
Proceedings of the 5th Workshop on Trustworthy NLP (TrustNLP 2025), pages 66–81
May 3, 2025 ©2025 Association for Computational Linguistics

Error Detection for Multimodal Classification

Thomas Bonnier
Centrale Lille Alumni, France

thomas.bonnier@centraliens-lille.org

Abstract

Machine learning models have proven to be
useful in various key applications such as
autonomous driving or diagnosis prediction.
When a model is implemented under real-world
conditions, it is thus essential to detect potential
errors with a trustworthy approach. This mon-
itoring practice will render decision-making
safer by avoiding catastrophic failures. In this
paper, the focus is on multimodal classification.
We introduce a method that addresses error de-
tection based on unlabeled data. It leverages
fused representations and computes the proba-
bility that a model will fail based on detected
fault patterns in validation data. To improve
transparency, we employ a sampling-based ap-
proximation of Shapley values in multimodal
settings in order to explain why a prediction
is assessed as erroneous in terms of feature
values. Further, as explanation methods can
sometimes disagree, we suggest evaluating the
consistency of explanations produced by differ-
ent value functions and algorithms. To show the
relevance of our method, we measure it against
a selection of 9 baselines from various domains
on tabular-text and text-image datasets, and 2
multimodal fusion strategies for the classifica-
tion models. Lastly, we show the usefulness
of our explanation algorithm on misclassified
samples.

1 Introduction

Even though pretrained language models such as
BERT can achieve state-of-the-art performance in
various NLP tasks such as classification (Devlin
et al., 2019), they still have significant limitations
(Gawlikowski et al., 2023): they do not always
provide reliable uncertainty estimates, they are sen-
sitive to distribution shifts and adversarial attacks,
and their decisions are not fully transparent. In
that context, it is key to employ monitoring tools
that will render decision-making safer in applica-
tions where the costs of AI errors can be significant.

Error detection attempts to identify mispredicted
test inputs (Chen et al., 2021). Therefore, when
a model is implemented for critical applications
such as diagnosis prediction, autonomous driving
or financial investment, it is essential to detect and
avoid erroneous predictions that could have severe
consequences. When potential failure is identified,
the final decision could be, for instance, overridden
by subject matter experts. In that case, it can be
valuable to explain why a prediction is assessed as
erroneous, in terms of feature values.

Here the focus is on multimodal classification
tasks. Even though our method could be applied
to various types of modalities, we illustrate its rel-
evance in a bimodal context. Firstly, we concen-
trate on tabular datasets with text fields in English.
These datasets consist of categorical and numeri-
cal features (i.e. the tabular modality) and fields
with free-form text (i.e. the text modality) (Shi
et al., 2021). Categorical variables have discrete
values (e.g. ordinal, binary or variable with finite
number of categories) whereas numerical or quanti-
tative variables have continuous scalar values. Sec-
ondly, we consider applications with text and im-
age modalities. Various critical applications rely on
such datasets. In the medical field, clinical notes
and MRI data could be employed for diagnosis
prediction. In financial investment, models could
make decisions based on time series (e.g. asset
price) and text news for sentiment analysis.

Our objective is to evaluate what method may
perform best with regard to error detection for mul-
timodal classifiers. Our approach is illustrated in
Figure 1. We highlight the following contributions:

• We introduce Error Detection with Informative
Partition (EDIP), a method that aims to detect
misclassified inputs based on fused representa-
tions extracted from a multimodal classifier. It
assesses the probability of misprediction for a
given test input by computing the error rate of

66

BERT Tokenizer

BERT model
(L layers)

Extract 𝐳[CLS]
last, text

Prepend [CLS]𝑡𝑎𝑏

Tabular
Transformer

model
(M layers)

Linear
Embeddings

Category
Embeddings

||

𝐱𝑐𝑎𝑡 𝐱𝑛𝑢𝑚

𝐭𝐞𝐱𝐭

Extract 𝐳[CLS]
last, tab

||

Fully Connected
𝐥𝐨𝐠𝐢𝐭𝐬

Softmax

0 1

𝒛1

𝒛2

Validation partition
0-1 Loss

Error patterns

Test input
FusionError probab. 0.7

1

2

3

𝐱𝑐𝑎𝑡

𝐱𝑛𝑢𝑚

𝐭𝐞𝐱𝐭

Contributions to
error likelihood

Quality of
explanations

Figure 1: Illustration of our method: (1) Error pat-
terns are learned on labeled validation data by leverag-
ing fused representations extracted from a multimodal
classifier whose LateFuse architecture is detailed in ap-
pendix D; (2) The probability of error for a test input is
assessed based on the selected subset of partition; (3)
The error explanation module is based on a sampling-
based approximation of Shapley values, with evaluation
of the consistency of explanations produced by different
value functions and algorithms.

(labeled) validation instances involved in similar
error patterns. Our method is not specific to any
type of modality.

• We show that EDIP can be used as value func-
tion in a sampling-based algorithm that approx-
imates Shapley values in multimodal settings.
This turns out to be useful in explaining why a
prediction is assessed as erroneous in terms of
feature values. We evaluate the quality of an
explanation by verifying its consistency across
various value functions and algorithms.

• We assess our method by comparing it to 9 base-
lines from different domains on tabular-text and
text-image datasets, and 2 multimodal fusion
schemes for the classification models. All the
methods are external approaches that can be ap-
plied to pretrained models without modification.

2 Prior Work

In this section, we summarize the prior work related
to error detection. We also describe methods from
closely connected domains: out-of-distribution
(OOD) detection and uncertainty estimation.

Multimodal fusion. A multimodal model ex-
ploits heterogeneous and connected modalities like
image and text as inputs. This approach aims to
learn representations of cross-modal interactions
by fusing information across various modalities
(Liang et al., 2024; Xu et al., 2023). With the early
fusion strategy, cross-modal interactions occur at
an early stage. For a Transformer with early con-
catenation of two modalities, full pairwise attention
will be computed at all layers. In contrast, late fu-
sion of final representations makes cross-modal
interactions happen at a later step.

Error detection. To detect model failure during
inference, Corbière et al. (2019) propose a method
which estimates the true class probability in image
classification tasks. Self-training ensembles can
be leveraged for error detection and unsupervised
accuracy estimation (Chen et al., 2021). Concern-
ing explanation methods, Shapley values (Shap-
ley, 1953), based on cooperative game theory, is a
method, when applied to machine learning, which
computes the contribution of features to a model’s
prediction. Parcalabescu and Frank (2023) intro-
duce MM-SHAP, a multimodality score based on
Shapley values, which helps detect unimodal col-
lapse. However, Krishna et al. (2024) point out
that the outputs of different explanation techniques
can disagree with each other, and suggest various
metrics to measure disagreement between top-k
features: intersection or rank.

Confidence scores and uncertainty. The maxi-
mum softmax probability turns out to be a useful
baseline to estimate confidence (Hendrycks and
Gimpel, 2017). However, as models such as neu-
ral networks can be miscalibrated, techniques such
as temperature scaling are suggested to better cal-
ibrate the class probability estimates (Guo et al.,
2017a). Liu et al. (2020) show the relevance of
the energy score in OOD detection tasks as it is
aligned with the probability density of the input.
To quantify predictive uncertainty, methods such as
conformal prediction can produce prediction sets
based on an expected coverage level (Vovk et al.,
2005; Papadopoulos et al., 2002). In particular,
Tibshirani et al. (2019) propose a weighted version
of conformal prediction under covariate shift. To
estimate predictive uncertainty, Lakshminarayanan
et al. (2017) employ deep ensembles with random
parameter initialization for each neural network,
along with random shuffling of the data points. The
predictive entropy can be computed after averaging

67

the predicted probabilities from each network. To
avoid the computational cost of Bayesian models,
Gal and Ghahramani (2016) introduce a Bayesian
approximation for deep neural networks. When
evaluating the predictive uncertainty for a test in-
put, the Monte Carlo dropout corresponds to per-
forming various forward passes with dropout. To
evaluate the trustworthiness of predictive uncer-
tainty, Ovadia et al. (2019) present a benchmark
of different methods under dataset shift (e.g. deep
ensembles). To explain uncertainty estimates, An-
toran et al. (2021) propose CLUE, a method based
on counterfactuals, which identifies which features
are responsible for uncertainty in probabilistic mod-
els. Lastly, Watson et al. (2023) explain predictive
uncertainty by adapting the computation of Shap-
ley values with the conditional entropy as value
function.

OOD detection. Certain methods can be used to
detect OOD samples. Dataset shifts appear when
the respective source (training) and test joint distri-
butions p and q are different: p(x, y) ̸= q(x, y) for
covariates x and class variable y (Moreno-Torres
et al., 2012). In that context, the domain classi-
fier (Rabanser et al., 2019) is trained to discrim-
inate between data from source (class 0) and tar-
get (class 1) domains. A dataset shift is detected
when this model can easily identify from which do-
main the samples originate. Distance-based meth-
ods, such as non-parametric deep nearest neighbors
(Sun et al., 2022), can leverage feature embeddings
from a model in order to perform OOD detection.

3 Method

We have a C-class classification problem, where
each input x ∈ X contains multimodal features.
The true class is y ∈ Y = {0, 1, . . . , C − 1}.
We consider a source dataset D = {(xi, yi)}ni=1,
which includes n points sampled i.i.d. from distri-
bution p. Further, D is randomly partitioned into
a training dataset Dtrain and a validation dataset
Dval. We consider a class of hypotheses H map-
ping X to ∆C−1, where ∆C−1 is the probabil-
ity simplex over C classes. Given a classifier
π̂ ∈ H fitted on Dtrain, the predicted label is
ŷ = argmaxj∈Y π̂j(x), ∀x ∈ X. Further, the
0-1 loss is defined as L(π̂(x), y) = 1y ̸=ŷ, where
1condition is 1 if the condition is true, 0 otherwise.
We assume we can extract feature embeddings z
from the model π̂: we have z = ϕ(x), where the
multimodal feature encoder ϕ : X→ Rd includes

a fusion scheme (e.g. late fusion), and d is the
embedding dimension. For example, z could be
the concatenation of the [CLS] tokens’ final hid-
den states from the two modalities (see Figure 1),
where [CLS] corresponds to the classification to-
ken defined by Devlin et al. (2019). Given π̂ and
unlabeled test dataset T , our objective is to identify
mispredicted inputs.

3.1 EDIP

EDIP (Error Detection with Informative Partition)
estimates the likelihood that π̂ will fail based on
detected error patterns. To achieve this, we first
construct the label by computing the 0-1 loss for
each data point of Dval, indexed by Ival. EDIP,
defined as f̂ : Rd → ∆1, learns to detect error
patterns: f̂ = C({(zi,L(π̂(xi), yi)) : i ∈ Ival}),
where C denotes any classification algorithm lever-
aging partitions of the feature space. It takes in
data indexed by Ival in order to output a classifier
fitted on that data, where zi = ϕ(xi). The parti-
tion should be informative in terms of error rate, in
the sense that each subset conditioned on z should
bring more information than considering the whole
validation dataset. In other words, the objective is
to construct a partition that provides large informa-
tion gains H(L(π̂(X), Y)) −H(L(π̂(X), Y)|Z),
where H denotes the entropy (Shannon, 1948) and
Z = ϕ(X). C could be, for example, a classi-
fication tree (Breiman et al., 1984) or a random
forest (Breiman, 2001). The choice of this category
of algorithm is justified by their flexibility, perfor-
mance, and ease of interpretation of the following
inference formulas.

Thus, for a new test input x′, we address error
detection by computing f̂1(z

′), where z′ = ϕ(x′).
f̂1(z

′) estimates the probability that the 0-1 loss
equals 1 given z′. If f̂ is a classification tree, we
have:

f̂1(z
′) =

∑

i:zi∈λ(z′)

L(π̂(xi), yi)

|λ(z′)|

λ(z′) is the leaf node where z′ falls into. |.| denotes
the cardinality of a set. Therefore, |λ(z′)| is the
number of validation samples zi = ϕ(xi) that are
contained in leaf node λ(z′). EDIP thus estimates
the probability of misclassification for a given test
input by computing the error rate of validation sam-
ples involved in similar error patterns. The latter
are defined by the decision path that leads to λ(z′).

If f̂ is a random forest with T trees combined by

68

bootstrap aggregation, we have:

f̂1(z
′) =

1

T

T∑

t=1

∑

i:zi∈λt(z′)

bt(zi)L(π̂(xi), yi)

|λt(z′)|

bt(zi) is the number of times that the validation
instance zi has been chosen by bootstrapping in
the construction of tree t. λt(z

′) denotes the leaf
node from tree t, which contains z′. |λt(z

′)| is the
number of bootstrap (validation) samples that are
contained in leaf node λt(z

′) from tree t.

Algorithm 1 Explanation algorithm for one feature
Input: input x from test dataset T , feature index
j, index set of tabular features Itab, index set of
text features Itext, validation dataset Dval, EDIP
model f̂ , feature encoder ϕ component of model π̂,
number of iterations M
Output: Shapley value Φj(x) for given feature
(contribution to predicted probability of error)

1: for m = 1 to M do
2: Sample x∗ ∼ Dval

3: Select random subset of tabular feature in-
dicesRtab ⊂ Itab\{j}

4: Select random subset of text feature indices
Rtext ⊂ Itext\{j}

5: Initialize x+j ← x ▷ here, the subscript is
related to features

6: Replace all tabular values in x+j with in-
dex inRtab by corresponding values from x∗

7: Replace all text values in x+j with index
in Rtext by [MASK] token when these token
values are not in x∗

8: Initialize x−j ← x+j

9: if j ∈ Itab then
10: Replace the tabular value in x−j with

index j by the corresponding value from x∗

11: else
12: Replace the text value in x−j with in-

dex j by the [MASK] token when this token
value is not in x∗

13: end if
14: z+j ← ϕ(x+j) and z−j ← ϕ(x−j)

15: Φm
j (x)← f̂1(z+j)− f̂1(z−j) ▷ compute

marginal contribution
16: end for
17: Φj(x)← 1

M

∑M
m=1Φ

m
j (x) ▷ approximated

Shapley value
18: return Φj(x)

3.2 Explanation method

Explanation algorithm. In this subsection, we
focus on tabular-text data. However, the following
method could be generalized to additional modali-
ties by adapting the mask to the modality type (e.g.
masking image patches with blurring or inpainting).
Shapley values (Shapley, 1953), based on cooper-
ative game theory, is a method, when applied to
machine learning, which computes the contribu-
tion of features to a model’s prediction. Here, we
present a sampling-based algorithm that aims to
explain why a prediction is assessed as erroneous
in terms of feature values x. Our method adapts the
algorithm from Štrumbelj and Kononenko (2010),
which approximates Shapley values by randomly
and repeatedly selecting a subset of features instead
of all possible coalitions in order to overcome ex-
ponential time complexity. We make several adap-
tations to achieve our objective. Firstly, we do
not aim to explain the classifier’s predictions; our
goal is to justify why a model might fail. There-
fore, we leverage a different kind of value function
(EDIP) to estimate the feature contributions. Sec-
ondly, the context is multimodal; in particular, we
focus on tabular-text data and models. It is worth
noting that EDIP computes probabilities based on
embeddings z while we want to generate expla-
nations in terms of the input values x. In a nut-
shell, for a new test input x′ (with z′ = ϕ(x′)) and
EDIP f̂ , we want to understand what contributes
to f̂1(z

′) − Ei∼Ival [f̂1(zi)], in terms of text and
tabular feature values.

The approach is described in Algorithm 1 for a
test input x, where we compute the average con-
tribution of a tabular feature with index j or a text
feature (i.e. token) with index (i.e. position) j. We
perform M Monte Carlo iterations to approximate
the Shapley value. In order to assess the marginal
contribution of a feature value with feature index j,
we construct two new instances x+j and x−j from
x by combining the effect of randomness in sam-
ples from Dval and in feature indices for tabular
and text modalities. To mask tokens, we replace
text tokens by the mask token [MASK] (Devlin
et al., 2019). As a value function, EDIP model f̂
is used to assess the marginal contribution of the
feature value to the predicted probability that π̂ will
fail. Lastly, we compute the Shapley value as the
average of contributions over M iterations.

Measuring the quality of explanations. To mea-
sure the quality of explanations produced by Algo-

69

rithm 1, we suggest verifying the consistency with
outputs generated by other techniques. Firstly, a
different value function can be used in Algorithm 1,
in order to assess the feature contributions. For in-
stance, deep ensembles (Lakshminarayanan et al.,
2017) can be leveraged to compute the contribution
to uncertainty: Φm

j (x) = u(z+j)− u(z−j), where

u(z) = −∑
j∈Y

(
1
E

∑E
e=1 p(j|z; θe)

)
log2

(
1
E

∑E
e=1 p(j|z; θe)

)

In that case, the marginal contribution Φm
j (x) from

line 15 in Algorithm 1 equals the difference in pre-
dictive entropies computed with E neural networks
with respective parameters θe

Secondly, in Algorithm 1, each perturbation sam-
ple (x+j and x−j) can be modified into a vector
v ∈ {0, 1}(|Itab|+|Itext|), where each entry from
v equals 1 when the corresponding feature value
from x is present and 0 when it is absent. |Itab|
and |Itext| denote the numbers of tabular features
and text tokens, respectively. If we compute Al-
gorithm 1 for the |Itab|+ |Itext| features, we can
obtain 2×M×(|Itab|+ |Itext|) instances of v and
related f̂1(.) values (i.e. f̂1(z+j) and f̂1(z−j) for
M iterations and |Itab| + |Itext| features). Then,
we compute the Kernel SHAP weights for each v
(Lundberg and Lee, 2017) and fit a weighted Lasso
regression r̂ : {0, 1}(|Itab|+|Itext|) → R, where v
are the features and f̂1(.) the response values (or
u(.) for deep ensembles). Lastly, the coefficients
in this regression function are the Kernel SHAP
feature contributions.

The consistency between the outputs obtained
with EDIP and those generated by each of these
alternative methods can be assessed, by computing
the Pearson correlation coefficients.

4 Experiments

We empirically test the relevance of our method
on various classification datasets. In the appendix,
we provide further details on the experimental set-
tings and results (e.g. datasets, data preprocessing,
multimodal architectures, baselines, variability in
results).

4.1 Settings
Datasets. We test the relevance of our method on
7 classification datasets, with a number of classes
ranging from 2 to 100. For tabular-text applications,
we use airbnb, cloth, kick, petfinder, and wine with
the 10/100 most frequent classes (referred to as
wine10 and wine100, respectively). These datasets

have been tested by (Shi et al., 2021) and (Gu and
Budhkar, 2021). The text-image use case is based
on Food-101 dataset (Bossard et al., 2014) with
image and textual information (Gallo et al., 2020).
For this dataset, we concentrate on the first five
classes arranged in alphabetical order (food5).

Architectures. For the multimodal tabular-text
classifier π̂, we employ four different architec-
tures: (1) AllText-BERT-TaB: The tabular features,
converted to strings, and the text fields are con-
catenated and input into BERT-base-uncased (De-
vlin et al., 2019) as text; (2) LateFuse-BERT-TaB
(Figure 1): A tabular-text dual-stream model with
late concatenation of the [CLS] tokens’ final hid-
den states extracted from BERT-base-uncased and
a tabular Transformer; (3) AllText-DBERT-TaB:
This architecture is similar to AllText-BERT-TaB,
except that we employ DistilBERT-base-uncased
(Sanh et al., 2019) instead of BERT; (4) LateFuse-
DBERT-TaB: Similar to LateFuse-BERT-TaB with
DistilBERT-base-uncased for the text stream in-
stead of BERT. Each pretrained model is fully fine-
tuned onDtrain with a batch size of 32, by minimiz-
ing the cross-entropy loss with AdamW algorithm
(Loshchilov and Hutter, 2019), with a learning rate
of 5e− 5.

For the text-image classifier π̂, we employ the
following architectures: (1) BERT-ViT: A text-
image dual-stream model with late concatenation
of the [CLS] tokens’ final hidden states extracted
from BERT-base-uncased and the Vision Trans-
former ViT-base-patch16-224 (Dosovitskiy et al.,
2021); (2) DBERT-ViT: This architecture is similar
to BERT-ViT, except that we employ DistilBERT-
base-uncased instead of BERT. Each pretrained
model is fully fine-tuned on Dtrain with a batch
size of 64, by minimizing the cross-entropy loss
with stochastic gradient descent, with a learning
rate of 1e− 3.

For all the models, we use early stopping with
patience of 1 for the accuracy on Dval. An expo-
nential learning rate scheduler with gamma of 0.9
is employed. We keep the best model in terms of
epochs, i.e. with the highest accuracy on Dval.

Evaluation. For each experiment, all the meth-
ods are calibrated on the validation data Dval and
evaluated on the same test dataset T with a size of
1000 rows. Each use case is run over 5 different
random dataset partitions. The final hidden state of
the classification token [CLS] (referred to as zlast

[CLS])
and the softmax output π̂(x) are extracted from π̂.

70

Model Dataset AC ACSC CP DC DENS DNN EDIP ENRG MCD TCP

airbnb 0.590 0.603 0.612 0.503 0.612 0.527 0.636 0.594 0.596 0.515
cloth 0.746 0.753 0.717 0.508 0.770 0.670 0.764 0.726 0.750 0.556

AllText- kick 0.871 0.871 0.598 0.493 0.884 0.487 0.874 0.759 0.874 0.599
BERT-TaB petfinder 0.551 0.556 0.547 0.465 0.551 0.496 0.583 0.512 0.546 0.506

wine10 0.859 0.664 0.736 0.511 0.855 0.715 0.873 0.807 0.846 0.528
wine100 0.864 0.732 0.844 0.485 0.844 0.644 0.861 0.853 0.852 0.578

airbnb 0.629 0.638 0.631 0.511 0.624 0.525 0.636 0.619 0.644 0.528
cloth 0.748 0.712 0.710 0.524 0.770 0.666 0.761 0.671 0.753 0.559

LateFuse- kick 0.838 0.839 0.626 0.484 0.861 0.569 0.886 0.651 0.839 0.573
BERT-TaB petfinder 0.591 0.594 0.585 0.496 0.577 0.471 0.615 0.509 0.583 0.534

wine10 0.863 0.864 0.774 0.489 0.864 0.679 0.865 0.817 0.853 0.538
wine100 0.869 0.646 0.852 0.516 0.850 0.715 0.870 0.850 0.860 0.579

airbnb 0.630 0.631 0.620 0.503 0.600 0.547 0.649 0.575 0.628 0.527
cloth 0.763 0.768 0.726 0.514 0.771 0.655 0.766 0.694 0.762 0.549

AllText- kick 0.863 0.863 0.572 0.484 0.875 0.561 0.865 0.742 0.863 0.608
DBERT-TaB petfinder 0.568 0.568 0.561 0.490 0.554 0.527 0.590 0.532 0.570 0.502

wine10 0.873 0.873 0.758 0.491 0.848 0.755 0.867 0.831 0.858 0.501
wine100 0.869 0.871 0.849 0.486 0.839 0.650 0.865 0.850 0.857 0.555

airbnb 0.618 0.631 0.626 0.502 0.609 0.518 0.638 0.606 0.614 0.549
cloth 0.742 0.748 0.731 0.537 0.769 0.672 0.774 0.655 0.747 0.551

LateFuse- kick 0.842 0.842 0.598 0.501 0.860 0.634 0.871 0.628 0.844 0.547
DBERT-TaB petfinder 0.574 0.574 0.560 0.493 0.571 0.490 0.602 0.524 0.572 0.523

wine10 0.850 0.745 0.776 0.523 0.855 0.707 0.869 0.818 0.835 0.536
wine100 0.867 0.871 0.854 0.494 0.840 0.698 0.868 0.851 0.854 0.596

BERT-ViT food5 0.912 0.754 0.493 0.461 0.897 0.869 0.912 0.882 0.905 0.593

DBERT-ViT food5 0.894 0.890 0.555 0.456 0.889 0.852 0.893 0.789 0.865 0.576

Average rank 3.4 3.7 5.9 9.9 3.8 8.1 1.6 6.2 3.9 8.5

Table 1: Evaluation of the methods with AUROC computed on the test data for 5 random seeds. For a given
model and dataset, the best result is in bold (higher is better). The last row displays the average rank over models
and datasets. The variability in results is displayed in appendix G. The performance (error rate) of classifiers is
displayed in appendix E.

For the architectures based on late fusion, zlast
[CLS]

is the concatenation of the Transformer streams’
final hidden states of the [CLS] tokens (i.e. states
before the classification head). For EDIP, we use
a random forest algorithm with the default hyper-
parameter setting from Scikit-learn Python pack-
age (Pedregosa et al., 2011). zlast

[CLS] and π̂(x) are
concatenated and used as features for EDIP. Our
method is compared to the following baselines pre-
viously described in section 2.

9 baselines are used for error detection, where
the scores are computed for a given test input:

• AC (Average Confidence): The score is one mi-
nus the maximum confidence (i.e. one minus the
maximum softmax probability).

• ACSC (Average Confidence - SCaled): The
score is one minus the maximum confidence af-
ter applying temperature scaling to the softmax
output. The temperature is set by optimizing the
Expected Calibration Error (ECE) (Guo et al.,

2017b) with the L-BFGS algorithm (Liu and No-
cedal, 1989) on Dval.

• CP (Conformal Prediction): The score is the
prediction set size computed with the weighted
conformal prediction (Tibshirani et al., 2019)
based on LAC method (Sadinle et al., 2019).

• DC (Domain Classifier): We use the class 1’s
predicted probability.

• DENS (Deep Ensembles): The uncertainty is
assessed with the predictive entropy, after aver-
aging the probabilities from a deep ensemble of
5 neural networks trained with zlast

[CLS].

• DNN (deep nearest neighbors): We use the dis-
tance to the k-th neighbor (k = 10) from the
validation data with the deep nearest neighbors
fitted with zlast

[CLS] as features. The feature space is
normalized with the L2 norm as a pre-requisite,
as advised by Sun et al. (2022).

71

Review

‘I thought these were great everyday shirts for the price. i got

them on sale over christmas. they fit well and i really love the

striped shirt. the navy is an odd color and looks strange with

jeans but i love the top regardless’

Div.

Name
Dpt Name Class Name Age

Pos. Feedback

Count

General Tops Knits 26 0

cloth
Algo 1

(EDIP)

Algo 1

(DENS)

K-SHAP

(EDIP)

K-SHAP

(DENS)

Algo 1

(EDIP)
1 0.38 0.84 0.73

Algo 1

(DENS)
0.38 1 0.19 0.38

K-SHAP

(EDIP)
0.84 0.19 1 0.88

K-SHAP

(DENS)
0.73 0.38 0.88 1

Figure 2: Left: Multimodal input from cloth dataset, where the task is to predict a product score granted by the
customer from 1 worst, to 5 best. The true rating is y = 5 whereas LateFuse-BERT-TaB predicts ŷ = 4. EDIP
outputs a probability of error of 71%. Middle: Top 10 feature contributions to the predicted likelihood of error,
computed with Algorithm 1 leveraging EDIP as value function. Positive contributions are displayed in red. Right:
Pearson correlation matrix between the outputs of various explanation methods: algorithms (Algo 1: Algorithm 1,
K-SHAP: Kernel SHAP) and value functions (EDIP, DENS).

Review

‘This dark-colored and smooth-textured wine has classic aromas

and flavors like black cherry, black olive and bell pepper along

with medium body.’

Country Year Points Price

US 2014 86 18.0

wine10
Algo 1

(EDIP)

Algo 1

(DENS)

K-SHAP

(EDIP)

K-SHAP

(DENS)

Algo 1

(EDIP)
1 0.64 0.68 0.41

Algo 1

(DENS)
0.64 1 0.24 0.42

K-SHAP

(EDIP)
0.68 0.24 1 0.76

K-SHAP

(DENS)
0.41 0.42 0.76 1

Figure 3: Left: Multimodal input from wine10 dataset, where the task is to predict the variety of grapes. The true
label is Cabernet Sauvignon while LateFuse-BERT-TaB predicts Red Blend. EDIP outputs a probability of error
of 70%. Middle: Top 10 feature contributions to the predicted likelihood of error, computed with Algorithm 1
leveraging EDIP as value function. Right: Pearson correlation matrix between the outputs of various explanation
methods: algorithms (Algo 1: Algorithm 1, K-SHAP: Kernel SHAP) and value functions (EDIP, DENS).

• ENRG: We employ the energy score.

• MCD (Monte Carlo Dropout): The uncertainty is
assessed with the predictive entropy. We enable
the dropout layers from π̂ during test-time. The
dropout probability is set to 0.1. For each test
example, we perform P = 5 forward passes
with π̂ and corresponding parameters θp. Then,
we calculate the total uncertainty (entropy) after
averaging the predicted probabilities:

u(x) = −∑
j∈Y

(
1
P

∑P
p=1 π̂j(x; θp)

)
log2

(
1
P

∑P
p=1 π̂j(x; θp)

)

• TCP (True Class Probability): The score is one
minus the true class probability estimated with a
neural network trained with zlast

[CLS].

For a given architecture (e.g. LateFuse-BERT-
TaB), the performance in error detection is assessed
by computing AUROC (Area Under the Receiver
Operating Characteristic curve) with all the test
data from different seeds: we calculate the scores
for accurate (label 0) and incorrect (label 1) predic-
tions, and quantify how well these two labels are

separated for a range of thresholds. Lastly, we also
perform ablation studies to compare the results of
EDIP with (1) Ablation 1: EDIP using only zlast

[CLS]
as features, or (2) Ablation 2: EDIP leveraging
only the classifier’s output π̂(x).

Explanation algorithm. We experiment with
two different value functions: EDIP and deep en-
sembles. In order to accelerate the computation
of Shapley values, we stop the iterations when a
convergence criteria is reached. To achieve that,
we first compute the maximum absolute difference
between the previous and updated Shapley values,
every 10 iterations and for each value function. We
end the process when the maximum of these two
values is lower than 0.01.

4.2 Results
Evaluation of the methods. The results in Ta-
ble 1 show that EDIP outperforms the other meth-
ods in error detection over the various model archi-
tectures and datasets. EDIP secures first rank in 15
out of 26 use cases, with an average rank of 1.6.

72

Methods based on the maximum softmax proba-
bility (AC, ACSC) and those based on uncertainty
quantification (DENS, MCD) also achieve good
AUROC performance, with average ranks ranging
from 3.4 to 3.9. The domain classifier (DC) and
deep nearest neighbors (DNN) may be more ap-
propriate for OOD detection than error detection,
which may explain their performance here.

Explanation algorithm. Figure 2 shows an ex-
ample from cloth dataset where LateFuse-BERT-
TaB underestimates the rating for the correspond-
ing input. EDIP estimates a probability of error
of 71%. Further, our sampling-based algorithm
displays the top 10 feature contributions to the as-
sessed probability of failure. In particular, the bar
plot (middle) displays the combination of certain
tabular feature values (e.g. Age = 26) and tokens
(e.g. "strange", "but") that contribute to EDIP es-
timation and might explain why LateFuse-BERT-
TaB wrongly predicted a lower rating. Lastly, the
correlation matrix (right) shows that three explana-
tion methods are in agreement (Algorithm 1 with
EDIP, Kernel SHAP with EDIP, Kernel SHAP with
DENS) and may be more reliable than the remain-
ing one. This explanation method could be useful
in critical applications (e.g. financial or medical
field) where subject matter experts need to under-
stand if and why a prediction is likely to be incor-
rect.

Lastly, another example is displayed in Figure 3,
where LateFuse-BERT-TaB predicts an incorrect
variety of grapes for a multimodal input from
wine10 dataset. EDIP estimates a high likelihood
of error (70%). The bar plot (middle) provide clues
to explain why the classifier may have mixed up the
varieties of grapes, with positive contributions from
tabular features values (e.g. country = US, price
= 18.0) and tokens (e.g. "cherry", "pepper"). The
correlation matrix (right) shows that Algorithm 1
with EDIP is quite reliable in that case: its outputs
moderately or strongly correlate with the outputs
of the other methods.

Ablation studies. The results for each model ar-
chitecture and dataset are presented in Table 2.
Even though Ablation 1 and EDIP sometimes
achieve very close AUROC, EDIP turns out to per-
form best in detecting errors overall (first rank in
18 out of 26 use cases). Further, EDIP seems to
be more stable, while Ablation 2’s performance is
significantly lower for some of the use cases: e.g.
Ablation 2’s AUROC on kick dataset with AllText-

Model Dataset Abl.1 EDIP Abl.2

airbnb 0.638 0.636 0.608
cloth 0.764 0.764 0.718

AllText- kick 0.874 0.874 0.790
BERT-TaB petfinder 0.572 0.583 0.536

wine10 0.872 0.873 0.863
wine100 0.846 0.861 0.859

airbnb 0.623 0.636 0.640
cloth 0.762 0.761 0.725

LateFuse- kick 0.885 0.886 0.764
BERT-TaB petfinder 0.618 0.615 0.555

wine10 0.860 0.865 0.864
wine100 0.855 0.870 0.871

airbnb 0.648 0.649 0.614
cloth 0.767 0.766 0.726

AllText- kick 0.865 0.865 0.773
DBERT-TaB petfinder 0.589 0.590 0.557

wine10 0.859 0.867 0.866
wine100 0.849 0.865 0.864

airbnb 0.632 0.638 0.635
cloth 0.776 0.774 0.732

LateFuse- kick 0.874 0.871 0.747
DBERT-TaB petfinder 0.597 0.602 0.532

wine10 0.858 0.869 0.856
wine100 0.856 0.868 0.866

BERT-ViT food5 0.905 0.912 0.900

DBERT-ViT food5 0.890 0.893 0.890

Table 2: Results of the ablation studies with AUROC
computed on the test data for 5 random seeds. For a
given model and dataset, the best results are in bold
(higher is better). Ablation 1 (Abl.1): EDIP using only
zlast

[CLS] as features. Ablation 2 (Abl.2): EDIP leveraging
only the classifier’s output π̂(x).

BERT-TaB.

5 Conclusion

We introduced a method to compute and explain the
likelihood of failure in multimodal classification
tasks. We compared our method to 9 baselines and
evidenced that EDIP can be a useful approach to
identify misclassified inputs. Detecting errors and
providing explanations to subject matter experts is
a first step toward safer machine learning systems.
With this type of human-AI interaction, experts
can thus make more informed decisions, justify
their choice, and override the classifier’s output if
necessary. Future work could address the case of
other modalities and multimodal OOD settings.

6 Limitations

Multimodal datasets for safety-critical tasks.
The multimodal datasets employed in this paper are
not related to real-world high-stakes applications

73

such as diagnosis prediction or financial decision-
making. We expect more multimodal datasets re-
lated to safety-critical tasks to be publicly shared
in order to test the relevance of our method in envi-
ronments where incorrect predictions can lead to
serious consequences.

Relevance of perturbation-based explanation
method. For text features, the perturbation-based
explanation method is based on inserting [MASK].
Such synthetic perturbations do not reflect natu-
ral linguistic variation. Consequently, this might
affect the accuracy of feature attributions. Other
perturbation-based approaches could be consid-
ered.

Multimodal OOD settings. We have not evalu-
ated the performance of EDIP when the test data
is affected by distribution shifts in a multimodal
context; this remains to be seen. In particular, it
would be useful to understand how to identify in-
variant representations so that EDIP could detect
mispredicted inputs in shifting environments.

Computational complexity. The computational
complexity of EDIP may be a restrictive factor,
especially in large-scale multimodal applications
(e.g. high embedding dimensions). The method
requires training an auxiliary classifier to detect
error patterns, and its reliance on Monte Carlo-
based Shapley value approximation introduces ad-
ditional computational overhead. Therefore, ap-
plying this method to high-dimensional inputs can
significantly step up processing time and memory
requirements.

7 Ethical Considerations

Our method is not intended to predict or exploit
any sensitive information. On the contrary, it aims
to make machine learning systems safer. There-
fore, we do not expect any significant risks with
respect to social or environmental issues. However,
it is important to monitor the performance of our
method over time, in order to train it on fresh data
when necessary.

References
Javier Antoran, Umang Bhatt, Tameem Adel, Adrian

Weller, and José Miguel Hernández-Lobato. 2021.
Getting a clue: A method for explaining uncertainty
estimates. In International Conference on Learning
Representations.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.
2014. Food-101 – mining discriminative components
with random forests. In Computer Vision – ECCV
2014, pages 446–461. Springer International Publish-
ing.

L Breiman, JH Friedman, R Olshen, and CJ Stone. 1984.
Classification and regression trees.

Leo Breiman. 2001. Random forests. Machine learning,
45:5–32.

Jiefeng Chen, Frederick Liu, Besim Avci, Xi Wu,
Yingyu Liang, and Somesh Jha. 2021. Detecting
errors and estimating accuracy on unlabeled data
with self-training ensembles. In Advances in Neural
Information Processing Systems, volume 34, pages
14980–14992.

Charles Corbière, Nicolas Thome, Avner Bar-Hen,
Matthieu Cord, and Patrick Pérez. 2019. Addressing
failure prediction by learning model confidence. In
Advances in Neural Information Processing Systems,
volume 32.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on
Learning Representations.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as
a bayesian approximation: Representing model un-
certainty in deep learning. In Proceedings of The
33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning
Research, pages 1050–1059, New York, New York,
USA. PMLR.

Ignazio Gallo, Gianmarco Ria, Nicola Landro, and Ric-
cardo La Grassa. 2020. Image and text fusion for
upmc food-101 using bert and cnns. In 2020 35th
International Conference on Image and Vision Com-
puting New Zealand (IVCNZ), pages 1–6.

Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi,
Mohsin Ali, Jongseok Lee, Matthias Humt, Jianxi-
ang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung,
Ribana Roscher, et al. 2023. A survey of uncertainty
in deep neural networks. Artificial Intelligence Re-
view, 56(Suppl 1):1513–1589.

74

https://openreview.net/pdf?id=XSLF1XFq5h
https://openreview.net/pdf?id=XSLF1XFq5h
https://link.springer.com/chapter/10.1007/978-3-319-10599-4_29
https://link.springer.com/chapter/10.1007/978-3-319-10599-4_29
https://doi.org/10.1023/A:1010933404324
https://openreview.net/pdf?id=apK65PUH0l9
https://openreview.net/pdf?id=apK65PUH0l9
https://openreview.net/pdf?id=apK65PUH0l9
https://openreview.net/pdf?id=Hye1v4SeIH
https://openreview.net/pdf?id=Hye1v4SeIH
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
https://doi.org/10.1109/IVCNZ51579.2020.9290622
https://doi.org/10.1109/IVCNZ51579.2020.9290622
https://doi.org/10.1007/s10462-023-10562-9
https://doi.org/10.1007/s10462-023-10562-9

Ken Gu and Akshay Budhkar. 2021. A package for
learning on tabular and text data with transformers.
In Proceedings of the Third Workshop on Multimodal
Artificial Intelligence, pages 69–73, Mexico City,
Mexico. Association for Computational Linguistics.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger. 2017a. On calibration of modern neural net-
works. In International conference on machine learn-
ing, pages 1321–1330. PMLR.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. 2017b. On calibration of modern neural net-
works. In Proceedings of the 34th International Con-
ference on Machine Learning, volume 70 of Pro-
ceedings of Machine Learning Research, pages 1321–
1330. PMLR.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.
In Proceedings of the IEEE international conference
on computer vision, pages 1026–1034.

Dan Hendrycks and Kevin Gimpel. 2017. A baseline for
detecting misclassified and out-of-distribution exam-
ples in neural networks. In International Conference
on Learning Representations.

Satyapriya Krishna, Tessa Han, Alex Gu, Steven Wu,
Shahin Jabbari, and Himabindu Lakkaraju. 2024.
The disagreement problem in explainable machine
learning: A practitioner’s perspective. Transactions
on Machine Learning Research.

Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. 2017. Simple and scalable pre-
dictive uncertainty estimation using deep ensembles.
In Advances in Neural Information Processing Sys-
tems, volume 30.

Paul Pu Liang, Amir Zadeh, and Louis-Philippe
Morency. 2024. Foundations & trends in multimodal
machine learning: Principles, challenges, and open
questions. ACM Computing Surveys, 56(10).

Dong C Liu and Jorge Nocedal. 1989. On the limited
memory bfgs method for large scale optimization.
Mathematical programming, 45(1):503–528.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan
Li. 2020. Energy-based out-of-distribution detection.
In Advances in Neural Information Processing Sys-
tems, volume 33, pages 21464–21475.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Scott M Lundberg and Su-In Lee. 2017. A unified
approach to interpreting model predictions. In Ad-
vances in Neural Information Processing Systems,
volume 30.

Jose G Moreno-Torres, Troy Raeder, Rocío Alaiz-
Rodríguez, Nitesh V Chawla, and Francisco Herrera.
2012. A unifying view on dataset shift in classifica-
tion. Pattern recognition, 45(1):521–530.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado,
D. Sculley, Sebastian Nowozin, Joshua Dillon, Bal-
aji Lakshminarayanan, and Jasper Snoek. 2019. Can
you trust your model's uncertainty? evaluating predic-
tive uncertainty under dataset shift. In Advances in
Neural Information Processing Systems, volume 32.

Harris Papadopoulos, Kostas Proedrou, Volodya Vovk,
and Alexander Gammerman. 2002. Inductive confi-
dence machines for regression. In Machine Learning:
ECML 2002, 13th European Conference on Machine
Learning, Helsinki, Finland, August 19-23, 2002,
Proceedings, volume 2430 of Lecture Notes in Com-
puter Science, pages 345–356. Springer.

Letitia Parcalabescu and Anette Frank. 2023. MM-
SHAP: A performance-agnostic metric for measur-
ing multimodal contributions in vision and language
models & tasks. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 4032–4059,
Toronto, Canada. Association for Computational Lin-
guistics.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Per-
rot, and Édouard Duchesnay. 2011. Scikit-learn: Ma-
chine learning in python. Journal of Machine Learn-
ing Research, 12(85):2825–2830.

Stephan Rabanser, Stephan Günnemann, and Zachary
Lipton. 2019. Failing loudly: An empirical study of
methods for detecting dataset shift. In Advances in
Neural Information Processing Systems, volume 32.

Mauricio Sadinle, Jing Lei, and Larry Wasserman. 2019.
Least ambiguous set-valued classifiers with bounded
error levels. Journal of the American Statistical As-
sociation, 114(525):223–234.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

C. E. Shannon. 1948. A mathematical theory of com-
munication. The Bell System Technical Journal,
27(3):379–423.

LS Shapley. 1953. A value for n-person games. In Con-
tributions to the Theory of Games (AM-28), Volume
II. Princeton University Press.

Xingjian Shi, Jonas Mueller, Nick Erickson, Nick Erick-
son, Mu Li, Alexander Smola, and Alexander Smola.
2021. Benchmarking multimodal automl for tabular
data with text fields. In Proceedings of the Neural
Information Processing Systems Track on Datasets
and Benchmarks, volume 1.

75

https://doi.org/10.18653/v1/2021.maiworkshop-1.10
https://doi.org/10.18653/v1/2021.maiworkshop-1.10
https://proceedings.mlr.press/v70/guo17a/guo17a.pdf
https://proceedings.mlr.press/v70/guo17a/guo17a.pdf
https://proceedings.mlr.press/v70/guo17a.html
https://proceedings.mlr.press/v70/guo17a.html
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://arxiv.org/pdf/1610.02136
https://arxiv.org/pdf/1610.02136
https://arxiv.org/pdf/1610.02136
https://openreview.net/forum?id=jESY2WTZCe
https://openreview.net/forum?id=jESY2WTZCe
https://dl.acm.org/doi/pdf/10.5555/3295222.3295387
https://dl.acm.org/doi/pdf/10.5555/3295222.3295387
https://doi.org/10.1145/3656580
https://doi.org/10.1145/3656580
https://doi.org/10.1145/3656580
https://link.springer.com/article/10.1007/BF01589116
https://link.springer.com/article/10.1007/BF01589116
https://dl.acm.org/doi/pdf/10.5555/3495724.3497526
https://openreview.net/pdf?id=Bkg6RiCqY7
https://openreview.net/pdf?id=Bkg6RiCqY7
https://dl.acm.org/doi/pdf/10.5555/3295222.3295230
https://dl.acm.org/doi/pdf/10.5555/3295222.3295230
https://doi.org/10.1016/j.patcog.2011.06.019
https://doi.org/10.1016/j.patcog.2011.06.019
https://openreview.net/pdf?id=HylGnBBeUr
https://openreview.net/pdf?id=HylGnBBeUr
https://openreview.net/pdf?id=HylGnBBeUr
https://link.springer.com/content/pdf/10.1007/3-540-36755-1_29.pdf
https://link.springer.com/content/pdf/10.1007/3-540-36755-1_29.pdf
https://doi.org/10.18653/v1/2023.acl-long.223
https://doi.org/10.18653/v1/2023.acl-long.223
https://doi.org/10.18653/v1/2023.acl-long.223
https://doi.org/10.18653/v1/2023.acl-long.223
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://dl.acm.org/doi/pdf/10.5555/3454287.3454412
https://dl.acm.org/doi/pdf/10.5555/3454287.3454412
https://www.tandfonline.com/doi/full/10.1080/01621459.2017.1395341
https://www.tandfonline.com/doi/full/10.1080/01621459.2017.1395341
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://www.jstor.org/stable/j.ctt1b9x1zv
https://openreview.net/attachment?id=Q0zOIaec8HF&name=supplementary_material
https://openreview.net/attachment?id=Q0zOIaec8HF&name=supplementary_material

Erik Štrumbelj and Igor Kononenko. 2010. An effi-
cient explanation of individual classifications using
game theory. Journal of Machine Learning Research,
11(1):1–18.

Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li.
2022. Out-of-distribution detection with deep nearest
neighbors. In Proceedings of the 39th International
Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages
20827–20840. PMLR.

Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Can-
des, and Aaditya Ramdas. 2019. Conformal predic-
tion under covariate shift. In Advances in Neural
Information Processing Systems, volume 32.

Vladimir Vovk, Alexander Gammerman, and Glenn
Shafer. 2005. Algorithmic learning in a random
world. Springer Science & Business Media.

David Watson, Joshua O' Hara, Niek Tax, Richard
Mudd, and Ido Guy. 2023. Explaining predictive
uncertainty with information theoretic shapley val-
ues. In Advances in Neural Information Processing
Systems, volume 36, pages 7330–7350.

Peng Xu, Xiatian Zhu, and David A. Clifton. 2023.
Multimodal learning with transformers: A survey.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(10):12113–12132.

A Appendix: Table of Contents

B Datasets and Sampling
C Data Preprocessing
D Model Architectures
E Performance of Classification Models
F Details on Baselines
G Variability in Results
H Implementation Information

B Datasets and Sampling

All the datasets are publicly available with one of
these licenses: "CC0: Public Domain", "Competi-
tion Data", or "CC BY-NC-SA 4.0". These datasets
can be accessed and used for the purpose of aca-
demic research. The text fields are in English.

In Table 3, we give more details on the datasets:

• airbnb1: the task is to predict the price range
of Airbnb listings. The text fields are listing
descriptions.

• cloth2: the goal is to classify the sentiment (rep-
resented as a class) of user reviews regarding
clothing items. The text fields are customer re-
views.

• kick3: the task is to predict whether a proposed
project will achieve its funding goal. The text
fields are project descriptions.

• petfinder4: the goal is to predict the speed range
at which a pet is adopted. The text fields are
profile write-ups for the pets.

• wine5: the goal is to predict the variety of grapes.
The text fields are wine tasting descriptions.

• food56: the goal is to predict the recipe. The
cations are textual information about the recipe.

For some of the use cases, we employ the orig-
inal training dataset as the test dataset does not
include the true labels (competition data). In that

1https://www.kaggle.com/datasets/tylerx/
melbourne-airbnb-open-data

2https://www.kaggle.com/datasets/nicapotato/
womens-ecommerce-clothing-reviews

3https://www.kaggle.com/datasets/codename007/
funding-successful-projects

4https://www.kaggle.com/competitions/
petfinder-adoption-prediction/data

5https://www.kaggle.com/datasets/zynicide/
wine-reviews

6https://www.kaggle.com/datasets/gianmarco96/
upmcfood101

76

https://www.jmlr.org/papers/volume11/strumbelj10a/strumbelj10a.pdf
https://www.jmlr.org/papers/volume11/strumbelj10a/strumbelj10a.pdf
https://www.jmlr.org/papers/volume11/strumbelj10a/strumbelj10a.pdf
https://proceedings.mlr.press/v162/sun22d/sun22d.pdf
https://proceedings.mlr.press/v162/sun22d/sun22d.pdf
https://dl.acm.org/doi/pdf/10.5555/3454287.3454514
https://dl.acm.org/doi/pdf/10.5555/3454287.3454514
https://link.springer.com/book/10.1007/b106715
https://link.springer.com/book/10.1007/b106715
https://openreview.net/pdf?id=6rabAZhCRS
https://openreview.net/pdf?id=6rabAZhCRS
https://openreview.net/pdf?id=6rabAZhCRS
https://doi.org/10.1109/TPAMI.2023.3275156
https://www.kaggle.com/datasets/tylerx/melbourne-airbnb-open-data
https://www.kaggle.com/datasets/tylerx/melbourne-airbnb-open-data
https://www.kaggle.com/datasets/nicapotato/womens-ecommerce-clothing-reviews
https://www.kaggle.com/datasets/nicapotato/womens-ecommerce-clothing-reviews
https://www.kaggle.com/datasets/codename007/funding-successful-projects
https://www.kaggle.com/datasets/codename007/funding-successful-projects
https://www.kaggle.com/competitions/petfinder-adoption-prediction/data
https://www.kaggle.com/competitions/petfinder-adoption-prediction/data
https://www.kaggle.com/datasets/zynicide/wine-reviews
https://www.kaggle.com/datasets/zynicide/wine-reviews
https://www.kaggle.com/datasets/gianmarco96/upmcfood101
https://www.kaggle.com/datasets/gianmarco96/upmcfood101

Dataset # Train # Num # Cat # Class

airbnb 4,372 27 23 10
cloth 13,955 2 3 5
kick 69,194 3 3 2

petfinder 9,324 5 14 5
wine10 39,320 2 2 10

wine100 65,398 2 2 100
food5 2,700 - - 5

Table 3: Information on datasets: number of samples
in training dataset, number of numerical/categorical fea-
tures, number of classes.

case, we consider the training dataset as the model-
ing data which is then randomly split into training-
validation-test subsets. The datasets are partitioned
as follows: (1) The initial dataset is randomly split
into two disjoint temporary (80% share) and test
T (20% share) subsets, respectively; (2) The tem-
porary dataset is randomly split into two disjoint
training Dtrain (80% share) and validation Dval

(20% share) subsets, respectively. For the eval-
uation of the methods, 1000 rows are randomly
extracted from the original test dataset.

C Data Preprocessing

Feature engineering. When the dataset contains
several text fields, these are concatenated in order
to obtain a single field. Rows with missing values
are dropped and duplicate rows removed. The list
of final features for each dataset is described below.
We also mention here additional features that were
created from the raw dataset.

• airbnb: for this dataset only, we discretize the
target variable by employing quantile binning
(ten intervals with equal share of data). We also
create two new features host_since_year and
last_review_year by extracting the year from
host_since and last_review respectively. Categor-
ical variables: host_location, host_since_year,
host_is_superhost, host_neighborhood,
host_has_profile_pic, host_identity_verified,
neighborhood, city, smart_location, sub-
urb, state, is_location_exact, property_type,
room_type, bed_type, instant_bookable, can-
cellation_policy, require_guest_profile_picture,
require_guest_phone_verification,
host_response_time, calendar_updated,
host_verifications, last_review_year; nu-
merical variables: host_response_rate,
latitude, longitude, accommodates, bath-
rooms, bedrooms, beds, security_deposit,

cleaning_fee, guests_included, extra_people,
minimum_nights, maximum_nights, avail-
ability_30, availability_60, availability_90,
availability_365, number_of_reviews, re-
view_scores_rating, review_scores_accuracy,
review_scores_cleanliness, re-
view_scores_checkin, re-
view_scores_communication, re-
view_scores_location, review_scores_value,
calculated_host_listings_count, re-
views_per_month; text fields: name, summary,
description.

• cloth: categorical variables: Division Name, De-
partment Name, Class Name; numerical vari-
ables: Age, Positive Feedback Count; text fields:
Title, Review Text.

• kick: we compute the duration to launch (in
days) with deadline and launched_at. We also
log-transform goal. Categorical variables: coun-
try, currency, disable_communication; numeri-
cal variables: log_goal, backers_count, duration;
text fields: name, desc.

• petfinder: Categorical variables: Type, Breed1,
Breed2, Gender, Color1, Color2, Color3, Ma-
turitySize, FurLength, Vaccinated, Dewormed,
Sterilized, Health, State; numerical variables:
Age, Quantity, Fee, VideoAmt, PhotoAmt; text
field: Description.

• wine10 and wine100: we extract the year from
title. Categorical variables: country, year; nu-
merical variables: points, price; text field: de-
scription.

Text preprocessing. We perform the following
text preprocessing: we keep words, numbers, and
whitespaces. We then use the BERT-base-uncased
or DistilBERT-base-uncased tokenizer based on
WordPiece. For the text sequence length, the value
is set to the 0.9 quantile of the text field lengths’
distribution in the source dataset. We then take the
minimum of this latter value and 512 as this is the
maximum sequence length for BERT models. We
use truncation and padding to the fixed maximum
length.

Image preprocessing. We use the ViT-base-
patch16-224 image processor.

Attention mask for text tokens. We use key at-
tention masks in order to specify which text tokens

77

BERT Tokenizer

BERT model
(L layers)

Extract 𝐳[CLS]
last, text

Prepend [𝐶𝐿𝑆]𝑡𝑎𝑏

Tabular
Transformer

model
(M layers)

Linear
Embeddings

Category
Embeddings

||

𝐭𝐞𝐱𝐭

BERT Tokenizer

BERT model
(L layers)

Extract 𝐳[CLS]
last

Fully Connected

𝐱𝑐𝑎𝑡 𝐱𝑛𝑢𝑚

||

Convert to string

𝐱𝑐𝑎𝑡 𝐱𝑛𝑢𝑚

𝐭𝐞𝐱𝐭

Extract 𝐳[CLS]
last, tab

||

Fully Connected

𝐥𝐨𝐠𝐢𝐭𝐬

𝐥𝐨𝐠𝐢𝐭𝐬

Softmax

Softmax

Figure 4: Classification model architectures. Left: AllText-BERT-TaB architecture. Right: LateFuse-BERT-TaB
architecture.

should be ignored (i.e. "padding") for the purpose
of attention.

D Model Architectures

LateFuse architecture. The architecture is de-
tailed in Figure 4 (right) with BERT-base-uncased
for the text stream. For numerical features, we
first perform standard scaling. Embeddings of
the LateFuse architecture are constructed with
linear functions. A linear function applies the
following transformation to a scalar feature value
x ∈ R: x.Wnum + b where Wnum ∈ Rd and the
bias b ∈ Rd. For categorical features, we encode
them as category embeddings. In that latter case,
the corresponding embedding is computed as
eTWcat where e ∈ Rnc×1 is a one-hot-vector
for the associated categorical feature, nc denote
the number of categories for this feature, and
Wcat ∈ Rnc×d. A classification token [CLS]
is then added to the beginning of the tabular
embedding sequence. The tabular Transformer
with self-attention has the following architecture: 3
layers, 8 attention heads, feed-forward dimension
of 768, embedding dimension of 768. The dropout
(rate 0.1) is applied to the category embeddings,
the tabular Transformer (attention, feed-forward
networks), and the final fully-connected networks.
The text and tabular Transformer’s final hidden

states of the [CLS] tokens are concatenated
before being projected through fully-connected
layers to produce the logits. The uniform weight
initialization for the category/linear embeddings
and the final fully-connected networks is based
on Kaiming (He et al., 2015). The final fully-
connected layers can be described as follows:
FC(x) = Linear(Dropout(ReLU(Linear(x))))
where the output has a dimension of C (number
of classes). Lastly, the architectures have the
following number of parameters: LateFuse-BERT-
TaB: 124,536,170 and LateFuse-DBERT-TaB:
81,416,810.

AllText architecture. The architecture is
detailed in Figure 4 (left) with BERT-base-uncased.
The tabular features, converted to strings, and
the text fields are concatenated and input into
BERT-base-uncased as text. The final hidden state
of the [CLS] token (i.e. before the classification
head) are projected through fully-connected
layers to produce the logits. The uniform
weight initialization for the final fully-connected
networks is based on Kaiming. The final fully-
connected layers can be described as follows:
FC(x) = Linear(Dropout(ReLU(Linear(x))))
where the output has a dimension of C (number
of classes). The dropout rate is 0.1 in the final

78

Model Dataset Error rate

airbnb 0.693
cloth 0.283

AllText- kick 0.140
BERT-TaB petfinder 0.662

wine10 0.178
wine100 0.304

airbnb 0.684
cloth 0.297

LateFuse- kick 0.161
BERT-TaB petfinder 0.657

wine10 0.185
wine100 0.334

airbnb 0.690
cloth 0.297

AllText- kick 0.131
DBERT-TaB petfinder 0.664

wine10 0.182
wine100 0.312

airbnb 0.683
cloth 0.305

LateFuse- kick 0.150
DBERT-TaB petfinder 0.643

wine10 0.186
wine100 0.332

BERT-ViT food5 0.152

DBERT-ViT food5 0.161

Table 4: Error rate of classifiers on the test dataset,
by dataset, averaged over 5 random seeds.

fully-connected networks. Lastly, the architectures
have the following number of parameters: AllText-
BERT-TaB: 109,507,178 and AllText-DBERT-TaB:
66,387,818.

BERT-ViT and DBERT-ViT architectures.
The embedding dimension for each stream is 768,
therefore the concatenated dimension is 2 × 768
after fusing the modalities. The dropout rate is 0.1.
The architectures have the following number of
parameters: BERT-ViT: 197,055,749 and DBERT-
ViT: 153,936,389.

E Performance of Classification Models

The performance of classifiers are displayed in Ta-
ble 4.

F Details on Baselines

[CLS] token’s final hidden state as feature. For
the methods leveraging the [CLS] tokens’ final hid-
den states, it is worth mentioning that when π̂ is
based on LateFuse architecture, the text and tabular
hidden states are concatenated (see Figure 4). In
that case, the final vector is of dimension 2× 768.

The same principle is used for the text-image use
case.

Further details on baselines. We provide further
details for some of the baselines used to perform
error detection:

• DC: For the domain classifier, we employ a Ran-
dom Forest with 10 estimators. We divide both
the validation data and test data into two halves,
using the first half to train a domain classifier
to classify validation (class 0) and test (class 1)
data. We then apply this model to the second half
and compute the AUROC. We follow the same
process by selecting the second half to fit the
domain classifier and computing the AUROC on
the first half. Lastly, we average the 2 AUROC
values.

• CP: For the weighted conformal prediction,
we compute weighted quantiles. Each weight
is computed with the domain classifier as
p̂dc(z)/(1− p̂dc(z)), where p̂dc(z) is the proba-
bility that the input is from the test subset given z.
This approach is suggested in (Tibshirani et al.,
2019). With the LAC method, the conformity
score corresponds to one minus the probability
of the true class. For this baseline, we set the
quantile to 90%, which is the expected coverage.

• ENRG: In the energy score formula, we set the
temperature to 1.

• TCP: The neural network used to
estimate the true class probabil-
ity has the following architecture:
NN(x) = Linear(Dropout(ReLU(Linear(x)))).
The dropout probability is set to 0.1. The
(input shape, output shape) for the first linear
layer is compatible with the dimension of z
(768 × 768 for the AllText architecture and
(2 × 768) × (2 × 768) for architectures based
on late fusion). As this is a regression task, the
final output has dimension 1. The mean squared
error loss is optimized with Adam (learning rate
of 1e− 3) for 10 epochs and batch size of 32.

• DENS: An ensemble of 5 neural net-
works is trained, where each neural
network has the following architecture:
NN(x) = Linear(Dropout(ReLU(Linear(x)))).
The dropout probability is set to 0.1. The
(input shape, output shape) for the first linear
layer is compatible with the dimension of z

79

Model Dataset AC ACSC CP DC DENS DNN EDIP ENRG MCD TCP

airbnb 0.010 0.010 0.011 0.013 0.009 0.013 0.010 0.012 0.010 0.010
cloth 0.009 0.009 0.009 0.009 0.008 0.010 0.008 0.009 0.010 0.012

AllText- kick 0.005 0.005 0.011 0.015 0.005 0.011 0.005 0.007 0.005 0.011
BERT-TaB petfinder 0.012 0.012 0.010 0.012 0.011 0.011 0.010 0.009 0.012 0.013

wine10 0.007 0.011 0.011 0.012 0.008 0.010 0.007 0.009 0.008 0.013
wine100 0.006 0.007 0.006 0.009 0.006 0.009 0.005 0.006 0.006 0.012

airbnb 0.010 0.008 0.008 0.012 0.011 0.010 0.009 0.010 0.009 0.014
cloth 0.008 0.006 0.007 0.011 0.007 0.011 0.008 0.010 0.008 0.012

LateFuse- kick 0.007 0.006 0.009 0.014 0.005 0.012 0.005 0.010 0.006 0.012
BERT-TaB petfinder 0.009 0.009 0.008 0.011 0.010 0.010 0.008 0.012 0.009 0.011

wine10 0.007 0.007 0.009 0.014 0.006 0.010 0.007 0.009 0.007 0.013
wine100 0.005 0.009 0.006 0.010 0.006 0.008 0.004 0.006 0.005 0.007

airbnb 0.010 0.010 0.009 0.012 0.010 0.011 0.009 0.009 0.010 0.011
cloth 0.008 0.008 0.008 0.012 0.009 0.009 0.007 0.009 0.008 0.011

AllText- kick 0.006 0.006 0.009 0.013 0.005 0.013 0.006 0.009 0.006 0.014
DBERT-TaB petfinder 0.010 0.011 0.010 0.010 0.010 0.007 0.013 0.013 0.010 0.009

wine10 0.007 0.007 0.010 0.011 0.008 0.010 0.008 0.008 0.007 0.015
wine100 0.006 0.006 0.007 0.013 0.007 0.010 0.007 0.007 0.007 0.008

airbnb 0.011 0.011 0.010 0.011 0.008 0.010 0.010 0.010 0.012 0.010
cloth 0.008 0.008 0.008 0.008 0.005 0.009 0.007 0.010 0.008 0.011

LateFuse- kick 0.007 0.007 0.009 0.014 0.006 0.013 0.007 0.013 0.007 0.015
DBERT-TaB petfinder 0.009 0.009 0.008 0.008 0.009 0.011 0.008 0.008 0.009 0.010

wine10 0.008 0.009 0.009 0.013 0.007 0.010 0.007 0.009 0.009 0.013
wine100 0.006 0.006 0.006 0.010 0.007 0.009 0.007 0.007 0.006 0.010

BERT-ViT food5 0.005 0.006 0.013 0.012 0.005 0.006 0.004 0.007 0.005 0.015

DBERT-ViT food5 0.005 0.005 0.012 0.015 0.006 0.006 0.005 0.007 0.006 0.012

Table 5: Variability in the results by model and dataset: Standard deviation of AUROC results, computed based
on 30 bootstraps with fraction 70% from raw table results (i.e. across seeds).

(768 × 768) for the AllText architecture and
(2× 768)× (2× 768) for architectures based on
late fusion. As this is a classification task, the
final output has dimension C. The cross-entropy
loss is optimized with Adam (learning rate of
1e − 3) for 10 epochs and batch size of 32.
For each test example, we compute the total
uncertainty (predictive entropy), after averaging
the predicted probabilities generated by E = 5
neural networks with parameters θe:

u(z) = −∑
j∈Y

(
1
E

∑E
e=1 p(j|z; θe)

)
log2

(
1
E

∑E
e=1 p(j|z; θe)

)

G Variability in Results

The variability in results is presented in Table 5.

H Implementation Information

Hardware and computational cost. We run the
experiments with a Tesla T4 GPU. Table 6 sum-
marizes the average computational cost for each
method. The methods that require performing sev-
eral forward passes during inference (e.g. MCD) or
training one or several models (e.g. DENS, EDIP)
are less efficient than the other baselines.

Python libraries. The implementation is based
on Python 3.10 and the following packages:
torch 2.4.0+cu121, transformers 4.42.4, scikit-learn
1.3.2, scipy 1.13.1, pandas 2.1.4, numpy 1.26.4,
matplotlib 3.7.1, and seaborn 0.13.1. These li-
braries are publicly available with "BSD", "MIT",
or "Apache Software" licenses.

80

Dataset AC ACSC CP DC DENS DNN EDIP ENRG MCD TCP

airbnb 0.01 0.01 0.01 2.21 3.66 0.13 4.18 0.01 88.47 0.84
cloth 0.01 0.01 0.01 11.24 11.02 0.33 15.94 0.01 24.85 2.42
kick 0.01 0.01 0.01 4.98 16.03 0.43 17.18 0.01 12.14 3.36

petfinder 0.01 0.01 0.01 5.01 7.41 0.23 9.76 0.01 40.12 1.62
wine10 0.01 0.01 0.01 6.51 15.98 0.46 21.76 0.01 15.84 3.38
wine100 0.01 0.01 0.01 5.92 15.83 0.39 25.72 0.01 15.60 3.26

food5 0.01 0.01 0.01 0.74 2.64 0.14 1.95 0.03 112.36 0.77

Table 6: Average computation time (in seconds) computed for each method, averaged over various model architec-
tures and random seeds.

81

