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Abstract
Gender bias in pretrained language models
(PLMs) poses significant social and ethical
challenges. Despite growing awareness, there
is a lack of comprehensive investigation into
how different models internally represent and
propagate such biases. This study adopts
an information-theoretic approach to analyze
how gender biases are encoded within vari-
ous encoder-based architectures. We focus on
three key aspects: identifying how models en-
code gender information and biases, examining
the impact of bias mitigation techniques and
fine-tuning on the encoded biases and their ef-
fectiveness, and exploring how model design
differences influence the encoding of biases.
Through rigorous and systematic investigation,
our findings reveal a consistent pattern of gen-
der encoding across diverse models. Surpris-
ingly, debiasing techniques often exhibit lim-
ited efficacy, sometimes inadvertently increas-
ing the encoded bias in internal representations
while reducing bias in model output distribu-
tions. This highlights a disconnect between
mitigating bias in output distributions and ad-
dressing its internal representations. This work
provides valuable guidance for advancing bias
mitigation strategies and fostering the develop-
ment of more equitable language models. 1

1 Introduction

Pretrained language models (PLMs) have revolu-
tionized natural language processing (NLP) by en-
abling a wide range of applications (Devlin et al.,
2019; Radford et al., 2019; Brown et al., 2020; Tou-
vron et al., 2023; Jiang et al., 2023; Dubey et al.,
2024). These models, trained on vast amounts
of data, capture intricate patterns and knowledge,
including gender-related information. However,
alongside their impressive capabilities, PLMs also
encode harmful biases that raise significant ethi-
cal concerns (Silva et al., 2021; Field et al., 2021;

1The code utilized in this study is available at https://
github.com/mzakizadeh/Gender-Encoding-Patterns

Ferrara, 2023). These biases can perpetuate stereo-
types, misrepresent individuals and groups, and
lead to unfair treatment in various applications,
thereby impacting social justice and equity (e.g.
Park et al., 2018; Kiritchenko and Mohammad,
2018; Chen et al., 2024; Levy et al., 2024).

Understanding how PLMs encode and propagate
gender information is critical for developing ef-
fective bias mitigation strategies. This challenge
grows increasingly urgent with the widespread
adoption of retrieval-augmented generation (RAG)
techniques, which rely on encoder-derived repre-
sentations to retrieve contextually relevant docu-
ments (Wu et al., 2025). If gender biases are deeply
embedded in these encoder-derived representations,
RAG pipelines risk amplifying societal biases at an
unprecedented scale by retrieving and propagating
stereotypical or discriminatory content.

Despite extensive research on bias in language
models, much of the focus has been on identifying
and measuring bias rather than comprehensively
analyzing how it is embedded within the model’s
internal representations. Previous studies have ex-
plored bias in transformer-based models, develop-
ing metrics to quantify bias (Islam et al., 2016; May
et al., 2019; Nangia et al., 2020; Nadeem et al.,
2021; Felkner et al., 2023), implementing tech-
niques to reduce it (Zhao et al., 2018a; Lauscher
et al., 2021; Kaneko and Bollegala, 2021; Webster
et al., 2020; Schick et al., 2021), and investigat-
ing its underlying causes (Bolukbasi et al., 2016;
Kaneko et al., 2022). However, there remains a
limited understanding of the mechanisms through
which biases are encoded and how different train-
ing and fine-tuning processes influence these biases
within model weights.

To address this gap, we use an information-
theoretic approach, specifically Minimum Descrip-
tion Length (MDL) probing proposed by Voita and
Titov (2020), to explore how gender bias is encoded
in various encoder-based architectures. By exam-
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ining different layers of PLMs, we identify where
biases emerge and how fine-tuning and debiasing
techniques impact these representations.

Our work is inspired by Mendelson and Belinkov
(2021) who studied the impact of debiasing tech-
niques used to reduce the model’s reliance on spuri-
ous correlations between data and labels in natural
language inference on model’s representations. In
summary, our contributions are twofold:

• We pinpoint the specific parts of encoder-based
PLMs responsible for encoding gender informa-
tion, highlighting critical layers where bias is
most pronounced.

• We assess the effect of various debiasing meth-
ods, demonstrating that pretrained debiasing
objectives outperform post-hoc mitigation ap-
proaches in reducing encoded bias.

2 Related Works

In this section, we review some of the related stud-
ies on gender bias in language models, bias mit-
igation and measurement methods, and probing
techniques and their use in bias evaluation.

2.1 Bias in Language Models

Early investigations into gender bias in language
models unveiled that static embeddings not only
encode but also amplify human-like biases within
their representations (Islam et al., 2016; Bolukbasi
et al., 2016). Subsequently, various studies have
proposed methods to manipulate the embedding
space or learning algorithms to mitigate bias in
such models (Bolukbasi et al., 2016; Zhao et al.,
2018b). However, as Gonen and Goldberg (2019)
demonstrated, these techniques only provide super-
ficial solutions, as biased information is not entirely
removed from the model’s embedding space.

The introduction of contextualized word embed-
dings, such as BERT (Devlin et al., 2019), posed
new challenges, as manipulating representation
space became more intricate compared to static em-
beddings. Contextualized language models have
been shown to exhibit bias against demographic
groups, including gender (Zhao et al., 2019; Silva
et al., 2021).

Despite these advancements, a comprehensive
comparative analysis between various bias miti-
gation methods remained lacking. This gap was
addressed by Meade et al. (2022), who conducted
an empirical investigation into the effectiveness of

multiple debiasing techniques. Through their ex-
perimentation, they selected diverse debiasing ap-
proaches, continued pretraining models with these
techniques, and demonstrated their efficacy using
prominent bias mitigation metrics. Additionally,
they assessed the impact of these techniques on
downstream performance, measuring model per-
formance on the General Language Understanding
Evaluation (GLUE; Wang et al., 2019) test set. As
the results indicated that the debiasing techniques
did not significantly compromise downstream per-
formance, they hypothesized that these methods
might not negatively affect model representations.
However, they did not provide concrete evidence to
support their claims. This highlights the need for
further research and analysis to thoroughly under-
stand the implications and effectiveness of differ-
ent debiasing techniques in the context of language
models.

While earlier studies have explored the presence
of gender bias in static and contextualized embed-
dings, they primarily focused on identifying and
quantifying bias or testing basic mitigation strate-
gies. Our study takes a different approach by in-
vestigating how biases are encoded within the in-
ternal representations of language models. This
deeper exploration helps uncover where and how
bias manifests, providing insights into mitigating
these issues more effectively.

2.2 Probing Techniques and Bias Evaluation
Probing is a valuable technique for determining the
knowledge characteristics captured by language
models. With advancements in methods for inter-
preting model behavior, probing has gained trac-
tion in the research community. The introduction
of Minimum Description Length probing (MDL
probing; Voita and Titov, 2020), has enabled re-
searchers to explore the knowledge encoded in lan-
guage model representations in more depth. MDL
probing has been utilized to assess biases in model
representations, as demonstrated by Mendelson and
Belinkov (2021) and Orgad et al. (2022).

Intriguingly, Mendelson and Belinkov (2021)
found that debiasing methods intended to make
models robust against spurious correlations in
datasets, inadvertently led to an increase in biased
information in model representations. On the other
hand, Orgad et al. (2022) employed MDL as a met-
ric for assessing bias and demonstrated its stronger
correlation with extrinsic bias metrics used in con-
junction with extrinsic bias mitigation techniques
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compared to other intrinsic bias measurement meth-
ods.

Building on the advancements of probing tech-
niques, particularly the use of structured methods
to interpret model behaviors, our work delves into
the mechanisms by which gender biases are en-
coded. By systematically evaluating model layers,
we aim to understand how different mitigation and
fine-tuning strategies influence the internal repre-
sentations of bias, extending the applications of
probing techniques to new depths.

2.3 Knowledge Localization and Bias

Knowledge localization has emerged as a critical
area of study in NLP, focusing on identifying sub-
nets within language models that are responsible
for specific tasks, domains, or linguistic properties
(Hendy et al., 2022; Panigrahi et al., 2023; Song
et al., 2024; Choenni et al., 2023). These tech-
niques have been extended to explore gender bias,
pinpointing the internal components of models that
encode bias.

For example, Chintam et al. (2023) employed
causal inference methods, including techniques
such as causal mediation analysis and differential
masking, to identify attention heads responsible
for biased behaviors in transformer models. Their
work highlighted the ability to localize gender bias
and proposed parameter-efficient fine-tuning strate-
gies to mitigate it. Similarly, Lutz et al. (2024)
introduced local contrastive editing, a technique
leveraging unstructured pruning to precisely local-
ize individual model weights responsible for en-
coding gender stereotypes. This method enabled
them to edit these weights efficiently, mitigating
bias without significant degradation of model per-
formance.

Although our research aligns with prior efforts in
localizing bias within pretrained language models,
we introduce a distinct methodological perspective.
Furthermore, by broadening the scope of exper-
imentation across diverse models and mitigation
strategies, we aim to comprehensively explore how
and where gender bias is encoded. Our analysis re-
inforces previous findings about bias concentration
in specific model layers, while also paving the way
for targeted and efficient intervention techniques.

3 Background

Probing datasets are typically defined as D =
{X,Yp}, where X represents the input data, and

Yp represents the linguistic property or knowledge
we are seeking to extract from the language model.
The usage of language models involves two distinct
stages. In the first stage, the language model, de-
noted as fθ : X → Z, transforms the input X into
a latent space Z, where X denotes the textual input,
Z represents the latent representation of the text,
and θ encompasses the model’s weights. This la-
tent space captures complex linguistic features and
representations that encode the underlying infor-
mation within the input text. Subsequently, in the
second stage, a classifier, denoted as gσ : Z → Y ,
is employed to map the latent space Z to the cor-
responding label space Y . The classifier is de-
noted by gσ, with σ encompassing its parameters.
This two-stage approach facilitates the language
model’s ability to learn intricate language struc-
tures and encode relevant knowledge, while the
classifier enables the extraction and utilization of
this knowledge for various downstream tasks and
analyses.

Traditionally, probing classifiers attempted to
train on frozen language model weights, ensuring
that the transformation from X to Z remains un-
changed during training. Subsequently, the clas-
sifier learns how to map the latent space Z to the
target property space Yp. If the classifier can ef-
fortlessly learn this transformation with a limited
amount of data, it was concluded that the language
model possesses the relevant linguistic information
(Belinkov, 2022). However, such traditional prob-
ing approaches have been shown to exhibit limita-
tions. These methods can yield unreliable results as
they tend to classify representations of random data
similarly to those of actual data, indicating their in-
adequacy in capturing variations in representations
(Zhang and Bowman, 2018). As a consequence,
the outcomes of these traditional probing methods
are highly dependent on hyperparameter choices
and might not reliably reflect the true linguistic
properties encoded within the language model rep-
resentations. To address these issues and obtain
more robust probing results, recent advancements
have introduced innovative techniques, such as the
Minimum Description Length (MDL) probing ap-
proach proposed by Voita and Titov (2020).

In MDL probing, the objective is not solely
to assess the accuracy of the shallow classifier
but also to measure the effort required to extract
the targeted linguistic information from the model
representations. Formally, they establish that a
code exists to losslessly compress the labels using
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Shannon-Huffman code such that Lp(y1,z|x1,z) =
−∑z

i=1 log2p(yi|xi). Note that this is the cross-
entropy loss. Furthermore, they define the uniform
code length as Lunif(yi,z|xi,z) = zlog2(C) where
C is the number of classes in our task.

Given a model Pθ(y|x) with learnable parame-
ters θ, they choose blocks 1 = n0 < n1 < ... <
ns = N and encode data by these blocks. The
model starts by transmitting the data using the uni-
form code length for the first chunk. The model
is then trained to predict labels y from the data x,
and also used to predict the labels. The next block
is transmitted using this trained new model. This
process continues until the entire dataset is covered.
Online code length is calculated as follows:

Lonline (y1:z | x1:z) = z1 log2C

−
S−1∑

i=1

log2 pθi
(
yni+1:ni+1 | xni+1:ni+1

) (1)

Note that this encourages the model to perform
well with smaller blocks, as if the model performs
well in compressing the data in the block ni, the
compression will be increased for the subsequent
block ni+1.

Having calculated the code lengths, they com-
pare the cross-entropy loss against the uniform
code length to find the final compression. Formally,
compression (C) is defined as the ratio Lonline

Lunif , quan-
tifying how much the model compresses gender
information relative to a uniform baseline.

4 Methodology

For this study, we focus on gender information
as the knowledge property being probed. We will
employ MDL probing to evaluate this phenomenon.

Models. Our experiments analyze the represen-
tations generated by a diverse range of models.
We primarily focus on BERT (Devlin et al., 2019),
ALBERT (Lan et al., 2020), and RoBERTa (Liu
et al., 2019), which are widely used architectures
in NLP, and we explore different variations and
sizes of these models. Additionally, we examine
with a newer model architecture called JINA Em-
beddings (Günther et al., 2023), which is popular
in retrieval-augmented generation (RAG) pipelines.
This model architecture offers a promising alterna-
tive due to the long context size and competitive
performance, as claimed by the authors. By com-
paring these models, we aim to identify common

patterns in how they encode gender information
and assess their performance in mitigating biases.

Probing Dataset. We use the Bias in Bios
dataset (De-Arteaga et al., 2019), which consists
of 396,347 biographies. In this dataset, the gender
of each individual is provided as a label alongside
their occupation. This allows us to explore how
gender information is encoded in language mod-
els when analyzing these biographies. In the Bias
in Bios dataset, each data point is structured as a
triplet {X,Y, Yp}, where X represents a biography,
Y denotes the true occupation label from one of 28
possible categories, and Yp indicates the gender of
the person featured in the biography.

Bias Definition and Implications. We formally
define bias in terms of gender information en-
coding using the MDL probing framework. Let
fθ : X → Z represent a language model with pa-
rameters θ that transforms input text X into latent
representations Z. Let fθrand be the same model
architecture but with randomly initialized weights
θrand. We denote the compression of gender in-
formation from these representations using online
code length as Cθ and Cθrand respectively.

A model fθ exhibits gender bias at layer l if the
gender information can be extracted with signifi-
cantly higher compression compared to a randomly
initialized model with the same architecture:

Cθl − Cθlrand
> δ (2)

where θl and θlrand represent the model parameters
at layer l for the trained and randomly initialized
models respectively, and δ > 0 is a threshold deter-
mining the significance of the difference.

If a model encodes significant gender informa-
tion, it could use this in decision-making, which is
problematic for tasks like Bias in Bios, where we
aim to predict occupations without relying on gen-
der. This issue extends to retrieval tasks, such as
systems finding resumes for job positions, where
gender should not influence results. If retrieval
models use gender information, they could rein-
force biases that propagate through LLM work-
flows, leading to unfair outcomes and reinforcing
stereotypes. Addressing this bias is essential for
creating fairer and more ethical systems.

5 Gender Encoding Analysis

Building upon the framework outlined in the previ-
ous sections, we conducted our main experiment to
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Figure 1: Gender information compression across different layers for various encoder models.

investigate whether there is a consistent pattern in
how different encoder models encode gender infor-
mation within their representations. Our primary
goal was to determine if various models, despite
architectural differences, exhibit similar behaviors
in the way they handle gender-related information
across their layers.

We experimented with a diverse range of encoder
models to ensure the robustness of our findings.
The main models discussed in this part are BERT-
base, BERT-large, RoBERTa-base, and the base
version of JINA Embeddings; however, we also saw
similar results with ALBERT and a small version of
JINA Embeddings. The results from these models
are not included here due to space constraints.

Using the MDL probing method, we measured
the amount of gender information that can be com-
pressed from the representations at each layer of
these models. Figure 1 illustrates the compression
rates of gender information across different lay-
ers for the selected models. For each layer of the
model, we also included a random baseline, which
involves calculating compression for each layer of
a model initialized with the same architecture but
random weights. This baseline serves as a control
to determine whether the observed compression is
due to meaningful encoding of gender information
or merely random noise.

Analyzing the results, we observed that models
start with varying amounts of encoded gender infor-
mation in their initial layers: while smaller models,
like BERT base, do not exhibit gender information
compression in their initial layers, larger models,
such as BERT large, show high compression right
from the first layer.

A consistent pattern emerges across all models.
Initially, the models seem to reduce the gender in-
formation signal within their representations. This
reduction continues up to a certain layer, typically
close to the final layers. At this critical point, the
compression rate of the random baseline represen-

tations becomes notably higher than that of the
actual model’s representations. Beyond this point,
the models begin to reconstruct the gender informa-
tion within their representations. By the final layer,
all models demonstrate the highest amount of com-
pression of gender information compared to any
other layer. This indicates that, after initially sup-
pressing the gender signal, the models ultimately
encode it strongly in their final representations.

This pattern suggests a two-phase process in how
encoder models handle gender information: (i) In
the early layers, models may abstract away from
specific attributes like gender, focusing instead on
general linguistic features. (ii) In the later layers,
models reintroduce and amplify gender-related in-
formation, potentially utilizing it for downstream
tasks but also risking the propagation of bias. These
insights underscore the pervasive nature of bias in
language models and the need for targeted strate-
gies to mitigate it, particularly in the layers where
gender information is reintroduced.

6 Impact of Bias Mitigation

Bias mitigation in language models seeks to ad-
dress both overt biases in model outputs and
the subtler, systemic biases embedded within the
model’s internal representations. Effective tech-
niques should suppress these encoded biases while
maintaining model utility. In this section, we inves-
tigate the impact of various debiasing methods on
compression values, used as a measure of encoded
gender information, and evaluate their effectiveness
across different experimental setups and models.

6.1 Experimental Settings
The experiments assess the performance of four
debiasing methods applied to encoder-based lan-
guage models, including BERT (base and large)
and RoBERTa base. We begin by validating the cor-
rect implementation of the debiased variations of
these models using a series of intrinsic benchmarks,
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Model Technique Name CrowS-Pairs StereoSet DiFair (GNS)

BERT-base

Vanilla 58.02 62.02 63.91

CDA 51.15 ↓6.87 72.98 ↑10.96 86.44 ↑22.53

Dropout 57.25 ↓0.77 66.45 ↑4.43 68.59 ↑4.68

Orthogonal Projection 53.44 ↓4.58 66.00 ↑3.98 60.46 ↓3.45

ADELE 54.20 ↓3.82 64.76 ↑2.74 80.21 ↑16.30

RoBERTa-base

Vanilla 54.96 66.50 73.38

CDA 51.15 ↓3.81 63.59 ↓2.91 82.58 ↑9.20

Dropout 53.44 ↓1.52 69.26 ↑2.76 78.90 ↑5.52

Orthogonal Projection 51.53 ↓3.43 69.19 ↑2.69 80.27 ↑6.89

ADELE 49.62 ↓5.34 65.88 ↓0.62 70.67 ↓2.71

BERT-large

Vanilla 55.34 63.99 58.70

Pretrained CDA 53.82 ↓1.52 70.59 ↑6.60 84.26 ↑25.56

Pretrained Dropout 46.56 ↓8.78 54.95 ↓9.04 91.09 ↑32.39

Post-Hoc CDA 56.87 ↑1.53 69.14 ↑5.15 84.56 ↑25.86

Post-Hoc Dropout 57.63 ↑2.29 67.45 ↑3.46 64.03 ↑5.33

Table 1: Evaluation of debiasing on model weights for three benchmarks. “Metric Score” from CrowS-Pairs aims
for 50; deviations suggest gender bias. “ICAT Score” and “Gender Neutrality Score” aim for 100 on StereoSet and
DiFair, respectively.

as all debiasing techniques evaluated are intrinsic
in nature. Specifically, we employ the CrowS-Pairs
(Nangia et al., 2020), StereoSet (Nadeem et al.,
2021), and DiFair (Zakizadeh et al., 2023) bench-
marks. The evaluation results for these benchmarks
are summarized in Table 1. The findings indicate
that all debiased models demonstrate effectiveness,
with at least two benchmarks showing improved
fairness metrics compared to their vanilla counter-
part.

Overview of Debiasing Techniques We em-
ployed four distinct debiasing strategies to assess
the impact of debiasing on model representations.
Counterfactual Data Augmentation (CDA; Zhao
et al., 2018a) replaces gendered terms with neu-
tral counterparts and retrains the model on the
augmented data, effectively neutralizing biased as-
sociations. Adapter-Based Debiasing (ADELE;
Lauscher et al., 2021) uses CDA-augmented data
to train modular adapters that reduce bias with-
out retraining the entire model. Dropout applies
higher dropout rates during training, hypothesizing
that enhanced regularization can reduce encoded
biases (Webster et al., 2020). Finally, Orthogonal
Projection (Kaneko and Bollegala, 2021) removes
gender-related components from intermediate rep-
resentations through linear projections, offering
a lightweight post-hoc solution. Among the de-
scribed bias mitigation techniques, ADELE and Or-
thogonal Projection are inherently post-hoc meth-
ods. Conversely, CDA and Dropout may be im-
plemented at any stage, either during the post-hoc

phase or from the onset of training.

Debiasing Effectiveness Based on our experi-
ments in the previous section, gender-related in-
formation predominantly concentrates in the initial
and final layers of the examined models. Given our
formal definition of gender bias, we can precisely
define the effectiveness of a debiasing method. Let
fθdebias represent a model after applying a debiasing
technique, with θdebias denoting its parameters, and
fθ the original vanilla model with parameters θ. An
ideal debiasing method is considered effective if it
satisfies:

Cθldebias
≤ min(Cθl , Cθlrand

+ δ) (3)

where θldebias, θ
l, and θlrand represent the parameters

at layer l for the debiased model, vanilla model, and
randomly initialized model respectively, L denotes
the total number of layers, and δ ≥ 0 is our bias
significance threshold.

In simple terms, a debiasing method is effec-
tive if, across all layers, it reduces the compres-
sion of gender information below both the vanilla
model and the threshold established by the random
baseline. This indicates successful elimination of
the gender signal from the representations through-
out the entire model architecture. Conversely, if a
method fails to satisfy this criterion at any layer, it
indicates that the debiasing approach is ineffective
or even counterproductive in terms of compression.
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Figure 2: Effect of various bias mitigation procedures on gender information compression across different layers of
base models.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Layers

5

10

15

20

25

Co
m

pr
es

sio
n

BERT Large

Vanilla Post-hoc CDA Retrained CDA Post-hoc Dropout Retrained Dropout Random

Figure 3: Effect of various bias mitigation procedures on gender information compression across different layers of
BERT-Large.

6.2 Results and Analysis
The results of these experiments are presented in
Figures 1 and 3. Our analysis reveals that, with
the exception of training-time CDA, the remain-
ing methods were ineffective in reducing bias in
the models. Some methods, such as ADELE and
training-time Dropout, show mixed results, sug-
gesting that their effectiveness may be influenced
by factors such as model architecture and training
parameters. In the following discussion, we will
elaborate on these observations in detail.

Layer-Wise Trends in Compression Compres-
sion values exhibited a consistent pattern across all
models. In the lower layers, gender information
was minimally compressible, suggesting that these
layers encode relatively little bias. However, in the
final layers, compression values increased sharply,
indicating that gender information becomes more
concentrated and accessible as representations be-
come more abstract.

Impact of Training-Time Debiasing Training-
time CDA on BERT-large demonstrated the most
substantial reduction in final-layer compression.

The compression value in the final layer decreased
from 23.08 in the vanilla model to 11.98 after re-
training with CDA, confirming its effectiveness
in suppressing gender information throughout the
model. Similarly, training-time dropout resulted
in a lower final-layer compression compared to
the vanilla model, though its effect was less pro-
nounced than CDA.

Effectiveness of Post-Hoc Methods Post-hoc
CDA and dropout, applied across all models, were
generally less effective in mitigating gender en-
coding. In BERT-large, post-hoc CDA failed to
achieve the same level of suppression as training-
time CDA, resulting in a final-layer compression
of 20.34. Dropout exhibited inconsistent behav-
ior across models; in some cases, it preserved or
even amplified gender information. For instance, in
BERT-base, the final-layer compression increased
from 23.47 (vanilla) to 24.63 with post-hoc dropout,
indicating that this method does not reliably sup-
press bias.

Comparison Across Model Architectures
RoBERTa-base consistently displayed lower
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compression values than BERT-based models,
suggesting that its architecture inherently encodes
less gender-related information. This observation
aligns with its performance on intrinsic bias bench-
marks, where it demonstrated reduced sensitivity
to gendered associations. Comparing BERT-base
and BERT-large also indicates that larger models
tend to store more gender information in their
representations, which also aligns with the results
obtained from the intrinsic bias benchmarks. This
suggests that as model capacity increases, so
does its ability to encode and retain gendered
associations, reinforcing the need for targeted
mitigation strategies in larger models.

While all debiasing methods contributed to re-
ducing gender encoding to some extent, none com-
pletely eliminated it across all layers. Training-
time CDA proved the most effective strategy,
whereas post-hoc methods showed limited success,
particularly in mitigating gender encoding in the
final layers. These findings indicate that bias is
deeply ingrained in model representations and that
effective mitigation requires intervention during
training rather than post-hoc adjustments.

For practical applications where reducing gender
encoding is a priority, retraining with targeted debi-
asing objectives remains the most reliable approach.
Future work could explore hybrid strategies that
combine training-time and post-hoc techniques to
enhance bias suppression without requiring full
retraining.

7 Impact of Fine-tuning

While encoder models are widely used in retrieval
systems, their representations are typically fine-
tuned for downstream tasks such as classification.
Understanding how this process influences gender
bias encoded in model representations is critical, as
fine-tuning may alter or amplify existing biases. In
this section, we investigate how fine-tuning affects
gender-related information stored in model layers
and evaluate its implications for bias mitigation.

7.1 Experimental Settings

We fine-tuned three encoder models – BERT-base,
BERT-large, and RoBERTa-base – on the BiosBias
dataset. The task involves predicting an individ-
ual’s occupation from their biography, framed as
a 28-class classification problem. Models were
trained for 5 epochs using a learning rate of
2 × 10−5. To isolate the impact of fine-tuning,

we compared the fine-tuned models against two
baselines: (i) their original pretrained versions and
(ii) "randomized" counterparts initialized with un-
trained weights but fine-tuned on the same task.
Layer-wise MDL probing was applied to all mod-
els to measure gender information compression
before and after fine-tuning.

7.2 Results and Analysis

The experimental results, presented in Figure 4, re-
veal several noteworthy patterns in how fine-tuning
affects gender information encoding.

Reduced Gender Information Fine-tuning con-
sistently led to a substantial reduction in gender
information compression across all models. This
reduction was particularly pronounced in the final
layers, where the original models had shown the
highest concentration of gender information.

Below-Random Compression In many cases,
the compression values of fine-tuned models fell be-
low those of their random baselines. Notably, even
the random baselines of fine-tuned models showed
lower compression compared to their pretrained
counterparts. This suggests that task-specific fine-
tuning may actively suppress the encoding of gen-
der information in favor of task-relevant features.

Shift in Representational Focus The dramatic
reduction in gender information compression indi-
cates that fine-tuning redirects the model’s internal
representations toward task-specific features and
away from demographic attributes like gender. This
finding suggests that much of the bias observed in
fine-tuned models may originate from the classifi-
cation head rather than from biases encoded in the
underlying representations.

These findings carry significant implications for
bias mitigation in language models. The obser-
vation that fine-tuning naturally reduces encoded
gender information while potentially concentrating
bias in the classification layer explains the limited
impact of intrinsic debiasing methods on extrin-
sic bias metrics (Orgad et al., 2022; Cao et al.,
2022). While task-specific fine-tuning may serve
as an implicit form of representation-level bias mit-
igation, our results suggest that future debiasing
efforts should focus more on the classification com-
ponents added during fine-tuning rather than the
encoder representations alone.
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Figure 4: Gender information compression across different layers for the fine-tuned encoder models. The pretrained
compression values correspond to the blue line shown in Figure 1.

8 Conclusions

Our analysis reveals that pretrained language mod-
els follow a consistent pattern of gender encoding:
early layers suppress gender signals, while later
layers amplify them, embedding bias deeply into
abstract representations. Current debiasing tech-
niques, particularly post-hoc interventions, show
limited efficacy in altering these internal mecha-
nisms. Task-specific fine-tuning reduces encoded
gender information but risks concentrating residual
bias in downstream classifiers, underscoring the
need for holistic mitigation strategies that target
both representations and decision layers. Collec-
tively, these findings challenge conventional de-
biasing paradigms, advocating for proactive inte-
gration of fairness objectives during pretraining
and architecture-aware interventions targeting bias
propagation pathways.

Broader Impacts

Our results have significant implications for the de-
sign and deployment of language models. First,
they underscore the inadequacy of post-hoc de-
biasing methods, urging researchers to integrate
fairness objectives directly into pretraining. Sec-
ond, the localization of bias in later layers suggests
targeted interventions, such as modifying specific
layers or attention heads, could offer efficient miti-
gation pathways. Finally, practitioners must recog-
nize that reducing bias in representations does not
guarantee fairness in downstream applications; rig-
orous evaluation of classifiers and datasets remains
essential. These insights advocate for a paradigm
shift toward inherently fair model architectures and
training frameworks.

Limitations

While this work provides critical insights, several
limitations warrant consideration. First, our analy-

sis focuses on gender bias in English-language bi-
ographies, leaving broader sociocultural and inter-
sectional biases unexplored. Second, the study cen-
ters on encoder-based models; future work should
validate findings in decoder-based architectures and
multimodal systems. Lastly, the interplay between
task-specific fine-tuning and bias propagation re-
quires deeper exploration across diverse applica-
tions. Addressing these gaps will advance our un-
derstanding of bias dynamics and mitigation in
increasingly complex language technologies.

References
Yonatan Belinkov. 2022. Probing classifiers: Promises,

shortcomings, and advances. Computational Linguis-
tics, 48(1):207–219.

Tolga Bolukbasi, Kai-Wei Chang, James Y. Zou,
Venkatesh Saligrama, and Adam Tauman Kalai. 2016.
Man is to computer programmer as woman is to
homemaker? debiasing word embeddings. In Ad-
vances in Neural Information Processing Systems 29:
Annual Conference on Neural Information Process-
ing Systems 2016, December 5-10, 2016, Barcelona,
Spain, pages 4349–4357.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Ma teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. ArXiv,
abs/2005.14165.

Yang Trista Cao, Yada Pruksachatkun, Kai-Wei Chang,
Rahul Gupta, Varun Kumar, Jwala Dhamala, and
Aram Galstyan. 2022. On the intrinsic and extrinsic
fairness evaluation metrics for contextualized lan-
guage representations. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 561–570,

497

https://doi.org/10.1162/coli_a_00422
https://doi.org/10.1162/coli_a_00422
https://proceedings.neurips.cc/paper/2016/hash/a486cd07e4ac3d270571622f4f316ec5-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/a486cd07e4ac3d270571622f4f316ec5-Abstract.html
https://api.semanticscholar.org/CorpusID:218971783
https://doi.org/10.18653/v1/2022.acl-short.62
https://doi.org/10.18653/v1/2022.acl-short.62
https://doi.org/10.18653/v1/2022.acl-short.62


Dublin, Ireland. Association for Computational Lin-
guistics.

Yuen Chen, Vethavikashini Chithrra Raghuram, Jus-
tus Mattern, Rada Mihalcea, and Zhijing Jin. 2024.
Causally testing gender bias in LLMs: A case study
on occupational bias. In Causality and Large Models
@NeurIPS 2024.

Abhijith Chintam, Rahel Beloch, Willem Zuidema,
Michael Hanna, and Oskar van der Wal. 2023. Iden-
tifying and adapting transformer-components respon-
sible for gender bias in an English language model.
In Proceedings of the 6th BlackboxNLP Workshop:
Analyzing and Interpreting Neural Networks for NLP,
pages 379–394, Singapore. Association for Compu-
tational Linguistics.

Rochelle Choenni, Dan Garrette, and Ekaterina Shutova.
2023. Cross-lingual transfer with language-specific
subnetworks for low-resource dependency parsing.
Computational Linguistics, pages 613–641.

Maria De-Arteaga, Alexey Romanov, Hanna M. Wal-
lach, Jennifer T. Chayes, Christian Borgs, Alexandra
Chouldechova, Sahin Cem Geyik, Krishnaram Ken-
thapadi, and Adam Tauman Kalai. 2019. Bias in
bios: A case study of semantic representation bias in
a high-stakes setting. In Proceedings of the Confer-
ence on Fairness, Accountability, and Transparency,
FAT* 2019, Atlanta, GA, USA, January 29-31, 2019,
pages 120–128. ACM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, et al. 2024. The
llama 3 herd of models. ArXiv, abs/2407.21783.

Virginia Felkner, Ho-Chun Herbert Chang, Eugene Jang,
and Jonathan May. 2023. WinoQueer: A community-
in-the-loop benchmark for anti-LGBTQ+ bias in
large language models. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 9126–
9140, Toronto, Canada. Association for Computa-
tional Linguistics.

Emilio Ferrara. 2023. Fairness and bias in artificial
intelligence: A brief survey of sources, impacts, and
mitigation strategies. CoRR, abs/2304.07683.

Anjalie Field, Su Lin Blodgett, Zeerak Waseem, and
Yulia Tsvetkov. 2021. A survey of race, racism, and

anti-racism in NLP. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1905–1925, Online. Association
for Computational Linguistics.

Hila Gonen and Yoav Goldberg. 2019. Lipstick on a
pig: Debiasing methods cover up systematic gender
biases in word embeddings but do not remove them.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 609–614,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Michael Günther, Jackmin Ong, Isabelle Mohr, Alaed-
dine Abdessalem, Tanguy Abel, Mohammad Kalim
Akram, Susana Guzman, Georgios Mastrapas, Saba
Sturua, Bo Wang, Maximilian Werk, Nan Wang, and
Han Xiao. 2023. Jina embeddings 2: 8192-token
general-purpose text embeddings for long documents.
CoRR, abs/2310.19923.

Amr Hendy, Mohamed Abdelghaffar, Mohamed Afify,
and Ahmed Y. Tawfik. 2022. Domain specific sub-
network for multi-domain neural machine translation.
In Proceedings of the 2nd Conference of the Asia-
Pacific Chapter of the Association for Computational
Linguistics and the 12th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 351–356, Online only. Associa-
tion for Computational Linguistics.

Aylin Caliskan Islam, Joanna J. Bryson, and Arvind
Narayanan. 2016. Semantics derived automatically
from language corpora necessarily contain human
biases. CoRR, abs/1608.07187.

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur
Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de Las Casas, Florian Bressand, Gi-
anna Lengyel, Guillaume Lample, Lucile Saulnier,
L’elio Renard Lavaud, Marie-Anne Lachaux, Pierre
Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2023. Mis-
tral 7b. ArXiv, abs/2310.06825.

Masahiro Kaneko and Danushka Bollegala. 2021. De-
biasing pre-trained contextualised embeddings. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 1256–1266, Online.
Association for Computational Linguistics.

Masahiro Kaneko, Aizhan Imankulova, Danushka Bol-
legala, and Naoaki Okazaki. 2022. Gender bias in
masked language models for multiple languages. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2740–2750, Seattle, United States. Association
for Computational Linguistics.

498

https://openreview.net/forum?id=T0gy6Lb72A
https://openreview.net/forum?id=T0gy6Lb72A
https://doi.org/10.18653/v1/2023.blackboxnlp-1.29
https://doi.org/10.18653/v1/2023.blackboxnlp-1.29
https://doi.org/10.18653/v1/2023.blackboxnlp-1.29
https://doi.org/10.1162/coli_a_00482
https://doi.org/10.1162/coli_a_00482
https://doi.org/10.1145/3287560.3287572
https://doi.org/10.1145/3287560.3287572
https://doi.org/10.1145/3287560.3287572
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://api.semanticscholar.org/CorpusID:271571434
https://api.semanticscholar.org/CorpusID:271571434
https://doi.org/10.18653/v1/2023.acl-long.507
https://doi.org/10.18653/v1/2023.acl-long.507
https://doi.org/10.18653/v1/2023.acl-long.507
https://doi.org/10.48550/ARXIV.2304.07683
https://doi.org/10.48550/ARXIV.2304.07683
https://doi.org/10.48550/ARXIV.2304.07683
https://doi.org/10.18653/v1/2021.acl-long.149
https://doi.org/10.18653/v1/2021.acl-long.149
https://doi.org/10.18653/v1/N19-1061
https://doi.org/10.18653/v1/N19-1061
https://doi.org/10.18653/v1/N19-1061
https://doi.org/10.48550/ARXIV.2310.19923
https://doi.org/10.48550/ARXIV.2310.19923
https://doi.org/10.18653/v1/2022.aacl-short.43
https://doi.org/10.18653/v1/2022.aacl-short.43
https://arxiv.org/abs/1608.07187
https://arxiv.org/abs/1608.07187
https://arxiv.org/abs/1608.07187
https://api.semanticscholar.org/CorpusID:263830494
https://api.semanticscholar.org/CorpusID:263830494
https://doi.org/10.18653/v1/2021.eacl-main.107
https://doi.org/10.18653/v1/2021.eacl-main.107
https://doi.org/10.18653/v1/2022.naacl-main.197
https://doi.org/10.18653/v1/2022.naacl-main.197


Svetlana Kiritchenko and Saif Mohammad. 2018. Ex-
amining gender and race bias in two hundred senti-
ment analysis systems. In Proceedings of the Sev-
enth Joint Conference on Lexical and Computational
Semantics, pages 43–53, New Orleans, Louisiana.
Association for Computational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Anne Lauscher, Tobias Lueken, and Goran Glavaš. 2021.
Sustainable modular debiasing of language models.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 4782–4797, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Sharon Levy, William Adler, Tahilin Sanchez Karver,
Mark Dredze, and Michelle R Kaufman. 2024. Gen-
der bias in decision-making with large language mod-
els: A study of relationship conflicts. In Findings
of the Association for Computational Linguistics:
EMNLP 2024, pages 5777–5800, Miami, Florida,
USA. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Marlene Lutz, Rochelle Choenni, Markus Strohmaier,
and Anne Lauscher. 2024. Local contrastive edit-
ing of gender stereotypes. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 21474–21493, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Chandler May, Alex Wang, Shikha Bordia, Samuel R.
Bowman, and Rachel Rudinger. 2019. On measuring
social biases in sentence encoders. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 622–628, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Nicholas Meade, Elinor Poole-Dayan, and Siva Reddy.
2022. An empirical survey of the effectiveness of
debiasing techniques for pre-trained language models.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1878–1898, Dublin, Ireland.
Association for Computational Linguistics.

Michael Mendelson and Yonatan Belinkov. 2021. De-
biasing methods in natural language understanding
make bias more accessible. In Proceedings of the
2021 Conference on Empirical Methods in Natural

Language Processing, pages 1545–1557, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Moin Nadeem, Anna Bethke, and Siva Reddy. 2021.
StereoSet: Measuring stereotypical bias in pretrained
language models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 5356–5371, Online. Association for
Computational Linguistics.

Nikita Nangia, Clara Vania, Rasika Bhalerao, and
Samuel R. Bowman. 2020. CrowS-pairs: A chal-
lenge dataset for measuring social biases in masked
language models. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1953–1967, Online. As-
sociation for Computational Linguistics.

Hadas Orgad, Seraphina Goldfarb-Tarrant, and Yonatan
Belinkov. 2022. How gender debiasing affects in-
ternal model representations, and why it matters. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2602–2628, Seattle, United States. Association
for Computational Linguistics.

Abhishek Panigrahi, Nikunj Saunshi, Haoyu Zhao, and
Sanjeev Arora. 2023. Task-specific skill localization
in fine-tuned language models. In International Con-
ference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages
27011–27033. PMLR.

Ji Ho Park, Jamin Shin, and Pascale Fung. 2018. Re-
ducing gender bias in abusive language detection.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2799–2804, Brussels, Belgium. Association for Com-
putational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Timo Schick, Sahana Udupa, and Hinrich Schütze. 2021.
Self-diagnosis and self-debiasing: A proposal for re-
ducing corpus-based bias in NLP. Transactions of the
Association for Computational Linguistics, 9:1408–
1424.

Andrew Silva, Pradyumna Tambwekar, and Matthew
Gombolay. 2021. Towards a comprehensive under-
standing and accurate evaluation of societal biases in
pre-trained transformers. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2383–2389, Online.
Association for Computational Linguistics.

Ran Song, Shizhu He, Shuting Jiang, Yantuan Xian,
Shengxiang Gao, Kang Liu, and Zhengtao Yu. 2024.

499

https://doi.org/10.18653/v1/S18-2005
https://doi.org/10.18653/v1/S18-2005
https://doi.org/10.18653/v1/S18-2005
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.18653/v1/2021.findings-emnlp.411
https://doi.org/10.18653/v1/2024.findings-emnlp.331
https://doi.org/10.18653/v1/2024.findings-emnlp.331
https://doi.org/10.18653/v1/2024.findings-emnlp.331
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2024.emnlp-main.1197
https://doi.org/10.18653/v1/2024.emnlp-main.1197
https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.18653/v1/2022.acl-long.132
https://doi.org/10.18653/v1/2022.acl-long.132
https://doi.org/10.18653/v1/2021.emnlp-main.116
https://doi.org/10.18653/v1/2021.emnlp-main.116
https://doi.org/10.18653/v1/2021.emnlp-main.116
https://doi.org/10.18653/v1/2021.acl-long.416
https://doi.org/10.18653/v1/2021.acl-long.416
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.18653/v1/2022.naacl-main.188
https://doi.org/10.18653/v1/2022.naacl-main.188
https://proceedings.mlr.press/v202/panigrahi23a.html
https://proceedings.mlr.press/v202/panigrahi23a.html
https://doi.org/10.18653/v1/D18-1302
https://doi.org/10.18653/v1/D18-1302
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://doi.org/10.1162/tacl_a_00434
https://doi.org/10.1162/tacl_a_00434
https://doi.org/10.18653/v1/2021.naacl-main.189
https://doi.org/10.18653/v1/2021.naacl-main.189
https://doi.org/10.18653/v1/2021.naacl-main.189


Does large language model contain task-specific neu-
rons? In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 7101–7113, Miami, Florida, USA. Association
for Computational Linguistics.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cris-
tian Cantón Ferrer, Moya Chen, Guillem Cucurull,
et al. 2023. Llama 2: Open foundation and fine-tuned
chat models. ArXiv, abs/2307.09288.

Elena Voita and Ivan Titov. 2020. Information-theoretic
probing with minimum description length. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 183–196, Online. Association for Computa-
tional Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Kellie Webster, Xuezhi Wang, Ian Tenney, Alex Beutel,
Emily Pitler, Ellie Pavlick, Jilin Chen, Ed H. Chi, and
Slav Petrov. 2020. Measuring and reducing gendered
correlations in pre-trained models. Technical report.

Xuyang Wu, Shuowei Li, Hsin-Tai Wu, Zhiqiang Tao,
and Yi Fang. 2025. Does RAG introduce unfairness
in LLMs? evaluating fairness in retrieval-augmented
generation systems. In Proceedings of the 31st Inter-
national Conference on Computational Linguistics,
pages 10021–10036, Abu Dhabi, UAE. Association
for Computational Linguistics.

Mahdi Zakizadeh, Kaveh Miandoab, and Mohammad
Pilehvar. 2023. DiFair: A benchmark for disentan-
gled assessment of gender knowledge and bias. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 1897–1914, Singapore.
Association for Computational Linguistics.

Kelly Zhang and Samuel Bowman. 2018. Language
modeling teaches you more than translation does:
Lessons learned through auxiliary syntactic task anal-
ysis. In Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 359–361, Brussels, Bel-
gium. Association for Computational Linguistics.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Ryan Cotterell,
Vicente Ordonez, and Kai-Wei Chang. 2019. Gender
bias in contextualized word embeddings. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 629–634, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2018a. Gender bias
in coreference resolution: Evaluation and debiasing
methods. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 15–20, New
Orleans, Louisiana. Association for Computational
Linguistics.

Jieyu Zhao, Yichao Zhou, Zeyu Li, Wei Wang, and Kai-
Wei Chang. 2018b. Learning gender-neutral word
embeddings. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 4847–4853, Brussels, Belgium. Associa-
tion for Computational Linguistics.

500

https://doi.org/10.18653/v1/2024.emnlp-main.403
https://doi.org/10.18653/v1/2024.emnlp-main.403
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://doi.org/10.18653/v1/2020.emnlp-main.14
https://doi.org/10.18653/v1/2020.emnlp-main.14
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://arxiv.org/abs/2010.06032
https://arxiv.org/abs/2010.06032
https://aclanthology.org/2025.coling-main.669/
https://aclanthology.org/2025.coling-main.669/
https://aclanthology.org/2025.coling-main.669/
https://doi.org/10.18653/v1/2023.findings-emnlp.127
https://doi.org/10.18653/v1/2023.findings-emnlp.127
https://doi.org/10.18653/v1/W18-5448
https://doi.org/10.18653/v1/W18-5448
https://doi.org/10.18653/v1/W18-5448
https://doi.org/10.18653/v1/W18-5448
https://doi.org/10.18653/v1/N19-1064
https://doi.org/10.18653/v1/N19-1064
https://doi.org/10.18653/v1/N18-2003
https://doi.org/10.18653/v1/N18-2003
https://doi.org/10.18653/v1/N18-2003
https://doi.org/10.18653/v1/D18-1521
https://doi.org/10.18653/v1/D18-1521

