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Abstract

Understanding the inner workings of neural
embeddings, particularly in models such as
BERT, remains a challenge because of their
high-dimensional and opaque nature. This pa-
per proposes a framework for uncovering the
specific dimensions of vector embeddings that
encode distinct linguistic properties (LPs). We
introduce the Linguistically Distinct Sentence
Pairs (LDSP-10) dataset, which isolates ten key
linguistic features such as synonymy, negation,
tense, and quantity. Using this dataset, we an-
alyze BERT embeddings with various statisti-
cal methods, including the Wilcoxon signed-
rank test, mutual information, and recursive
feature elimination, to identify the most influ-
ential dimensions for each LP. We introduce
a new metric, the Embedding Dimension Im-
portance (EDI) score, which quantifies the rel-
evance of each embedding dimension to a LP.
Our findings show that certain properties, such
as negation and polarity, are robustly encoded
in specific dimensions, while others, like syn-
onymy, exhibit more complex patterns. This
study provides insights into the interpretability
of embeddings, which can guide the develop-
ment of more transparent and optimized lan-
guage models, with implications for model bias
mitigation and the responsible deployment of
AI systems. 1

1 Introduction

Word embeddings are central to natural language
processing (NLP), enabling machines to repre-
sent and interpret text in continuous vector spaces.
From early models like Word2Vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014), to ad-
vanced models like GPT-2 (Radford et al., 2019)
and BERT (Devlin et al., 2019), embeddings have
evolved to capture complex linguistic nuances.
BERT, in particular, leverages bidirectional trans-

1Our code is available at https://github.com/
realnav1234/ldsp_embeddings.

Figure 1: Dimensions of BERT embeddings that encode
the most information about each LP. Relevance is de-
termined by Embedding Dimension Importance (EDI)
scores above 0.8, a threshold chosen in relation to the
general EDI score distribution.

formers to generate contextualized word represen-
tations, enhancing syntactic and semantic under-
standing (Rogers et al., 2020).

Despite these advancements, embeddings are
often seen as "black boxes," where the high-
dimensional nature of the spaces they occupy
makes interpretation difficult (Belinkov and Glass,
2019). The field of interpretable embeddings seeks
to address these challenges by making the dimen-
sions of embeddings more transparent and mean-
ingful (Faruqui et al., 2015a; Incitti et al., 2023;
Snidaro et al., 2019). However, most systems
still rely on popular embedding models like GPT,
BERT, Word2Vec, and GloVe, which prioritize per-
formance over interpretability (Cao, 2024; Lipton,
2017).

Our research introduces a generalizable frame-
work for identifying specific embedding dimen-
sions in models like BERT and GPT-2 that encode
distinct LPs. This work responds to the grow-
ing need for interpretable models, especially for
tasks like bias mitigation (Bolukbasi et al., 2016;
Mehrabi et al., 2021), task-specific optimization
(Guyon and Elisseeff, 2003; Voita et al., 2019), and
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Control Synonym Quantity Tense Intensifier Voice Definiteness Factuality Polarity Negation
BERT 0.5033 0.7033 0.95 0.94 0.9867 0.9667 0.8967 0.9833 0.9700 0.9333
GPT-2 0.57 0.6267 0.9733 0.9567 0.9367 0.9867 0.9433 0.9667 0.9533 0.93

MP-Net 0.54 0.5267 0.9533 0.93 0.8733 0.86 0.8567 0.9667 0.9533 0.9367

Table 1: Evaluation 1 (§ 5.2) accuracy for different LPs across BERT, GPT-2, and MP-Net. A simple logistic
classifier is able to perform at these levels of accuracy on the highest EDI subset of dimensions of embeddings from
each of these models.

more system controllability (Bau et al., 2019).
We present the LDSP-10 dataset, which consists

of sentence pairs isolating nine LPs, designed to
probe embedding spaces and identify the dimen-
sions most influential for each property. We an-
alyze these sentence pairs using statistical tests,
mutual information, and feature selection methods.
We propose the Embedding Dimension Impor-
tance (EDI) score, which aggregates these analy-
ses to quantify the relevance of each dimension to
specific LPs.

This paper makes three contributions. First, is
the introduction of the LDSP-10 dataset, consisting
of sentence pairs that isolate nine LPs. Second is
a generalizable framework and quantifiable metric
(EDI score) for identifying influential embedding
dimensions, applicable to different models and lin-
guistic features. Third is a comprehensive analysis
of BERT, GPT-2, and MPNet embeddings, reveal-
ing key dimensions related to each LP.

2 Related Works

Research on interpretable embeddings can be di-
vided into two categories: interpretable embed-
dings and representation analysis. The former fo-
cuses on designing models that naturally produce
interpretable representations, while the latter in-
volves post-hoc analysis to uncover how existing
embeddings encode human-interpretable features.

2.1 Interpretable Embeddings

Several approaches have been proposed to cre-
ate interpretable word embeddings. Early efforts
like Murphy et al. (2012) used matrix factoriza-
tion techniques to generate sparse, interpretable
embeddings. Faruqui et al. (2015b) introduced
Sparse Overcomplete Word Vectors (SPOWV),
which used a dictionary learning framework for
more interpretable, sparse embeddings. Other
methods, such as Guillot et al. (2023) and Sub-
ramanian et al. (2018), explored how sparsification
techniques could disentangle properties within em-
beddings, making them more interpretable.

Approaches to embedding interpretability

also involve aligning dimensions with human-
understandable concepts. For instance, Panigrahi
et al. (2019) used Latent Dirichlet Allocation
(LDA) to produce embeddings where each
dimension corresponds to a specific word sense,
and Benara et al. (2024) employed LLM-powered
yes/no question-answering techniques to generate
interpretable embeddings. Despite these innova-
tions, popular models like Word2Vec, GloVe, and
BERT remain dominant in NLP but often lack
inherent interpretability. As a result, methods for
post-hoc analysis are needed to interpret these
embeddings.

2.2 Representation Analysis

Representation analysis focuses on understanding
how knowledge is structured within embeddings
and how individual neurons contribute to encoding
specific properties (Sajjad et al., 2022). Senel et al.
(2017) demonstrated how individual dimensions
correspond to specific semantic properties, and Zhu
et al. (2018) emphasized the value of sentence-level
embeddings in capturing nuanced semantic proper-
ties. Research has also explored the linguistic fea-
tures encoded within embeddings. Conneau et al.
(2018) developed a set of ten probing tasks that
evaluate how sentence embeddings capture various
linguistic features, such as syntactic structures and
semantic roles. Adi et al. (2017) complemented
this work by proposing classification tasks that re-
veal the effectiveness of sentence embeddings in
encoding attributes like sentence length and word
order.

Recent research has analyzed individual neurons
in embedding spaces, often using methods like
neuron-ranking, where a probe is used to rank neu-
rons based on their relevance to a specific linguistic
feature (Dalvi et al., 2019; Durrani et al., 2020;
Torroba Hennigen et al., 2020). Antverg and Be-
linkov (2022) analyzed these methods, separating
representational importance from functional utility
and introducing interventions to evaluate whether
encoded information is actively utilized.

Building on this foundation, Durrani et al. (2024)
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introduced Linguistic Correlation Analysis (LCA),
which identifies salient neurons that encode specific
linguistic features. Their findings indicated redun-
dancy in information encoding across neurons, en-
hancing robustness in representation learning. Sim-
ilarly, Gurnee et al. (2023) proposed sparse prob-
ing methods to address polysemanticity, illustrating
how features are distributed across neurons in trans-
former models. Additionally, Torroba Hennigen
et al. (2020) presented intrinsic probing, introduc-
ing a Gaussian framework to identify dimensions
encoding LPs. Together, these findings suggest
that linguistic attributes are often encoded in focal
dimensions, providing insights into how different
models represent linguistic knowledge.

Our work builds on these ideas by using the
LDSP-10 dataset to isolate linguistic features,
which provides a focused method for assessing
how embedding dimensions capture these prop-
erties. We move beyond traditional probing and
neuron-ranking techniques to offer a more targeted
examination of embedding interpretability.

3 Linguistically Distinct Sentence Pairs
(LDSP-10) Dataset

We curated a dataset of 1000 LDSPs for each of
the 10 LPs we wanted to investigate. To generate
the dataset, we used Google’s gemini-1.5-flash
model API due to its reliability and cost-efficiency,
while being able to produce consistent outputs
across a variety of linguistic contexts. We
prompted the model with a description of the LP
and a set of reference LDSPs as few-shot examples
to ensure high-quality outputs. These outputs were
generated in batches of 100 LDSPs at a time. To en-
sure reproducibility and transparency, the detailed
prompts used to generate the dataset are provided
in Appendix A.

During the dataset creation process, we found
that the order of the sentences in each pair was not
always consistent, which a key invariant central to
the correctness of our methods. We add carefully
crafted instructions to the prompt to explicitly en-
force the correct ordering. Manual validation was
conducted to assess the quality of the generated
data. The evaluation revealed that more than 99%
of the sampled sentence pairs adhered to our expec-
tations: (1) minimal distinctions and (2) consistent
ordering. The system exhibited a low rate (<1%)
of syntactic or content biases, with errors occur-
ring primarily in cases involving more complex

Property Sentence Pair

Control They sound excited.
The farmer has 20 sheep.

Synonym The music was calming.
The music was soothing.

Quantity I ate two cookies.
I ate several cookies.

Tense The river flows swiftly.
The river flowed swiftly.

Intensifier The task is easy.
The task is surprisingly easy .

Voice The team won the game.
The game was won by the team.

Definiteness The bird flew away.
A bird flew away .

Factuality The car is red.
The car could be red.

Polarity She passed the exam.
She failed the exam.

Negation The project is successful.
The project is not successful.

Table 2: Sample linguistically distinct sentence pairs
(LDSPs) from each of the LPs tested in this study.
LDSP-10 dataset contains 1000 sentence pairs per LP.
Control LDSPs are randomly chosen from the dataset,
intended to be unrelated, as a baseline for our analysis.

distinctions, such as polarity and factuality.
The LPs tested were chosen to explore various

semantic and syntactic relationships. We gener-
ated LDSPs for definiteness, factuality, intensifier,
negation, polarity, quantity, synonym, and tense.
In addition, we generated a control group, which
contains sentence pairs of completely unrelated
sentences. This is used to compare to the LDSPs
and contextualize our observed results. Example
LDSPs can be found in Table 2, with more detailed
definitions found in Appendix B. For more informa-
tion about the dataset generation pipeline, please
refer to Appendix A.

4 Dimension-Wise Embedding Analysis

For each sentence in the LDSP-10 dataset, we use
the final hidden layer’s output of three distinct
models (BERT, GPT-2, and MPNet) and use mean-
pooling over the tokens to compute sentence em-
beddings. The framework outlined in this section
is generalizable to any model, layer, or pooling
mechanism.

4.1 Wilcoxon Signed-Rank Test

We use the Wilcoxon signed-rank test to assess
whether there exists a significant difference in em-
bedding dimensions across paired sentence repre-
sentations. This non-parametric test is particularly
useful when the data does not conform to the nor-
mality assumptions required by parametric tests
such as the paired t-test. Given that sentence em-
beddings can exhibit complex, non-Gaussian dis-
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tributions, the Wilcoxon test provides a robust ap-
proach to evaluating the statistical significance of
differences in embedding dimensions.

Formally, let X1, X2 ∈ Rd be the embedding
representations of two paired sentences. We define
the difference vector as:

D = X1 −X2,

where D = {d1, d2, ..., dd} contains the differ-
ences for each embedding dimension. The null
hypothesis for the Wilcoxon test is given by:

H0 : median(D) = 0,

which posits that there is no significant shift in the
embedding dimensions between the two sentence
representations.

The test ranks the absolute values of the nonzero
differences, assigning ranks Ri to each |di|. The
Wilcoxon test statistic W is computed as the sum
of ranks of positive |di|s.

W =
∑

di>0

Ri.

The significance of W is assessed by computing a
p-value from the Wilcoxon distribution. 2

We employ the Wilcoxon test in our framework
to analyze whether certain dimensions of the em-
beddings exhibit systematic shifts within sentence
pairs. The Wilcoxon signed-rank test provides a
rigorous statistical method for validating the role of
embedding dimensions in differentiating sentence
pairs, ensuring that our conclusions are drawn from
statistically significant evidence rather than random
variations.

4.2 Mutual Information (MI)
To further investigate the relationship between em-
bedding dimensions and each LP and inspired by
Pimentel et al. (2020), we employ mutual infor-
mation (MI) analysis. Mutual information is a
measure of the mutual dependence between two
variables, quantifying the amount of information
obtained about one variable by observing the other
(Zeng, 2015).

For discrete random variables X and Y , the mu-
tual information MI(X;Y ) is defined as:

∑

x∈X

∑

y∈Y
PXY (x, y) log

PXY (x, y)

PX(x)PY (y)
,

2Because we do not use the p-value to directly accept
or reject any hypothesis, we do not conduct any multiple
hypotheses correction. Instead, we use the p-values to weight
each dimension’s contribution to the LP’s encoding.

where PXY (x, y) is the joint probability distribu-
tion of X and Y , and PX(x) and PY (y) are the
marginal probability distributions of X and Y , re-
spectively. In our context, X represents the values
of a particular embedding dimension, and Y repre-
sents S1 (0) or S2 (1).

To apply mutual information analysis, we dis-
cretize the embedding dimensions using quantile-
based binning with 10 bins. This number was se-
lected as a balance between the preservation of
information content and the avoidance of excessive
complexity in the estimation of the MI score and
is a common practice in similar analyses (Steuer
et al., 2002).

4.3 Recursive Feature Elimination

We initially examined each embedding dimension’s
predictive capability with simple logistic regres-
sion. Unlike more flexible techniques, logistic re-
gression imposes a linear decision boundary, which
was unable to capture the complex patterns defin-
ing most linguistic contrasts within the generated
embeddings. To capture these relationships, we
applied Recursive Feature Elimination (RFE) us-
ing scikit-learn’s implementation with logistic
regression as the base estimator (Zeng et al., 2009).
Embedding pairs were split into their constituent
parts, with sentence1 embeddings labeled as class
0 and sentence2 embeddings as class 1, enabling
a binary classification setup to highlight dimen-
sions that distinguish the two positions. The RFE
procedure iteratively trained a model, assigned im-
portance weights to features, and removed the least
important ones until the top 20 features remained.

4.4 EDI Score Calculation

To quantify the contribution of each embedding
dimension to a LP, we introduce the Embedding
Dimension Importance (EDI) Score, which is com-
puted for each dimension d and each LP lp as fol-
lows:

EDId,lp = w1 ·− log pd,lp+w2 ·Md,lp+w3 ·Rd,lp

where pd,lp is the p-value obtained from the
Wilcoxon signed-rank test results. Md,lp is the mu-
tual information score. Rd,lp is the absolute value
of the logistic regression weights after the recur-
sive feature elimination if d remains in the reduced
feature set for LP lp; otherwise, Rd,lp = 0. pd,lp,
Md,lp, Rd,lp are min-max scaled before the EDI
score weighted to calculation to enforce EDI scores
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to be ∈ [0, 1]. Lastly, w1 = 0.6, w2 = 0.2, and
w3 = 0.2. Wilcoxon’s test is weighted most heav-
ily, as it calculates the statistical significance of
the differences observed, which our testing showed
was a strong predictor of importance.

5 Evaluation

5.1 Linguistic Property Classifier

To verify the feasibility of using sentence pairs,
we calculate embedding difference vectors Di =
emb(S1i)− emb(S2i) and evaluate them as predic-
tors of LP. To this end, we train an LP classifier
that assigns any given embedding difference vector
to one of the tested LPs. The primary goal of this
classifier is to assess how well different LPs can be
separated in the embedding space. We use an 80-20
training-test split on the entire LDSP-10 dataset.

5.2 EDI Score Evaluation

To systematically assess the effectiveness of EDI
scores, we implement a structured evaluation
framework consisting of a baseline test and three
evaluation experiments. For more details on the
algorithms for each evaluation method, refer to
Appendix C.

For the baseline, we train a logistic regression
classifier on the full set of embedding dimensions.
Given a binary classification task for each LP, the
classifier is trained to distinguish between the two
sentences in the LDSP using all available embed-
ding dimensions, serving as an upper bound against
which subsequent evaluations are compared.

Evaluation 1 explores how dimensions with
high EDI scores replicate the performance of the
full-dimensional classifier. We first rank all dimen-
sions by their EDI score in descending order. Start-
ing with the highest-ranked dimension, we train
a logistic regression classifier, as in the baseline
evaluation, but only with this single feature. We
iteratively add the next highest-ranked dimension,
retraining the classifier on the current subset of
highly ranked dimensions, and evaluating the test
accuracy until we reach at least 95% of the baseline
accuracy.

Evaluation 2 verifies that dimensions with low
EDI scores do not encode information relevant to
the LP. We identify the 100 lowest-ranked dimen-
sions and train a logistic classifier to distinguish
between the two sentences using only those dimen-
sions. We record the accuracy on a test dataset.

Figure 2: Distribution of BERT embedding dimension 0
of control LDSPs for S1 and S2. For control, all dimen-
sions had equivalent Wilcoxon p-values, so dimension
0 represents the most and least significant p-value.

Evaluation 3 examines cross-property general-
ization, exploring whether high-EDI-score dimen-
sions for one LP are specialized or broadly informa-
tive across different properties. We use the highest-
ranked EDI score dimensions of other properties to
predict the current property. We expect the perfor-
mance of this classifier to be generally lower than
the baseline and the Evaluation 1 (high-EDI-scores)
accuracy.

6 Results

In this section, we focus on BERT embeddings as
a case study for applying our framework. We show
visualizations for control, negation, and intensifier,
but all other LPs and related tables & plots can be
found in Appendix . The results for GPT-2 and
MPNet were similar, and can be reviewed in detail
in Appendix E and Appendix F.

6.1 Control and Synonym

The control LDSPs consists of completely unre-
lated sentence pairs. As expected, the results show
that there are no significant dimensions in BERT
embeddings that encode any relationships. Figure
5 illustrates very little agreement the Wilcoxon
signed-rank test, RFE, and mutual information.
The Wilcoxon test p-values show no dimensions
with significant differences in their means, as
shown in Figure 2. The maximum EDI score of
0.3683 is the lowest of all other properties. The
embeddings of the two sentences are expected to be
far in embedding space because of their unrelated

465



Figure 3: Distribution of BERT embedding dimensions
544 (top) and 489 (bottom), lowest and highest p-values
respectively, of negation LDSPs for S1 and S2. There
is a discernible shift to the right in dimension 544, for
sentences that are negated.

nature, which aligns with these observed results.

Despite having sentences that were very close
or equivalent in meaning, the results of the anal-
ysis for the synonym LDSPs were very close to
the completely unrelated sentences of control. The
Wilcoxon test shows no significant dimensions that
encode meaningful differences between the sen-
tences. The maximum EDI score of 0.8751 is fol-
lowed by a steep drop-off.

6.2 Negation and Polarity

The negation LDSPs showed very strong results,
with 13 dimensions with an EDI score of 0.8 or
above. The maximum EDI score of 0.9987 for
dimensions 544 is one of the strongest out of any
LP. Figure 6 illustrates this, with high agreement
between the Wilcoxon signed-rank test, RFE, and
mutual information test results. Figure 3 highlights
the distributional shift in some dimensions, which
compared to the control highlights a discernible,
binary relationship in the data.

Polarity is very similar to negation and had sim-
ilarly strong results. With a maximum EDI score
of 0.9977 for dimension 431, and over 20 dimen-
sions with EDI scores over 0.8, it was also one of
the strongest relationships that we observed. The
singular switch to an antonym in the sentence com-
pletely reverses the meaning of the sentence, ex-
plaining the strong binary relationship between the
sentences.

Figure 4: Distribution of BERT embedding dimensions
445 (top) and 489 (bottom), lowest and highest p-values
respectively, of intensifier LDSPs for S1 and S2. Inten-
sified sentences have values in dimension 445 that tend
to be lower, as seen by the distributional shift to the left.

6.3 Intensifier

Adding a word to increase the emphasis of a verb
changes the meaning of the sentence to a lesser
degree than a complete reversal, so the results of
the intensifier LDSPs reflect a slightly weaker rela-
tionship than negation. There are fewer dimensions
with multiple test agreement, as shown in Figure 7,
as well as a slighter distributional shift, as shown by
the most significant p-value Wilcoxon test results
(Figure 4). With a maximum EDI score of 0.8911,
the encoding is relatively weaker, but noticeable.

6.4 Other Linguistic Properties

Largely syntactical changes, such as those observed
in definiteness, led to strong EDI scores as well.
Definiteness had the highest dimensional EDI score,
with dimension 180 receiving a score of 1.0. A sim-
ple switch from a definite to an indefinite article is a
distinct change in structure. As articles are present
in most English sentences, a singular dimension
with a perfect EDI score is expected.

Voice, another syntactical property, had pairs
of sentences with shuffled word orders and verb
changes. The results show that this is encoded in
relatively few dimensions, with only 3 dimensions
scoring above 0.9.

The quantity LDSPs involve changes in the syn-
tax and semantics. Similar to the intensifier results,
the EDI scores at large were relatively lower for
these properties, but still much stronger than the
control.
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Figure 5: Combined analysis graph for control: shows
the top 25 important dimensions selected by each of
the three methods in § 4. Bar height represents mutual
information (MI); bars above the dashed line are in the
top 25 MI scores. Blue bars signify the lowest Wilcoxon
test p-values. Green triangles indicate a dimension that
was selected by recursive feature elimination (RFE) with
num_features set to 25. In the case for control, all
dimensions had equivalent Wilcoxon p-values, so the
first 25 are selected.

Figure 6: Combined analysis graph for negation. Cir-
cled bars represent dimensions that all three tests agree
to be highly important. For more details, refer to Figure
5.

Tense represented a large semantic change, as
well as a structural one in the conjugation of verbs.
Although the maximum EDI score of 0.9405 was
not as high as other properties, 18 embeddings
scored above 0.8, indicating an encoding of this
property over many dimensions.

For more details and visualizations of all proper-
ties, refer to Appendix D.

6.5 Evaluation Results

The LP classifier achieved a test accuracy of 0.863
with a confusion matrix as shown in Figure 8,
demonstrating that the embedding difference vec-
tors contain sufficient separable information to dis-
tinguish between different LPs. Moreover, the
strong performance of the classifier supports the
validity of our pairwise minimal-perturbation ap-
proach, indicating that small controlled changes in
sentence pairs effectively capture linguistic distinc-

Figure 7: Combined analysis graph for intensifier. Sim-
ilar to figures 5 and 6.

tions in the embedding space.

In the high EDI score evaluation, we observed
that across most LPs, only less than 12 of the
highest-ranked dimensions were required to re-
cover at least 95% of the baseline classifier’s accu-
racy, with some properties (i.e. factuality) requiring
as few as four dimensions. This indicates that the
information necessary for classifying each LP is
concentrated in a relatively small subset of embed-
ding dimensions. Conversely, the low EDI score
evaluation confirmed that dimensions with low
scores contribute minimally to classification per-
formance. Even when using the 100 lowest-ranked
dimensions, the resulting classifier performed con-
sistently worse than classifiers using much fewer
(4-38) of the highest-ranked dimensions (Figures
10, 11). This demonstrates the EDI score’s validity
as a measure of whether a given dimension encodes
information relevant to an LP.

Finally, the cross-property evaluation demon-
strated that using the top-ranked dimensions from
another LP generally resulted in lower classifica-
tion performance compared to using the high-EDI
dimensions of the target property, showing that the
EDI score effectively identifies dimensions that en-
code information specific to each LP. Interestingly,
we found that certain properties with conceptual
similarities performed best for each other. For ex-
ample, in the polarity classification task, the top
EDI dimensions from negation achieved the high-
est accuracy among all cross-property evaluations,
reaching 0.895 (Figure 10). This result aligns with
the intuition that negative sentiment—typically
represented by the second sentence in polarity
pairs—is often expressed through negation, rein-
forcing the semantic connection between these LPs.
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Figure 8: Confusion matrix for the LP classifier (§ 5.1).
All LPs, except control and synonym, are accurately clas-
sified by the model. Control’s randomness ensures that
its different vectors contain no consistent separability,
similarly with synonym’s unordered pairings.

Figure 9: Evaluation plot for control. The blue dot indi-
cates that with just 1 high-EDI dimension, the classifier
was able to achieve performance better than the baseline.
However, in the case of control, all the accuracies are
near 0.5 (random-choice accuracy), as expected.

7 Discussion

The results of this study provide a clear demon-
stration of the ability to extract specific LPs within
high-dimensional embeddings. Our analysis shows
that certain LPs are robustly encoded in distinct
embedding dimensions, as evidenced by high
Embedding Dimension Importance (EDI) scores
and agreement across multiple analytical methods.
These methods were chosen after rigorous exper-
imentation, where principal component analysis,
simple logistic regression, and other methods were
rejected due to their inability to capture the nu-
anced, non-linear information encoded in these em-
beddings. Negation yielded one of the the highest
maximum EDI scores and a significant number of
dimensions with high interpretability. This sup-
ports the notion that negation is a well-structured
and salient linguistic feature in BERT embeddings.

Figure 10: Evaluation plot for polarity. The blue line
tracks the test accuracy of the classifier as we increased
the number of top EDI-scored dimensions, showing
that 8 dimensions were enough to achieve near-baseline
accuracy. The top-performing cross property is negation
which contains semantic similarities to polarity.

Figure 11: Evaluation plot for intensifier. Incremen-
tally added 19 high-EDI dimensions until the classifier
reached near-baseline performance. Low-EDI perfor-
mance (red dashed line) was nearly half.

In contrast, some properties exhibited minimal
evidence of dimension-specific encoding, which
we hypothesize to be due to a lack of a binary
or clear-cut way of encoding these relationships.
Synonymy showed low maximum EDI scores and
inconsistent results across our methods. Synonym
pairs in our dataset could be permuted without af-
fecting the consistency of the data, and 0-1 labels
for our classifiers and mutual information were
meaningless; therefore, our methods are unable to
extract the dimensional distribution of synonym
encodings.

In summary, this study underscores the hetero-
geneous nature of linguistic encoding in BERT em-
beddings, with some properties exhibiting clear,
interpretable patterns while others remain elusive.
The proposed EDI score and analytical frame-
work provide valuable tools for advancing the in-
terpretability of embeddings, with implications
for bias mitigation, model optimization, and the
broader goal of responsible AI deployment.
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8 Limitations

While our study provides insight into the inter-
pretability of embedding dimensions, it is con-
strained due to data availability. Generating high-
quality LDSPs with LLM-based tools is difficult, as
ensuring diversity, minimal redundancy, and high
linguistic quality becomes significantly more diffi-
cult with more data generated. Overly simplistic,
repetitive outputs are difficult to avoid, despite care-
ful prompt engineering.

Additionally, we limit our experiments to small
open-source models due to compute and credit con-
straints, but analysis on larger, newer, and more
widely-used models could solidify our generaliz-
ability claim and provide valuable insights. Future
work may analyze EDI scores across representa-
tions at different layers to understand how infor-
mation about specific LPs propagate through the
network.

While we hypothesize that our method can iso-
late dimensions responsible for encoding gender
or other characteristics that may not be necessar-
ily informative to the specified task and can intro-
duce biases, more experiments and analysis are
needed in order to validate this. To this end, future
work may conduct evaluations using downstream
task accuracy and counterfactual measures, such
as mean-ablating high-EDI dimensions to observe
information loss or making EDI-informed modifi-
cations to dimensions.
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Figure 12: LDSP generation pipeline with Google’s
gemini-1.5-flash model API.

high-quality generations that would be useful for
our experiments. The prompt template used can be
seen in Figure 13.

B Linguistic Property Definitions

We tested LDSPs for the following linguistic prop-
erties:

• Definiteness involves the use of definite or
indefinite articles within a sentence, such as
the compared to a, respectively.

• Factuality refers to the degree of truth implied
by the structure of the sentence.

• Intensifier refers to the degree of emphasis
present within a sentence.

• Negation occurs when a not is added to a sen-
tence, negating the meaning.

• Polarity this is similar to a negation, and oc-
curs when an antonym is added, reversing the
meaning of the sentence completely.

• Quantity a switch from an exact number used
to numerate the items to a grouping word.

• Synonym both sentences have the same mean-
ing, with one word being replaced by one of
its synonyms.

• Tense one sentence is constructed in the
present tense, while the other is in the past
tense.

prompt_template = """

You are generating a dataset of
Linguistically Distinct Sentence Pairs
(LDSPs).
Each LDSP will differ in one key linguistic
property while maintaining the same overall
meaning.

Below are some examples of LDSPs

Linguistic Property: negation
LDSP: ('The box is on the counter', 'The
box is not on the counter')

Linguistic Property: tense
LDSP: ('The box is on the counter', 'The
box was on the counter')

You will generate {num_ldsps} distinct
LDSPs of various topics, 100 at a time.

You will generate them as two columns of a
CSV. One column for first sentence of the
LDSP, and the other column for the second.
Each row is a new LDSP, so you will
generate {num_ldsps} rows in total.

Generate no other text. Vary the sentence
structure.

The property for which you will be
generating LDSPs will be
{linguistic_property}.

Property Description: {property_description}

An example LDSP for this property is
{example_ldsp}

Generate the first 100 LDSPs.

"""

Figure 13: The prompt template used to generate LDSPs
with the gemini-1.5-flash model API.
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C Evaluation Algorithms

To systematically assess the efficacy of EDI (Em-
bedding Dimension Importance) scores, we con-
duct a structured evaluation using logistic regres-
sion classifiers. Our evaluation consists of three
key evaluation algorithms:

Algorithm 1 Evaluation 1: High EDI Score

Require: Ranked dimensions D =
{d1, d2, ..., d768} sorted by descending
EDI score

Ensure: Accuracy curve Ak as a function of di-
mensions used

1: Initialize k ← 1, Ak ← 0
2: while Ak < 0.95Abaseline do
3: Select top k dimensions: Xk = X[:, D1:k]
4: Train logistic regression on Xk

5: Compute test accuracy Ak ←
Evaluate(θ,Xtest, ytest)

6: k ← k + 1
7: end while
8: return Ak

Algorithm 2 Evaluation 2: Low EDI Score
Require: Ranked dimensions D =
{d1, d2, ..., d768} sorted by ascending
EDI score

Ensure: Test accuracy Alow using lowest-EDI di-
mensions

1: Select bottom k = 100 dimensions: Xlow =
X[:, D1:100]

2: Train logistic regression on Xlow
3: Compute test accuracy Alow ←

Evaluate(θ,Xtest, ytest)
4: return Alow

Dimension EDI Score
209 0.3683
526 0.2639
578 0.2434
235 0.2342
186 0.2315
515 0.2196
724 0.2167
760 0.2000
327 0.1958
551 0.1913

Table 3: Top 10 BERT EDI scores for the Control.

Algorithm 3 Evaluation 3: Cross-Property

Require: Current property P0 dataset (X, y), set
of other properties P = {P1, P2, ..., P9},
where each Pi has ranked EDI dimensions DPi

Ensure: Accuracy scores {AP1 , AP2 , ..., AP9}
1: for each property P ∈ P do
2: Retrieve top k = 25 dimensions from P :

D1:25
P

3: Extract these dimensions from current data:
XP

train = Xtrain[:, D
1:25
P ]

4: Train logistic regression on XP
train

5: Compute test accuracy AP ←
Evaluate(θ,XP

test, ytest)
6: end for
7: return {AP }P∈P

These evaluations provide a comprehensive un-
derstanding of how EDI scores relate to classifica-
tion accuracy, ensuring that high EDI dimensions
contain useful linguistic information while low EDI
dimensions do not. The cross-property evaluation
further confirms that high-EDI dimensions are spe-
cialized rather than general indicators of LPs.

D Additional Linguistic Property Results
for BERT Embeddings

D.1 Control

Table 3 highlights the top 10 EDI scores for the
control. The baseline evaluation results for con-
trol showed an accuracy of 0.5200, close to ran-
dom chance. The Low EDI score test yielded
an accuracy of 0.4575. The High EDI score test
demonstrated quick improvements, achieving 95%
of baseline accuracy with a single dimension, as
the baseline accuracy was low, as illustrated in Fig-
ure 9. The greatest cross-property accuracy was
achieved by voice, at 0.5325.
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Dimension EDI Score
180 1.0000
123 0.8824
319 0.8819
385 0.8639
109 0.8155
497 0.7974
683 0.7948
172 0.7926
430 0.7907
286 0.7862

Table 4: Top 10 BERT EDI scores for Definiteness.

Figure 14: BERT Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Definiteness.

D.2 Definiteness

Definiteness had some of the strongest results out
of any LP. Figure 14 highlight the difference be-
tween the most prominent dimensions for this prop-
erty. Table 4 highlights the top 10 EDI scores,
while Figure 16 illustrates the high level of agree-
ment between our various tests.

The baseline evaluation results for definite-
nessshowed an accuracy of 0.9450. The Low EDI
score test yielded an accuracy of 0.5425, very close
to random chance. The High EDI score test was
able to achieve 95% of baseline accuracy with 25
dimensions, as illustrated in Figure 15. The greatest
cross-property accuracy was achieved by intensi-
fier, at 0.8425.

D.3 Factuality

Factuality had strong results. Figure 17 highlights
the stark difference between the most prominent
dimensions encoding this property. Table 5 high-
lights the top 10 EDI scores, while Figure 19 il-
lustrates the high level of agreement between our
various tests.

The baseline evaluation results for factuality
showed an accuracy of 0.9975. The Low EDI score

Figure 15: High EDI score evaluation results for BERT
Embeddings of definiteness.

Figure 16: BERT Mutual Information of Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Definiteness

test yielded an accuracy of 0.5975, approximately
random. The High EDI score test demonstrated
very quick improvements, achieving 95% of base-
line accuracy with 4 dimensions, as illustrated in
Figure 18. The greatest cross-property accuracy
was achieved by tense, at 0.9650.

D.4 Intensifier

Table 6 highlights the top 10 EDI scores for intensi-
fier. The baseline evaluation results for intensifier
showed an accuracy of 0.9925. The Low EDI score
test yielded an accuracy of 0.5150, close to random
chance. The High EDI score test demonstrated
incremental improvements, achieving 95% of base-
line accuracy with 19 dimensions, as illustrated in
Figure 11. The greatest cross-property accuracy

Dimension EDI Score
577 0.9740
43 0.9386

210 0.9249
745 0.8954
539 0.8887
387 0.8869
60 0.8727
16 0.8617
54 0.8609
97 0.8538

Table 5: Top 10 BERT EDI scores for Factuality.
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Figure 17: BERT Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Factuality.

Figure 18: High EDI score evaluation results for BERT
Embeddings of factuality.

was achieved by quantity, at 0.8550.

D.5 Negation

Table 7 highlights the top 10 EDI scores for nega-
tion. The baseline evaluation results for negation
showed an accuracy of 0.9925. The Low EDI score
test yielded an accuracy of 0.5800, close to random
chance. The High EDI score test demonstrated
incremental improvements, achieving 95% of base-
line accuracy with 11 dimensions, as illustrated in
Figure 20. The greatest cross-property accuracy
was achieved by tense, at 0.9100.

Dimension EDI Score
686 0.8911
663 0.8832
139 0.8805
605 0.8790
269 0.8650
441 0.8612
144 0.8535
692 0.8468
445 0.8385
442 0.8221

Table 6: Top 10 BERT EDI scores for Intensifier.

Figure 19: Mutual Information of Embedding Dimen-
sions overlaid with Wilcoxon test and RFE results for
Factuality

Dimension EDI Score
544 0.9987
251 0.9277
171 0.9236
451 0.9101
737 0.8891
281 0.8812
96 0.8624

692 0.8512
85 0.8501

642 0.8461

Table 7: Top 10 BERT EDI scores for Negation.

D.6 Polarity

Polarity, as it is similar to negation, had extremely
strong results. Figure 21 highlights the differences
between the most prominent dimensions encoding
this property. Table 8 highlights the top 10 EDI
scores, while Figure 22 illustrates the extremely
high level of agreement between our various tests.

The baseline evaluation results for polarity
showed an accuracy of 0.9775. The Low EDI score
test yielded an accuracy of 0.5575, close to random
chance. The High EDI score test demonstrated
incremental improvements, achieving 95% of base-
line accuracy with 8 dimensions, as illustrated in
Figure 10. The greatest cross-property accuracy
was achieved by negation, at 0.8950.

Dimension EDI Score
431 0.9947
623 0.9867
500 0.9675
461 0.9200
96 0.9063

505 0.8910
594 0.8745
407 0.8492
397 0.8459
613 0.8445

Table 8: Top 10 BERT EDI scores for Polarity.
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Figure 20: High EDI score evaluation results for BERT
Embeddings of Negation.

Figure 21: BERT Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Polarity.

D.7 Quantity

Quantity had more moderate results compared to
polarity and negation. Figure 23 highlights the dif-
ference between the most prominent dimensions
encoding this property. Table 9 highlights the top
10 EDI scores, while Figure 25 illustrates the mod-
erate level of agreement the tests.

The baseline evaluation results for quantity
showed an accuracy of 1.0000. The Low EDI score
test yielded an accuracy of 0.6425. The High EDI
score test demonstrated incremental improvements,
achieving 95% of baseline accuracy with 9 dimen-
sions, as illustrated in Figure 24. The greatest cross-
property accuracy was achieved by intensifier, at
0.9025.

D.8 Synonym

Table 10 highlights the top 10 EDI scores for syn-
onym. Figure 26 highlights the differences between
the most prominent dimensions that encode this
property.

The baseline evaluation results for synonym
showed an accuracy of 0.7400. The Low EDI score
test yielded an accuracy of 0.4625, slightly above

Figure 22: Mutual Information of BERT Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Polarity

Dimension EDI Score
463 0.9316
457 0.9155
390 0.9050
243 0.8866
192 0.8777
735 0.8545
489 0.8525
67 0.8430

304 0.8384
723 0.8217

Table 9: Top 10 BERT EDI scores for Quantity.

random chance. The High EDI score test demon-
strated very slow improvements, achieving 95% of
baseline accuracy with 392 dimensions, as illus-
trated in Figure 27. The greatest cross-property
accuracy was achieved by quantity, at 0.6175.

D.9 Tense

Tense had moderate results. Figure 28 highlights
the differences between the most prominent dimen-
sions encoding this property. Table 11 highlights
the top 10 EDI scores, while Figure 31 illustrates
the level of agreement the tests.

The baseline evaluation results for tense showed
an accuracy of 0.9975. The Low EDI score test
yielded an accuracy of 0.4625, close to random
chance. The High EDI score test demonstrated

Dimension EDI Score
676 0.8751
203 0.7744
701 0.6916
654 0.6897
463 0.6889
544 0.6602
91 0.6598

437 0.6557
446 0.6543
487 0.6415

Table 10: Top 10 BERT EDI scores for Synonym.
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Figure 23: BERT Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Quantity.

Figure 24: High EDI score evaluation results for BERT
Embeddings of quantity.

incremental improvements, achieving 95% of base-
line accuracy with 11 dimensions, as illustrated in
Figure 29. The greatest cross-property accuracy
was achieved by control, at 0.9150.

D.10 Voice

Voice had relatively few dimensions with very high
EDI scores. Figure 30 highlights the differences
between the most prominent dimensions encod-
ing this property. Table 12 highlights the top 10
EDI scores, while Figure 33 illustrates the level of
agreement the tests.

The baseline evaluation results for voice showed

Dimension EDI Score
641 0.9405
586 0.9369
335 0.9162
38 0.9113

684 0.8977
522 0.8908
470 0.8880
548 0.8821

4 0.8812
653 0.8627

Table 11: Top 10 BERT EDI scores for Tense.

Figure 25: Mutual Information of BERT Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Quantity

Figure 26: BERT Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Synonym.

an accuracy of 1.0000. The Low EDI score test
yielded an accuracy of 0.5200, close to random
chance. The High EDI score test demonstrated
incremental improvements, achieving 95% of base-
line accuracy with 30 dimensions, as illustrated in
Figure 32. The greatest cross-property accuracy
was achieved by definiteness, at 0.8400.

E GPT-2

This section will contain the visualizations of the
results for GPT-2 embeddings. Full detailed results,
including full EDI scores as well as additional vi-

Dimension EDI Score
653 0.9722
523 0.9552
766 0.9376
27 0.8875

111 0.8783
286 0.8586
222 0.8437
693 0.8404
16 0.8182
95 0.8113

Table 12: Top 10 BERT EDI scores for Voice.
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Figure 27: High EDI score evaluation results for BERT
Embeddings of synonym.

Figure 28: BERT Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Tense.

sualization, will be available on GitHub upon pub-
lication.

E.1 Linguistic Property Classifier

The results from the Linguistic Property Classifier
for GPT-2 embeddings is shown in Figure 34.

E.2 Control

Figure 35 highlights the difference between the
most prominent dimensions encoding this property.
Figure 37 illustrates the level of agreement between
the tests.

The baseline evaluation results for control
showed an accuracy of 0.4725, close to chance.
The Low EDI score test yielded an accuracy of
0.4400. The High EDI score test demonstrated
strong performance, achieving 95% of baseline ac-
curacy with just a single dimension, as the baseline
accuracy was close to random chance, as illustrated
in Figure 36. The highest cross-property accuracy
was achieved by voice, at 0.5450.

E.3 Definiteness

Figure 38 highlights the difference between the
most prominent dimensions encoding this property.

Figure 29: High EDI score evaluation results for BERT
Embeddings of tense.

Figure 30: BERT Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Voice.

Figure 40 illustrates the level of agreement between
the tests.

The baseline evaluation results for definiteness
showed an accuracy of 0.9575. The Low EDI
score test yielded an accuracy of 0.5000. The High
EDI score test demonstrated strong performance,
achieving 95% of baseline accuracy with just a
single dimension, as illustrated in Figure 39. The
highest cross-property accuracy was achieved by
intensifier, at 0.9400, followed closely by factuality
(0.9325) and synonym (0.9275).

E.4 Factuality
Figure 41 highlights the difference between the
most prominent dimensions encoding this property.
Figure 43 illustrates the level of agreement between
the tests.

The baseline evaluation results for factuality
showed an accuracy of 1.0000. The Low EDI
score test yielded an accuracy of 0.6800. The High
EDI score test demonstrated strong performance,
achieving 95% of baseline accuracy with just a
single dimension, as illustrated in Figure 42. The
highest cross-property accuracy was achieved by
negation, at 0.9975.
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Figure 31: Mutual Information of BERT Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Tense

Figure 32: High EDI score evaluation results for BERT
Embeddings of voice.

E.5 Intensifier

Figure 44 highlights the difference between the
most prominent dimensions encoding this property.
Figure 46 illustrates the level of agreement between
the tests.

The baseline evaluation results for intensifier
showed an accuracy of 1.0000. The Low EDI score
test yielded an accuracy of 0.5825. The High EDI
score test demonstrated steady improvement, reach-
ing 95% of baseline accuracy with 4 dimensions, as
illustrated in Figure 45. The highest cross-property
accuracy was achieved by definiteness, at 0.9600.

E.6 Negation

Figure 47 highlights the difference between the
most prominent dimensions encoding this property.
Figure 49 illustrates the level of agreement between
the tests.

The baseline evaluation results for negation
showed an accuracy of 0.9850. The Low EDI score
test yielded an accuracy of 0.5450. The High EDI
score test demonstrated steady improvement, reach-
ing 95% of baseline accuracy with 6 dimensions, as
illustrated in Figure 48. The highest cross-property
accuracy was achieved by intensifier, at 0.9475.

Figure 33: Mutual Information of BERT Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Voice

Figure 34: Linguistic Property Classifier results for
GPT-2.

E.7 Polarity

Figure 50 highlights the difference between the
most prominent dimensions encoding this property.
Figure 52 illustrates the level of agreement between
the tests.

The baseline evaluation results for polarity
showed an accuracy of 0.9975. The Low EDI
score test yielded an accuracy of 0.4700. The High
EDI score test demonstrated slow improvement,
reaching 95% of baseline accuracy with 28 dimen-
sions, as illustrated in Figure 51. The highest cross-
property accuracy was achieved by quantity, at
0.8300.

E.8 Quantity

Figure 53 highlights the difference between the
most prominent dimensions encoding this property.
Figure 55 illustrates the level of agreement between
the tests.

The baseline evaluation results for quantity
showed an accuracy of 0.9975. The Low EDI score
test yielded an accuracy of 0.6875. The High EDI
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Figure 35: GPT-2 Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Control.

Figure 36: High EDI score evaluation results for GPT-2
Embeddings of Control.

score test demonstrated steady improvement, reach-
ing 95% of baseline accuracy with 8 dimensions, as
illustrated in Figure 54. The highest cross-property
accuracy was achieved by polarity, at 0.9300.

E.9 Synonym

Figure 56 highlights the difference between the
most prominent dimensions encoding this property.
Figure 58 illustrates the level of agreement between
the tests.

The baseline evaluation results for synonym
showed an accuracy of 0.6300. The Low EDI
score test yielded an accuracy of 0.3575. The High
EDI score test demonstrated gradual improvement,
reaching 95% of baseline accuracy with 26 dimen-
sions, as illustrated in Figure 57. The highest cross-
property accuracy was achieved by intensifier at
0.5350.

E.10 Tense

Figure 59 highlights the difference between the
most prominent dimensions encoding this property.
Figure 61 illustrates the level of agreement between
the tests.

The baseline evaluation results for tense showed

Figure 37: Mutual Information of GPT-2 Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Control.

Figure 38: GPT-2 Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Definiteness.

an accuracy of 0.9950. The Low EDI score test
yielded an accuracy of 0.4500. The High EDI score
test demonstrated slow improvement, reaching 95%
of baseline accuracy with 76 dimensions, as illus-
trated in Figure 60. The highest cross-property
accuracy was observed with definiteness at 0.7525.

E.11 Voice
Figure 62 highlights the difference between the
most prominent dimensions encoding this property.
Figure 64 illustrates the level of agreement between
the tests.

The baseline evaluation results for voice showed
an accuracy of 1.0000. The Low EDI score test
yielded an accuracy of 0.5325, around random
chance. The High EDI score test demonstrated
significant improvement, reaching 95% of baseline
accuracy with just a single dimension, as illustrated
in Figure 63. The highest cross-property accuracy
was observed with intensifier at 0.9900.

F MPNet

This section will contain the visualizations of the
results for MPNet embeddings. Full detailed re-
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Figure 39: High EDI score evaluation results for GPT-2
Embeddings of Definiteness.

Figure 40: Mutual Information of GPT-2 Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Definiteness.

sults, including full EDI scores as well as addi-
tional visualization, will be available on GitHub
upon publication.

F.1 Linguistic Property Classifier

The results from the Linguistic Property Classifier
for MPNet embeddings is shown in Figure 65.

F.2 Control

Figure 66 highlights the difference between the
most prominent dimensions encoding this property.
Figure 68 illustrates the level of agreement between
the tests.

The baseline evaluation results for control
showed an accuracy of 0.4800, which is close to
random chance. The Low EDI score test yielded
an accuracy of 0.4125. The High EDI score test
demonstrated weak performance, achieving 95%
of baseline accuracy with just a single dimension,
but that is because the baseline accuracy was super
close to chance, as illustrated in Figure 67. The
highest cross-property accuracy was achieved by
tense, at 0.5175.

F.3 Definiteness

Figure 69 highlights the difference between the
most prominent dimensions encoding this property.

Figure 41: GPT-2 Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Factuality.

Figure 42: High EDI score evaluation results for GPT-2
Embeddings of Factuality.

Figure 71 illustrates the level of agreement between
the tests.

The baseline evaluation results for definiteness
showed an accuracy of 0.9000. The Low EDI
score test yielded an accuracy of 0.4000. The High
EDI score test demonstrated strong performance,
achieving 95% of baseline accuracy with just a
single dimension, as illustrated in Figure 70. The
highest cross-property accuracy was achieved by
intensifier, at 0.6750.

F.4 Factuality

Figure 72 highlights the difference between the
most prominent dimensions encoding this property.
Figure 74 illustrates the level of agreement between
the tests.

The baseline evaluation results for factuality
showed an accuracy of 0.9975. The Low EDI
score test yielded an accuracy of 0.4825. The High
EDI score test demonstrated steady performance,
achieving 95% of baseline accuracy with 16 di-
mensions, as illustrated in Figure 73. The highest
cross-property accuracy was achieved by quantity,
at 0.8875.
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Figure 43: Mutual Information of GPT-2 Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Factuality.

Figure 44: GPT-2 Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Intensifier.

F.5 Intensifier

Figure 75 highlights the difference between the
most prominent dimensions encoding this property.
Figure 77 illustrates the level of agreement between
the tests.

The baseline evaluation results for intensifier
showed an accuracy of 0.9000. The Low EDI
score test yielded an accuracy of 0.4200. The High
EDI score test demonstrated slow performance,
achieving 95% of baseline accuracy with 347 di-
mensions, as illustrated in Figure 76. The highest
cross-property accuracy was achieved by quantity,
at 0.6825.

F.6 Negation

Figure 78 highlights the difference between the
most prominent dimensions encoding this property.
Figure 80 illustrates the level of agreement between
the tests.

The baseline evaluation results for negation
showed an accuracy of 0.9750. The Low EDI
score test yielded an accuracy of 0.6025. The High
EDI score test demonstrated steady improvement,

Figure 45: High EDI score evaluation results for GPT-2
Embeddings of Intensifier.

Figure 46: Mutual Information of GPT-2 Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Intensifier.

reaching 95% of baseline accuracy with 26 dimen-
sions, as illustrated in Figure 79. The highest cross-
property accuracy was achieved by factuality, at
0.8900.

F.7 Polarity
Figure 81 highlights the difference between the
most prominent dimensions encoding this property.
Figure 83 illustrates the level of agreement between
the tests.

The baseline evaluation results for polarity
showed an accuracy of 0.9850. The Low EDI score
test yielded an accuracy of 0.6900. The High EDI
score test demonstrated fast improvement, reaching
95% of baseline accuracy with 6 dimensions, as
illustrated in Figure 82. The highest cross-property
accuracy was achieved by negation, at 0.9575.

F.8 Quantity
Figure 84 highlights the difference between the
most prominent dimensions encoding this property.
Figure 86 illustrates the level of agreement between
the tests.

The baseline evaluation results for quantity
showed an accuracy of 0.9950. The Low EDI
score test yielded an accuracy of 0.5025. The High
EDI score test demonstrated steady improvement,
reaching 95% of baseline accuracy with 20 dimen-
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Figure 47: GPT-2 Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Negation.

Figure 48: High EDI score evaluation results for GPT-2
Embeddings of Negation.

sions, as illustrated in Figure 85. The highest cross-
property accuracy was achieved by negation and
polarity, at 0.8525.

F.9 Synonym

Figure 87 highlights the difference between the
most prominent dimensions encoding this property.
Figure 89 illustrates the level of agreement between
the tests.

The baseline evaluation results for synonym
showed an accuracy of 0.6025. The Low EDI score
test yielded an accuracy of 0.4225. The High EDI
score test demonstrated quick improvement, reach-
ing 95% of baseline accuracy with 7 dimensions, as
illustrated in Figure 88. The highest cross-property
accuracy was achieved by tense at 0.5650.

F.10 Tense

Figure 90 highlights the difference between the
most prominent dimensions encoding this property.
Figure 92 illustrates the level of agreement between
the tests.

The baseline evaluation results for tense showed
an accuracy of 0.9925. The Low EDI score test
yielded an accuracy of 0.5200. The High EDI score

Figure 49: Mutual Information of GPT-2 Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Negation.

Figure 50: GPT-2 Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Polarity.

test demonstrated gradual improvement, reaching
95% of baseline accuracy with 17 dimensions, as
illustrated in Figure 91. The highest cross-property
accuracy was observed with quantity at 0.8425.

F.11 Voice
Figure 93 highlights the difference between the
most prominent dimensions encoding this property.
Figure 95 illustrates the level of agreement between
the tests.

The baseline evaluation results for voice showed
an accuracy of .9175. The Low EDI score test
yielded an accuracy of 0.3875. The High EDI score
test demonstrated slow improvement, reaching 95%
of baseline accuracy with 263 dimensions, as illus-
trated in Figure 94. The highest cross-property
accuracy was observed with definiteness at 0.6225.
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Figure 51: High EDI score evaluation results for GPT-2
Embeddings of Polarity.

Figure 52: Mutual Information of GPT-2 Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Polarity.

Figure 53: GPT-2 Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Quantity.

Figure 54: High EDI score evaluation results for GPT-2
Embeddings of quantity.

Figure 55: Mutual Information of GPT-2 Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Quantity

Figure 56: GPT-2 Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Synonym.

Figure 57: High EDI score evaluation results for GPT-2
Embeddings of Synonym.

Figure 58: Mutual Information of GPT-2 Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Synonym.
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Figure 59: GPT-2 Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Tense.

Figure 60: High EDI score evaluation results for GPT-2
Embeddings of Tense.

Figure 61: Mutual Information of GPT-2 Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Tense.

Figure 62: GPT-2 Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Voice.

Figure 63: High EDI score evaluation results for GPT-2
Embeddings of Voice.

Figure 64: Mutual Information of GPT-2 Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Voice.

Figure 65: Linguistic Property Classifier results for
MPNet.
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Figure 66: MPNet Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Control.

Figure 67: High EDI score evaluation results for MPNet
Embeddings of Control.

Figure 68: Mutual Information of MPNet Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Control.

Figure 69: MPNet Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Definiteness.

Figure 70: High EDI score evaluation results for MPNet
Embeddings of Definiteness.

Figure 71: Mutual Information of MPNet Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Definiteness.

Figure 72: MPNet Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Factuality.
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Figure 73: High EDI score evaluation results for MPNet
Embeddings of Factuality.

Figure 74: Mutual Information of MPNet Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Factuality.

Figure 75: MPNet Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Intensifier.

Figure 76: High EDI score evaluation results for MPNet
Embeddings of Intensifier.

Figure 77: Mutual Information of MPNet Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Intensifier.

Figure 78: MPNet Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Negation.

Figure 79: High EDI score evaluation results for MPNet
Embeddings of Negation.

Figure 80: Mutual Information of MPNet Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Negation.
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Figure 81: MPNet Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Polarity.

Figure 82: High EDI score evaluation results for MPNet
Embeddings of Polarity.

Figure 83: Mutual Information of MPNet Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Polarity.

Figure 84: MPNet Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Quantity.

Figure 85: High EDI score evaluation results for MPNet
Embeddings of quantity.

Figure 86: Mutual Information of MPNet Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Quantity

Figure 87: MPNet Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Synonym.

Figure 88: High EDI score evaluation results for MPNet
Embeddings of Synonym.
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Figure 89: Mutual Information of MPNet Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Synonym.

Figure 90: MPNet Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Tense.

Figure 91: High EDI score evaluation results for MPNet
Embeddings of Tense.

Figure 92: Mutual Information of MPNet Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Tense.

Figure 93: MPNet Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Voice.

Figure 94: High EDI score evaluation results for MPNet
Embeddings of Voice.

Figure 95: Mutual Information of MPNet Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Voice.
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