8 –1.8 39.6 –5.8 –5.8
MLM×SID 71.9 –1.6 –1.6 44.6 –0.7 –0.7
UD→NER→SID 78.3 +4.8 +4.8 +4.8 54.3 +9.0 +9.0 +9.0
UD×NER→SID 78.4 +4.8 +4.8 +4.8 53.7 +8.4 +8.4 +8.4
UD×NER×SID 62.6 –10.9 –10.9 –10.9 44.7 –0.6 –0.6 –0.6
MLM×UD→SID 73.9 +0.4 +0.4 +0.4 49.2 +3.8 +3.8 +3.8
MLM→NER→SID 76.8 +3.3 +3.3 +3.3 51.5 +6.2 +6.2 +6.2
MLM×NER→SID 78.6 +5.1 +5.1 +5.1 53.7 +8.4 +8.4 +8.4
MLM×NER×SID 77.9 +4.3 +4.3 +4.3 54.8 +9.5 +9.5 +9.5
MLM×UD×NER×SID 58.0 –15.6 –15.6 –15.6 –15.6 48.7 +3.3 +3.3 +3.3 +3.3

Mean +2.5 –7.6 –5.8 +0.2 –0.8 +5.2 +2.8 +3.5 +6.7 +3.5
Std. deviation 2.6 11.4 11.4 7.7 7.1 4.9 5.2 4.4 3.3 5.3

Table 1: Differences to the baseline performance per set-up type (intermediate-task training (ITT) vs. MTL)
and auxiliary task (UD, NER, MLM), in percentage points (pp.). E.g., the results of the intermediate task-training
set-up with the UD tasks (UD→SID) beat the baseline by 0.3 pp. for intent detection and 3.9 pp. for slot-filling.
Scores are averaged across the Bavarian test sets and three random seeds.

the Bavarian dialects as well as an additional Up-
per German dialect (Bernese Swiss German) and
the standard languages German and English (§6.3).
We additionally discuss differences between the
Bavarian translations (§6.4), and lastly analyze the
results on other Bavarian SID datasets (§6.5).

6.1 Baselines: No Auxiliary Tasks

Our baseline experiments with mBERT and
XLM-R achieve similar scores to the results re-
ported by van der Goot et al. (2021a) for the overall
cross-lingual xSID test sets (Appendix C). How-
ever, these two models perform worse than GBERT
and mDeBERTa on the Bavarian test sets (see top
of Figure 3). GBERT provides the best slot filling
scores (F1: 47.2%) and a slightly higher propor-
tion of fully correctly annotated sentences (15.4%,
mDeBERTA: 15.1%), while mDeBERTa scores the
highest intent detection accuracy (73.5%).

For the remaining experiments, we use mDe-
BERTa as we expect the results of a multilingual
model to be more generalizable when applied to
other languages/dialects than the ones in our study.

6.2 Multi-Task Learning and
Intermediate-Task Training

Both the choice of joint or sequential setup and
the choice of auxiliary tasks influence the results
(Table 1). Generally, the auxiliary tasks are more
helpful for slot filling than for intent classification.
This might be due to them, like slot filling, be-
ing on a token level. We could not include any
sentence-level content classification tasks, for lack
of datasets (cf. Blaschke et al., 2023).

Except for the MTL model with all auxiliary
tasks, all settings that improve slot filling also help
with intent classification, and vice versa.

Joint multi-task vs. intermediate-task training
The intermediate-task setups (i.e., SID as a sep-
arate, last task) tend to beat the baseline in terms
of both intent detection and slot filling, with gains
of between 0.3 and 5.1 percentage points (pp.) for
intent detection and between 3.8 and 9.0 for slot
filling. The only exception is MLM→SID (–1.8 pp.
for intents, –5.8 pp. for slots).5 We assume that sep-

5In the set-ups where the model is first exclusively fine-
tuned on MLM, the perplexity on the MLM development
set is much higher than otherwise (Table 8 in Appendix §E),
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arately fine-tuning the model on SID works well as
the SID-related model weights cannot afterwards
be modified by other tasks.

The joint multi-task setups (where SID is
trained simultaneously with the other tasks), how-
ever, show less clear trends. Some task com-
binations have a large negative impact on in-
tent classification (e.g., –24.6 pp. for UD×SID;
–15.6 pp. when jointly fine-tuning on all tasks),
while others have positive effects (e.g., +4.3 pp.
for MLM×NER×SID). The effect on slot filling is
much more positive, with performance differences
ranging from –3.2 to +9.5 percentage points. Here,
performance appears to depend more on the choice
of auxiliary task:

Auxiliary task choice The UD tasks help when
they are included as intermediary tasks, but lower
the performance in nearly all joint MTL settings.
This is somewhat similar to the results by van der
Goot et al. (2021a), who found MTL with target-
language UD tasks to mostly lower the intent clas-
sification performance but to have a mixed impact
on slot filling.

Including NER as an auxiliary task is almost
always beneficial for slot filling (and otherwise only
has a small impact: –0.6 pp. for UD×NER×SID).
We hypothesize that this is due to the high similarity
between the two tasks (cf. Louvan and Magnini,
2020). It also has a positive effect on the intent
classification performance, except in joint setups
with UD and SID.

On its own, MLM has a negative effect on both
slot filling and intent classification, regardless of
whether it is included as a joint or intermediate-
task. When it is, however, used together with
other auxiliary tasks, it always improves the slot
filling performance and nearly always helps the
intent classification performance. These findings
are somewhat different from the ones by van der
Goot et al. (2021a), where joint MTL with target-
language MLM improves slot filling performance
and has mixed effects on intent classification. It is
possible that the MLM dataset in our study is too
small to meaningfully serve as data for continued
pre-training, and that including more data would
have made MLM a more beneficial task.

i.e., the auxiliary task was not learned properly. A possible
explanation is that the standard hyperparameters might not
have been optimal for MLM, and that the different model
parameter updates in a multi-task learning context mitigated
this somewhat.
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Figure 4: Intent (top) and slot (bottom) scores show
similar patterns across experimental set-ups for the
test varieties. The scores are averaged across three
random seeds (more details are in Appendix D). The
pale sections to the left show the scores of baseline
models with different PLMs. We use lines despite the
categorical nature of the x-axis to make the plots easier
to compare.

6.3 Performance Differences Across
Languages

While we previously focused on averages over the
three Bavarian dialect datasets, we now compare
the performance differences between them, and
also analyze the test scores on related languages
(Figure 4). The detailed prediction scores are in
Appendix D, and we summarize the trends below.

Bavarian dialects While the scores differ across
dialects, the trends across experimental setups are
the same: A setup that is beneficial or damaging for
the performance on one dialect has a similar effect
on the others. The performance gaps for the multi-
task and sequential settings are similar in scale to
the gaps of the corresponding baseline.

The predictions on the Munich Bavarian
(de-muc) test set tend be be worse than for the
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Upper Bavarian (de-ba) and South Tyrolean (de-st)
datasets. This is especially pronounced for the in-
tent classification results (Figure 4, top). There,
the results on de-ba and de-st are very similar, but
the scores on de-muc are between 1.2 and 17.0 pp.
lower than those on de-ba. The slot filling perfor-
mance is more consistent across dialects (Figure 4,
bottom), with score differences of 0.0–5.5 pp. be-
tween dialect pairs. Nevertheless, the results on
de-ba tend to be slightly better than for the other
dialects.

We discuss differences between the Bavarian test
sets in §6.4.

Swiss German We additionally consider the per-
formance on Bernese Swiss German, which, like
the Bavarian dialects, belongs to the Upper German
dialect group. Performance on Swiss German is
always worse than on the Bavarian dialects – also
for the baseline models that were not fine-tuned
on Bavarian auxiliary tasks. This is in line with
other SID systems evaluated on the gsw data (Aepli
et al., 2023) and might be due to the translation be-
ing more dissimilar to Standard German than the
Bavarian ones (Appendix A). However, the trends
for Swiss German are similar as for the Bavarian
dialects: Setups that improve or lower SID perfor-
mance for Bavarian also do so for Swiss German,
despite only involving Bavarian auxiliary data.

Standard German We analyze the performance
on Standard German, which is part of mDeBERTa’s
pretraining dataset. Performance on Standard Ger-
man is consistently better than on the Bavarian
dialects (intent detection accuracy remains at ≥
89.8%, slot filling F1 at ≥ 78.7%). Bavarian auxil-
iary tasks incur performance losses on the Standard
German test data across all settings, but the set-
tings that harm performance on Bavarian also have
the most deteriorating effect on the predictions for
German.

English Lastly, we turn to English – the fine-
tuning language. The scores are barely affected
by the auxiliary tasks: Intent detection accuracy
remains at ≥ 99.1% (the same as for the baseline)
and slot filling F1 scores at ≥ 94.4% (–0.7 pp.).

6.4 Differences Between Bavarian
Translations

The test sets reflect differences between Bavarian
dialects (§3) and translation choices. Table 2 shows
translations of the English test sentence “Delete

DE-MUC
streich olle wecka [intent]
remove.IMP all alarms

O B–ref. O alarm/cancel_alarm
B–entity
_name p

I–rem./
todo p

O ✓ AddToPlaylist p

DE-BA
Lösch olle Wegga [intent]
delete.IMP all alarms

O B–re. O alarm/cancel_alarm
O ✓ B–ref. ✓ O ✓ alarm/cancel_alarm ✓

DE-ST
tua olle Wecker weck [intent]
do.IMP all alarms away

O B–ref. O O alarm/cancel_alarm
O ✓ O p O ✓ O ✓ alarm/set_alarm p

Table 2: Translations of “Delete all alarms” into
Bavarian dialects with gold-standard and (cor-
rectly ✓ or incorrectly p) predicted annotations.
The predictions are by the overall best-performing
model, MLM×NER→SID, with the same random seed.
Abbreviated slots: ref. = reference, rem. = reminder.

all alarms”, which exhibit both spelling variation
(“alarms” rendered as wecka, Wegga, Wecker) and
different word choices (streich “remove”, lösch
“delete”, and tua ... weck “do ... away”).

Although there is very little morphosyntactic
variation between Bavarian dialects, some of the
translations exhibit different morphosyntactic struc-
tures that reflect different translation choices. Ta-
ble 10 in Appendix G provides an example.

Even small differences between translations can
affect the predictions of a SID model. In both ex-
amples, all three translations receive different slot
and intent labels by the best-performing model in
our experiments – even though the first two trans-
lations in Table 2 have an identical structure to the
English sentence, which is annotated correctly.

One possible reason for this is that the Munich
translation is mostly lower-cased, unlike the other
Bavarian translations. This likely further decreases
the subword token overlap with German cognates
that might be in the PLM’s pretraining data.

6.5 Additional Bavarian Test Sets

To investigate the robustness of our findings not
only across dialects, but also across different
datasets from the same area (Upper Bavaria; de-ba),
we use the additional datasets mentioned at the end
of §4. We evaluate the baseline model, the best-
performing model (MLM×NER→SID), and its
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MTL counterpart (MLM×NER×SID), which also
performs well on the xSID data (Figures 3 and 4).

All three models perform best on the xSID data
(intent accuracy: 77.7%, slot F1: 46.7%) and worst
on the MASSIVE translations (intents: 55.2%,
slots: 22.1%), with the naturalistic data in be-
tween (intents: 60.8%, slots: 31.7%). The de-
tailed scores are in Appendix F (Table 9). The
models that were also trained on auxiliary data
nearly always improve over the baseline. The over-
all best-performing model incurs improvements of
6.7–7.9 pp. for intent classification and 9.7–9.9 pp.
for slot filling on the additional test sets. Never-
theless, the magnitudes of the performance gains
for each model are slightly different compared to
the xSID data. Thus, while well-performing SID
systems are also useful for data from other distri-
butions, the performance patterns are not identical.

7 Conclusion

In all of our cross-lingual SID experiments, the per-
formance patterns are similar across dialects, but
the actual scores differ. To allow future research on
this kind of variation, we release a new evaluation
dataset (de-muc). In our experiments, intermediate-
task training tends to produce better results than
joint multi-task learning. Additionally, our Bavar-
ian auxiliary tasks (POS tagging and dependency
parsing, NER, MLM) were more beneficial for slot
filling than intent classification, with NER being
the overall most helpful auxiliary task.
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Limitations

Data The dialect tags should not be taken to re-
flect all dialect speakers from the respective regions,
nor necessarily the most traditional forms of these
dialects. That is, the new de-muc development/test
set only reflects the language of one young Munich
Bavarian speaker (see also §B.11).

Tasks Due to lack of data, we could not conduct
any experiments with sentence-level auxiliary tasks,
and we also could not compare our results to set-
tings with German or even Bavarian SID training
data.

We include MLM as one of our auxiliary tasks
since it is a common pre-training objective, albeit
not the one used for mDeBERTa v.3 (He et al.,
2021a), which instead uses replaced token detec-
tion (RTD; Clark et al., 2020). We use MLM as it
is supported by MaChAmp, and selecting a (sepa-
rate) MLM generator model for RTD would have
introduced additional task-specific parameters.

PLMs In the paper by van der Goot et al. (2021a),
the impact of the auxiliary tasks differs for two
PLMs. Due to computational constraints, we only
carried out the (non-baseline) experiments with a
single PLM and did not evaluate how robust the
results are across PLMs.

Implementation We decode the slot predictions
with a simple softmax layer. This might lead to
lower slot filling results than decoding the output
with conditional random fields to enforce consistent
BIO sequences (van der Goot et al., 2021a,b). We
do not assume that changing the output decoder
would lead to different trends regarding the effects
of MTL and intermediate-task training.

We use MaChAmp’s default settings, including
the maximum number of epochs (20) to keep feasi-
ble computation times. In many experiments, the
optimal number of epochs was 20 or close to 20.
It is possible that we could have reached better re-
sults with a larger number of epochs. Training the
model for longer might have been especially cru-
cial for MLM. We hypothesize that this might have
increased both the intermediate MLM and the final
SID performance of the MLM→SID model (§6.2).

We also use the default settings for all tasks,
including MLM. This leads to the MLM data being
split across epochs, leaving only a small portion
(70 sentences) being used per epoch. Disabling this
split might have lead to better or more consistent
MLM results.

References
Khadige Abboud and Gokmen Oz. 2024. Towards eq-

uitable natural language understanding systems for
dialectal cohorts: Debiasing training data. In Pro-
ceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources

https://aclanthology.org/2024.lrec-main.1433
https://aclanthology.org/2024.lrec-main.1433
https://aclanthology.org/2024.lrec-main.1433


137

and Evaluation (LREC-COLING 2024), pages 16487–
16499, Torino, Italia. ELRA and ICCL.
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A Dataset Distances

We compare how similar the translations are to each
other. For each pair of sentence translations, we
calculate the word-level Levenshtein (1966) edit
distance. We also select all words tagged as the
same slot type (ignoring the B or I prefixes) and
join them with blank spaces. For corresponding
pair of slot values, we calculate the character-level
edit distance. We normalize each distance by di-
viding it by the length of the longer phrase, and we
convert it into a similarity score by subtracting it
from 1.

For both similarity levels (sentences and slots)
and regardless of whether we consider casing differ-
ences, the two Central Bavarian translations (de-ba,
de-muc) are more similar to each other than any of
the other pairs (Table 3). The Bavarian and Stan-
dard German translations are closer to each other
than the Swiss German translation.

B Data Statement

B.1 Header

• Dataset Title: xSID de-muc

• Dataset Curator(s): Xaver Maria Krückl, Ver-
ena Blaschke, Barbara Plank

Slot similarity (chars), case sensitive
de de-ba de-mucde-st gsw

en 0.51 0.51 0.55 0.48 0.42
de 0.69 0.66 0.73 0.58
de-ba 0.77 0.68 0.56
de-muc 0.67 0.51
de-st 0.55

Slot similarity (chars), case insensitive
de de-ba de-mucde-st gsw

en 0.53 0.53 0.55 0.51 0.45
de 0.70 0.70 0.74 0.59
de-ba 0.81 0.69 0.58
de-muc 0.70 0.54
de-st 0.55

Sent similarity (words), case sensitive
de de-ba de-mucde-st gsw

en 0.15 0.16 0.22 0.14 0.08
de 0.27 0.20 0.33 0.14
de-ba 0.45 0.29 0.13
de-muc 0.24 0.13
de-st 0.13

Sent similarity (words), case insensitive
de de-ba de-mucde-st gsw

en 0.17 0.19 0.22 0.16 0.10
de 0.28 0.24 0.33 0.14
de-ba 0.50 0.30 0.13
de-muc 0.27 0.14
de-st 0.13

Table 3: Mean similarities between slots or sentences
corresponding to each other. The similarities are cal-
culates as 1 minus the normalized Levenshtein distance.

• Dataset Version: 1.0 (expected to be part of
xSID 0.7)

• Dataset Citation: Please cite this paper when
using this dataset.

• Data Statement Authors: Xaver Maria Krückl,
Verena Blaschke, Barbara Plank

• Data Statement Version: 1.0

• Data Statement Citation and DOI: Please cite
this paper when referring to the data state-
ment.

• Links to versions of this data statement in
other languages: —
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B.2 Executive Summary

xSID de-muc is a manually annotated (translated)
extension of the English xSID development and
train set (van der Goot et al., 2021a) into the Bavar-
ian dialect spoken in Munich. The development
set contains 300 translated samples and the test set
500. The intents were taken over from the English
gold examples whereas the slots were annotated
by the translator. The translations were made over
several weeks.

B.3 Curation Rationale

The purpose of xSID de-muc is to provide further
dialectal development and test data in addition to
other Bavarian translations. We hope to extend our
research on dialectal SID through our data.

B.4 Documentation for Source Datasets

The xSID de-muc development and test set are
based on the respective English sets from xSID
(van der Goot et al., 2021a; CC BY-SA 4.0), which
in turn are derived in equal parts from two larger
datasets, the Snips (Coucke et al., 2018; CC0 1.0
Universal) and Facebook (Schuster et al., 2019a;
CC-BY-SA license) datasets.

B.5 Language Varieties

xSID de-muc contains data in Munich Bavarian (a
Central Bavarian dialect), as spoken by a young
speaker.

B.6 Language User Demographic

The original data were created by crowd workers
whose demographics are not known. For the trans-
lator, see Annotator Demographic.

B.7 Annotator Demographic

The translator and annotator is a native speaker of
German and Munich Bavarian in his mid-twenties.
He annotated the data while finishing his Master’s
degree in Computational Linguistics and is one of
the authors of this paper.

B.8 Linguistic Situation and Text
Characteristics

xSID consists of random samples from the English
Snips (Coucke et al., 2018) and Facebook (Schus-
ter et al., 2019a) datasets, which are compiled from
utterances to be used for training digital assistants.
Both datasets were mainly crowd-sourced; annota-
tions were validated.

B.9 Preprocessing and Data Formatting

We directly worked with xSID’s English sentences
and did not apply any further preprocessing steps.
Like the rest of xSID, the data set is in the CONLL
format.

B.10 Capture Quality

Some sentences contain grammatical errors or ty-
pos in the original datasets. Following xSID’s trans-
lation guidelines, we retained such errors in the
de-muc translations.

B.11 Limitations

The data set is a translation, which probably differs
from the way speakers express themselves when
not prompted to translate (Winkler et al., 2024) or
in fluent conversation.

It reflects the language use of a single speaker.
It does not represent the most traditional form of
Munich Bavarian. Additionally, other speakers
might prefer other spellings (since Bavaria has no
established orthography).

B.12 Metadata

• Annotation Guidelines: Appendices F and G
of van der Goot et al. (2021a)

• Annotation Process: — (see this paper)

• Dataset Quality Metrics: —

B.13 Disclosures and Ethical Review

There are no conflicts of interest. This research is
supported by European Research Council (ERC)
Consolidator Grant DIALECT 101043235.

B.14 Distribution

The de-muc split will be included in xSID under
the same license, accessible via https://github.
com/mainlp/xsid.

B.15 Maintenance

Errors can be reported via GitHub issues or email-
ing us. Updates to the dataset (and the release
history) will be available in the repository.

B.16 Other

—

B.17 Glossary

—

https://github.com/mainlp/xsid/blob/main/LICENSE
https://github.com/sonos/nlu-benchmark/blob/master/LICENSE
https://github.com/sonos/nlu-benchmark/blob/master/LICENSE
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/mainlp/xsid
https://github.com/mainlp/xsid
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About this document
A data statement is a characterization of a dataset
that provides context to allow developers and
users to better understand how experimental results
might generalize, how software might be appropri-
ately deployed, and what biases might be reflected
in systems built on the software.

This data statement was written based on
the template for the Data Statements Version 3
Schema. The template was prepared by An-
gelina McMillan-Major and Emily M. Bender and
can be found at http://techpolicylab.uw.edu/
data-statements.

C Baseline Systems

Table 4 shows the results of our baseline systems
(no auxiliary tasks) and the baseline systems by
van der Goot et al. (2021a) on all languages that
were in the original xSID release. Note that we
use XLM-R while van der Goot et al. (2021a) use
XLM-15.

D Detailed Results

We include tables with detailed results for the
Bavarian dialects, in addition to results for Swiss
German, German, and English. Table 5 shows the
intent classification scores, Table 6 the slot detec-
tion scores, and Table 7 for fully correct classifica-
tions (slots and intents).

E Auxiliary Task Scores

Table 8 shows the scores on the development sets
of the auxiliary tasks.

F Additional Bavarian Test Sets

Table 9 shows results on the de-ba dataset in addi-
tion to other data in the same dialect (or dialects
spoken in the same region).

G Additional Examples

Table 10 provides another example for translation
(and prediction) differences between the Bavarian
dialects.

http://techpolicylab.uw.edu/data-statements
http://techpolicylab.uw.edu/data-statements
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ar da de de-st en id it ja kk nl sr tr zh

Intents (accuracy, in %)
mBERT (vdG) 63.1 87.5 74.2 67.8 99.7 80.7 81.7 53.9 60.1 72.3 75.7 74.7 83.3
mBERT 67.9 84.8 74.8 65.8 99.0 76.0 76.3 55.5 56.9 69.9 75.7 71.3 84.8
XLM-15 (vdG) 65.5 56.3 78.5 61.3 99.7 36.4 48.0 39.1 29.9 45.4 41.4 67.3 78.8
XLM-R 78.1 95.3 88.9 70.9 99.0 95.3 80.5 54.5 75.8 84.3 82.7 94.1 96.0
GBERT 27.2 61.9 82.9 73.8 99.2 46.9 52.3 5.6 34.9 59.1 45.7 46.6 23.8
mDeBERTa 86.9 96.5 97.9 78.3 99.1 96.3 97.4 79.2 89.9 96.5 89.1 97.2 96.9

Slots (strict slot F1, in %)
mBERT (vdG) 45.8 73.9 33.0 48.5 97.6 71.1 75.0 59.9 48.5 80.4 67.4 55.7 72.9
mBERT 52.4 70.3 68.4 41.3 94.1 63.8 69.9 39.4 32.2 70.1 55.0 32.9 48.0
XLM-15 (vdG) 49.1 26.3 33.3 39.4 97.0 14.9 27.3 33.4 10.9 30.9 15.9 45.5 57.6
XLM-R 62.3 80.9 73.7 32.1 93.8 76.6 75.6 51.0 45.2 82.2 63.9 52.9 66.8
GBERT 19.7 37.3 78.8 46.5 93.7 17.2 28.0 0.7 5.4 44.4 18.5 8.3 14.5
mDeBERTa 71.1 79.7 83.1 46.0 95.1 78.3 83.1 49.8 52.4 86.6 72.1 58.3 74.7

Fully correct (in %)
mBERT 18.5 44.5 34.6 9.5 88.3 31.6 37.7 20.3 8.5 37.1 24.6 12.4 15.9
XLM-R 28.8 64.4 49.3 6.9 88.5 56.0 47.4 25.9 16.9 57.7 38.0 34.6 46.4
GBERT 4.9 12.4 53.7 14.7 87.5 1.9 4.5 0.9 1.9 12.8 3.9 2.3 3.3
mDeBERTa 44.1 61.7 66.1 15.9 90.0 58.8 63.1 40.4 24.6 72.7 46.3 35.6 57.7

Table 4: Scores of our baselines on xSID’s original test language selection. We also include scores by van der
Goot et al. (2021a) for comparison (= vdG). XLM-15 refers to xlm-mlm-tlm-xnli15-1024 (Conneau and Lample,
2019).

de-muc de-ba de-st gsw de en

SID (mBERT) 61.31.2 65.72.4 65.82.0 48.72.2 74.81.7 99.00.2
SID (XLM-R) 55.52.6 68.90.7 70.91.2 47.12.6 88.91.7 99.00.2
SID (GBERT) 67.92.7 69.10.5 73.81.0 63.91.5 82.91.3 99.20.0
SID (mDeBERTa) 64.63.1 77.70.7 78.30.8 57.52.7 97.90.4 99.10.1
UD→SID 64.44.0 79.42.3 77.72.4 59.14.6 96.41.0 99.30.2
UD×SID 38.93.2 54.12.8 53.82.5 28.81.4 92.51.7 99.20.2
NER→SID 67.70.5 82.83.5 79.11.3 66.23.2 94.20.7 99.20.2
NER×SID 66.31.6 82.81.8 79.61.0 65.11.1 94.91.2 99.10.1
MLM→SID 62.52.2 77.82.9 75.01.8 58.95.2 94.42.4 99.30.2
MLM×SID 61.52.1 76.92.1 77.30.5 56.83.4 95.31.3 99.20.2
UD→NER→SID 69.91.0 84.32.9 80.71.5 65.41.8 96.30.7 99.10.1
UD×NER→SID 70.51.8 83.11.7 81.51.2 64.53.6 95.12.7 99.30.2
UD×NER×SID 54.82.4 65.43.5 67.71.1 46.43.1 93.00.9 99.30.1
MLM×UD→SID 65.91.0 79.31.4 76.62.5 58.81.0 94.71.5 99.10.2
MLM→NER→SID 66.71.0 83.31.6 80.51.1 64.31.9 97.30.5 99.20.2
MLM×NER→SID 69.01.7 85.81.3 81.10.7 69.41.7 96.01.1 99.10.1
MLM×NER×SID 67.71.0 84.70.5 81.22.6 69.13.3 95.31.0 99.40.2
MLM×UD×NER×SID 49.15.8 62.14.6 62.73.6 42.08.3 89.80.9 99.10.2

Table 5: Intent classification results in the three Bavarian dialects, Swiss German, German, and English. We
show mean scores (accuracy, in %) over three random seeds, with standard deviations in subscripts.

https://huggingface.co/FacebookAI/xlm-mlm-tlm-xnli15-1024
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de-muc de-ba de-st gsw de en

SID (mBERT) 44.11.1 43.21.1 41.31.0 21.31.3 68.41.2 94.10.3
SID (XLM-R) 34.41.6 35.40.7 32.10.7 14.20.6 73.71.3 93.80.5
SID (GBERT) 47.11.3 48.20.7 46.52.6 30.00.9 78.80.8 93.70.4
SID (mDeBERTa) 43.30.9 46.72.0 46.01.0 20.72.5 83.10.7 95.10.2
UD→SID 48.42.5 50.90.2 48.52.2 22.60.3 80.91.5 95.10.1
UD×SID 38.62.9 43.64.2 44.14.0 22.83.4 79.81.2 95.10.2
NER→SID 53.90.5 55.32.3 50.21.4 30.11.4 82.70.6 95.40.3
NER×SID 52.51.8 55.91.1 52.90.9 33.30.1 82.21.1 95.00.2
MLM→SID 37.42.9 40.84.1 40.53.4 18.12.0 78.71.6 94.80.6
MLM×SID 42.01.4 45.52.0 46.31.6 21.21.8 82.20.7 96.10.2
UD→NER→SID 53.61.9 56.43.6 53.03.2 30.72.4 82.31.9 95.40.5
UD×NER→SID 53.21.6 55.61.7 52.30.5 29.30.4 81.41.3 94.80.7
UD×NER×SID 44.12.6 45.95.1 44.15.3 25.75.0 78.42.4 95.30.4
MLM×UD→SID 48.42.6 50.23.3 48.91.8 21.82.2 81.10.9 94.70.3
MLM→NER→SID 51.81.7 53.40.9 49.31.4 29.50.9 80.00.3 95.10.3
MLM×NER→SID 52.51.1 56.50.9 52.11.6 31.81.9 82.50.4 94.40.8
MLM×NER×SID 53.71.1 56.60.3 54.21.5 32.70.9 83.00.9 95.50.3
MLM×UD×NER×SID 46.31.2 50.42.3 49.31.1 28.70.8 81.00.7 95.60.4

Table 6: Slots classification results in the three Bavarian dialects, Swiss German, German, and English. We
show mean scores (strict slot F1, in %) over three random seeds, with standard deviations in subscripts.

de-muc de-ba de-st gsw de en

SID (mBERT) 11.00.2 13.40.3 9.50.2 3.00.3 34.61.6 88.30.2
SID (XLM-R) 6.31.1 11.31.2 6.90.8 1.60.4 49.32.9 88.50.7
SID (GBERT) 15.90.5 15.51.2 14.72.3 7.50.9 53.73.0 87.50.6
SID (mDeBERTa) 12.42.0 17.11.3 15.90.9 5.31.1 66.11.1 90.00.4
UD→SID 17.71.5 21.30.4 18.02.0 5.10.7 63.31.7 90.30.4
UD×SID 10.20.7 14.92.9 13.81.3 3.81.0 57.82.9 90.50.5
NER→SID 21.61.1 24.93.1 19.62.0 7.91.1 64.71.2 91.00.3
NER×SID 18.52.4 25.61.0 19.61.4 10.10.3 63.50.9 90.30.5
MLM→SID 9.02.3 14.92.4 12.32.6 3.90.9 58.33.1 90.10.9
MLM×SID 11.91.5 16.42.7 14.61.3 3.80.0 63.21.5 91.90.3
UD→NER→SID 21.50.2 24.93.7 21.53.2 7.40.6 65.13.5 90.71.0
UD×NER→SID 21.11.6 25.51.9 20.41.6 7.30.3 63.11.4 89.90.8
UD×NER×SID 14.01.2 16.72.6 14.72.3 5.92.3 57.43.2 90.70.5
MLM×UD→SID 18.21.7 21.21.3 18.51.8 5.30.1 61.72.0 89.51.0
MLM→NER→SID 19.11.1 23.51.1 20.70.6 7.01.3 63.40.7 90.30.5
MLM×NER→SID 20.50.2 25.72.4 22.61.6 9.20.5 65.50.7 89.51.1
MLM×NER×SID 20.10.6 25.62.0 21.31.2 10.31.4 64.91.6 91.20.7
MLM×UD×NER×SID 15.11.3 19.12.3 16.71.6 7.41.1 58.91.5 91.10.5

Table 7: Proportions of fully correctly classified sentences (slots and intents) in the three Bavarian dialects,
Swiss German, German, and English. We show mean scores (in %) over three random seeds, with standard
deviations in subscripts.
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Dev scores Test scores

LAS ↑ POS ↑ NER ↑ PPL ↓ Intents ↑ Slots ↑

SID (mDeBERTa) 73.5 6.6 45.3 2.0
UD→SID 74.5 0.6 84.8 0.3 73.8 7.3 49.3 2.2
UD×SID 58.8 9.8 84.3 0.7 48.9 7.6 42.1 4.5
NER→SID 73.5 1.3 76.6 6.8 53.1 2.7
NER×SID 65.0 1.0 76.2 7.3 53.8 2.0
MLM→SID 436.4 22.2 71.8 7.1 39.6 3.8
MLM×SID 5.8 0.3 71.9 7.6 44.6 2.5
UD→NER→SID 75.2 0.7 85.6 0.9 72.6 0.4 78.3 6.4 54.3 3.3
UD×NER→SID 77.4 9.1 90.0 0.1 71.4 1.0 78.4 5.8 53.7 1.9
UD×NER×SID 67.2 9.4 86.4 0.2 63.9 0.7 62.6 6.2 44.7 4.6
MLM×UD→SID 75.5 4.0 86.1 0.7 44.8 1.3 74.0 6.0 49.2 2.7
MLM→NER→SID 70.1 2.6 436.4 22.2 76.8 7.4 51.5 2.2
MLM×NER→SID 72.9 0.6 7.0 1.8 78.6 7.2 53.7 2.3
MLM×NER×SID 66.3 0.3 5.7 0.4 77.9 7.5 54.8 1.7
MLM×UD×NER×SID 72.8 1.8 86.6 0.7 64.0 0.6 5.5 0.2 58.0 7.9 48.7 2.4

Table 8: Development set scores for the auxiliary tasks (LAS = labelled attachment score; POS = POS tagging
accuracy; NER = NER span F1; PPL = masked token perplexity). For context, we also show the intent accuracy
and slot-filling span F1 score on the Bavarian test sets. All scores are averaged over three runs, the SID scores
are additionally averaged over the three Bavarian test sets. Subscript numbers are standard deviations. Darker
background colours indicate better results for the auxiliary task scores. For the SID results, green cell backgrounds
indicate better results than the baseline, and red worse results.

Intents (acc., in %) Slots (span F1, in %) Fully correct (in %)

de-ba nat. MAS. de-ba nat. MAS. de-ba nat. MAS.

SID (mDeBERTa) 77.70.7 60.81.4 55.23.5 46.72.0 31.72.3 22.11.4 17.11.3 12.91.6 6.71.0
MLM×NER×SID 84.70.5 61.03.9 53.82.5 56.60.3 42.32.1 30.30.9 25.62.0 20.31.3 10.60.8
MLM×NER→SID 85.81.3 67.51.3 60.11.2 56.50.9 41.42.5 32.01.4 25.72.4 20.21.0 12.40.4

Table 9: Performances on different data sets with dialects from Upper Bavaria: xSID (de-ba), naturalistic data
(nat.), and a translated subset of MASSIVE (MAS.). The scores are averaged across three random seeds, with
standard deviations in subscripts.



146

DE-MUC (intent: reminder/set_reminder, predicted: weather/find p)
Erinnad mi dass i morgn papia tiacha im lodn hoi
Remind me that I tomorrow paper towels in.the store fetch.1SG

O O O O B–datet. B–rem./
todo

I–rem./
todo

I–rem./
todo

I–rem./
todo

I–rem./
todo

O ✓ O ✓ O ✓ O ✓ B–datet. ✓ B–rem./
todo

✓ O p O p O p O p

DE-BA (intent: reminder/set_reminder, predicted: reminder/set_reminder ✓)
Erinner mi moang Papiertaschentücher im Ladn zum hoin
Remind me tomorrow paper towels in.the store PART+DET fetch.INF (nominalized)

O O B-datet. B–rem./todo I–rem./
todo

I–rem./
todo

I–rem./
todo

I–rem./todo

O ✓ O ✓ O p B–rem./todo ✓ I–rem./
todo ✓

I–rem./
todo ✓

I–rem./
todo ✓

I–rem./todo ✓

DE-ST (intent: reminder/set_reminder, predicted: reminder/set_reminder ✓)
Erinner mi morgn in Gscheft a Küchnrolle zi kafn
Remind me tomorrow in(.the) store a kitchen roll to buy.INF

O O B-datet. B-rem./
todo

I–rem./
todo

I–rem./
todo

I–rem./
todo

I–rem./
todo

I–rem./todo

O ✓ O ✓ B-datet. ✓ O p I–rem./
todo ✓

I–rem./
todo ✓

I–rem./
todo ✓

I–rem./
todo ✓

I–rem./todo ✓

Table 10: Translations of “Remind me to get paper towels at the store tomorrow” into Bavarian dialects with
gold-standard and (correctly ✓ or incorrectly p) predicted annotations. Note the different syntactic structures
for expressing the infinitive or subordinated phrase, the different translations used for “store” and “paper towels”
(and the different order in which they are mentioned), and the spelling differences (e.g., for “tomorrow”). The
predictions are by the overall best-performing model, MLM×NER→SID, with the same random seed. Abbreviated
slots: datet. = datetime, rem. = reminder.
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