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Abstract

A critical challenge in deploying Large Lan-
guage Models (LLMs) is developing reliable
mechanisms to estimate their confidence, en-
abling systems to determine when to trust
model outputs versus seek human intervention.
We present a Calibrated Reflection approach
for enhancing confidence estimation in LLMs,
a framework that combines structured reason-
ing with distance-aware calibration technique.
Our approach introduces three key innovations:
(1) a Maximum Confidence Selection (MCS)
method that comprehensively evaluates confi-
dence across all possible labels, (2) a reflection-
based prompting mechanism that enhances rea-
soning reliability, and (3) a distance-aware cali-
bration technique that accounts for ordinal re-
lationships between labels. We evaluate our
framework on diverse datasets, including Help-
Steer2, Llama T-REx, and a proprietary con-
versational dataset, demonstrating its effective-
ness across both conversational and fact-based
classification tasks. This work contributes to
the broader goal of developing reliable and
well-calibrated confidence estimation methods
for LLMs, enabling informed decisions about
model trust and human judgement.

1 Introduction

LLMs have revolutionized many domains, but en-
suring their outputs are trustworthy remains a press-
ing challenge. A key aspect of this trustworthiness
is confidence estimation—developing methods to
gauge the likelihood of an LLM’s answer being
correct. This is challenging due to the frequent
miscalibration of their confidence scores. In tra-
ditional classification, a model’s predicted proba-
bility can serve as a confidence estimate, but these
probabilities must be well-calibrated to be mean-
ingful. Calibration ensures that if a model claims
90% confidence, it should be correct about 90%
of the time. In practice, an LLM might generate a
fluent, plausible-sounding answer with near-certain

confidence, yet be factually wrong - an undesirable
situation if not detected by a confidence calibra-
tion mechanism. Techniques like chain-of-thought
reasoning and self-consistency have been explored
to improve the model’s self-evaluation, yet often
yield overconfident estimates.

The challenge of confidence estimation becomes
more nuanced in ordinal classification problems
(e.g., user ratings, sentiment levels, risk assess-
ments). Unlike nominal categories, ordinal labels
enable consideration of distance between predic-
tions: mistaking a rating of 5 for 4 is a smaller
error than mistaking it for 1. However, most ex-
isting confidence estimation methods treat each la-
bel independently, failing to differentiate between
close and far errors. This limitation is particularly
critical in sensitive settings where miscalibrated
confidence on an ordinal decision can have serious
consequences.

Existing approaches to confidence estimation in
LLMs can be broadly categorized into four cate-
gories: (1) probability-based methods that utilize
model logits and calibration algorithms (Guo et al.,
2017), but are restricted by the availability of model
logits. (2) Fine-tuning methods require extensive
training data and, while effective on in-domain
datasets, struggle with generalization to out-of-
domain scenarios. (3) Prompting-based techniques
elicit self-evaluation from the model (Kadavath
et al., 2022). Despite their intuitiveness appeal,
these methods frequently yield overconfident esti-
mates, undermining their reliability. (4) Ensemble
methods (Wang et al., 2022, 2024a) can enhance
reliability, but they incur significant computational
overhead and do not inherently address the funda-
mental issue of calibrating confidence scores.

A critical gap in current research is the lack of
methods that account for ordinal relationships be-
tween labels. Recent work (Qin et al., 2024) sug-
gests that effective confidence estimation requires
both robust reasoning capabilities and proper cali-
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bration of confidence scores.
In this paper, we propose a novel framework

for confidence estimation that addresses these lim-
itations through a synergistic combination of ad-
vanced prompting techniques and distance-aware
calibration. Our approach integrates:

• Maximum Confidence Selection (MCS)
method that comprehensively evaluates confi-
dence across all possible labels

• Reflection-based prompting that enhances
the model’s reasoning to yield more reliable
confidence estimates

• Distance-aware calibration technique that
accounts for ordinal relationships among la-
bels

We evaluate the Calibrated Reflection approach
on diverse datasets, including conversational and
fact-based classification tasks. Across multiple
benchmarks, our framework consistently improves
confidence calibration and overall predictive perfor-
mance. We observe significantly lower Expected
Calibration Error (ECE) and Brier Score (indicat-
ing better alignment between predicted confidence
and actual accuracy) compared to baselines, while
also achieving higher discrimination metrics like
AUROC and AUPRC. These improvements hold
without any fine-tuning of the LLM and making a
single LLM invokation, making our framework
readily applicable in real-world scenarios. Our
approach, integrating structured reasoning with
distance-aware calibration, significantly advances
confidence estimation for LLMs, enabling well-
calibrated confidence scores in ordinal classifica-
tion, thereby enhancing reliability and trustworthi-
ness in LLM-driven applications.

2 Related Work

Existing approaches to confidence estimation in
LLMs have evolved from basic probability-based
methods to more sophisticated techniques incorpo-
rating multiple strategies. 1) Early methods (Jiang
et al., 2020) focused on sequence probability,
which estimates confidence by computing aver-
age log probabilities assigned to output tokens.
While these approaches have been applied in var-
ious contexts, including close tasks and QA se-
tups (Muhlgay et al., 2023), they require well-
calibrated probabilities to accurately reflect cor-
rectness (Guo et al., 2017), and generally don’t

represent the actual probability of the predicted
results in LLMs. 2) Verbalized confidence esti-
mation has emerged as a direct approach where
LLMs assess their own confidence (Kadavath et al.,
2022). Chain of Thought prompting (Wei et al.,
2022) improves explanation and justification by
breaking down reasoning into smaller steps. Self-
consistency (Wang et al., 2022) estimates confi-
dence by evaluating consensus across multiple rea-
soning paths. Recent extensions have incorporated
debate-style prompting (Irving et al., 2018) and
reflection prompting (Shinn et al., 2024), where
models internally challenge their decisions and
self-assess potential errors. 3) Model aggrega-
tion methods: Combine signals from multiple
sources for confidence estimation. While ensem-
ble methods (Zhang et al., 2020) merge outputs
from multiple LLMs at high computational cost,
the ReScorer (Mohta et al., 2024) offers a more ef-
ficient approach by aggregating multiple ROSCOE
metrics into comprehensive confidence scores. 4)
Surrogate models (Shrivastava et al., 2023) have
been proposed to assess main model outputs, with
extensions like MPC (Yang et al., 2024) incorpo-
rating knowledge injection from stronger models.
The trained probe method (Mahaut et al., 2024a)
represents a newer approach, training lightweight
models on LLM internal representations to extract
confidence signals. Uncertainty-aware Instruction
Tuning (UaIT) (Liu et al., 2024) presents a promis-
ing direction in self-training, aligning LLMs’ un-
certainty perception with their outputs.

3 Methodology

3.1 Problem Definition
Given a LLM M and an input sequence X , let Y =
M(X) denote the model-generated output. We
aim to develop a confidence estimation framework
that predicts the reliability of the model’s output.
Formally, we define a confidence function C that
maps the model’s output to a confidence score:

C(Y ) → [0, 1] (1)

A confidence score close to 1 indicates high confi-
dence in the output’s reliability, while a score close
to 0 indicates low confidence. The objective is to
ensure that:

P (R(Y ) = 1 | C(Y ) = p) ≈ p (2)

where R(Y ) is a binary function indicating whether
the output Y is correct (1) or incorrect (0), and p is
the predicted confidence level.
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Figure 1: Calibrated Reflection Workflow: Reflection Prompting generates an initial confidence score based on
rubrics, reflects on its reasoning, and updates the scores. Distance-Aware Calibration adjusts the scores based on
ordinal distances between labels. The output includes the predicted score and the calibrated confidence score

This formulation captures the essential goal of
developing a well-calibrated confidence estimation
system, ensuring that confidence scores align with
the actual likelihood of correctness.

3.2 Calibrated Reflection Approach

To meet the calibration objective in Eq. 2, we pro-
pose a two-component framework comprising: (1)
a confidence elicitation mechanism using Maxi-
mum Confidence Selection (MCS) with reflection-
based prompting, and (2) a distance-aware cali-
bration procedure. The first component obtains
a comprehensive distribution of confidence scores
across all candidate labels, enhanced by a reflection
step to improve reasoning reliability. The second
component then adjusts and calibrates the selected
confidence score by accounting for the ordinal re-
lationships between labels. Together, these com-
ponents produce a well-calibrated confidence esti-
mate for the model’s output, particularly effective
in ordinal classification tasks.

3.2.1 Eliciting Confidence through MCS and
Advanced Prompting

Prior prompting-based methods (Tian et al., 2023)
often focus on a limited set of top-k most likely
options, which can miss information about the
model’s uncertainty over the full label space. We
extend this to a Maximum Confidence Selection
(MCS) approach that evaluates all labels. Formally,
let L = y1, y2, . . . , yn be the set of all possible
labels for the task. Given an input x, we prompt
the model to assign a confidence score C(x, yi) to
each label yi, which denotes the model’s estimated
probability that yi is the correct label for x.

We implement reflection-based prompting to

elicit probability estimates. The prompt shown
in Figure 2 first presents the context and the set
of candidate labels (along with any task-specific
definitions or rubrics) and then instructs the model
to go through an evaluate–reflect–conclude process
for each label. This structured prompting draws
inspiration from self-reflection (Ji et al., 2023) and
chain-of-thought (Wei et al., 2022) techniques, en-
couraging the model to internally verify its initial
answers before committing to a probability. Em-
pirically, this approach, which we term MCS-R
(Multiple Choice Scoring with Reflection) demon-
strates improved calibration through reduced over-
confidence and enhanced reasoning consistency
compared to prior (Mahaut et al., 2024b; Tian et al.,
2023) approaches.

3.2.2 Distance-Aware Calibration

While MCS-R yields a probability distribution over
labels, we further calibrate the model’s overall con-
fidence by considering the structure of the label
space. In tasks with ordinal labels, not all errors
are equally severe: predictions closer to the correct
label should inspire more confidence than distant
ones. We introduce a distance-aware calibration
technique to adjust the confidence of the predicted
label ŷ based on how the remaining probability
mass is distributed across labels near to vs. far from
ŷ in the label ordering. This approach builds on
the insight that well-calibrated probabilities should
reflect the model’s uncertainty smoothly across ad-
jacent labels and aligns with established calibration
methods for probabilistic models.

Let E be the index of the predicted label ŷ in
the ordered label set (for example, if ŷ = 4 on a
5-point scale, then E = 4). For each label index i,
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Prompt for MCS-R method

You are an AI judge tasked with the assessment of the quality of interaction between a user and a
conversation agent. You are presented with a single-turn interaction between the USER and AGENT,
which contains a USER utterance/request and a conversational AGENT response.

### Metric: {metric}
### Score Rubrics: {rubrics}

### Your tasks:
1. For each label, provide your **initial feedback** on whether the given label is correct.
2. Reflect on your reasoning to identify any potential errors or oversights.
3. Provide your **final feedback** after reflection.
4. Estimate the probability (between 0 and 1) that the given label is correct.

### Please output the following:
**feedback_n:** Summary of your initial evaluation, any adjustments or insights after reflection,
and your final evaluation of nth score in Score Rubrics
**score_n:** Probability of nth score in Score Rubrics being correct
---
USER: {user_query}
AGENT: {agent_response}

Figure 2: MCS-R prompt template for conversation quality assessment. The model follows a structured evaluation
process (initial feedback → reflection → final feedback → probability) for each potential label

we define a distance-based weight that decreases
as i is farther from E:

W (i, E) =
1

1 + |i− E| (3)

Here W (i, E) = 1 when i = E (the predicted
label), W (i, E) = 1/2 for labels one step away,
W (i, E) = 1/3 for labels two steps away, and so
on. This weighting function encodes ordinal rela-
tionships between labels, assigning larger weights
to labels closer to the predicted class. Intuitively,
W (i, E) measures how confidence in label i influ-
ences confidence in label E: high probability for
nearby labels (small |i−E|) is less concerning than
for distant labels.

Using these weights, we compute an adjusted
confidence for the label E as a weighted aggregate
of the model’s original confidence scores Ci:

Adjusted ConfidenceE =

∑
i∈LCi ·W (i, E)∑

i∈LCi + ϵ
(4)

where L is the set of all label indices. The de-
nominator ensures the final confidence lies in the
range [0, 1], and ϵ is a small positive constant (e.g.,
10−6) to prevent division by zero in extreme cases
where all confidence scores are zero. This formu-
lation produces an adjusted confidence score that
accounts for both the magnitude and distribution
of the model’s confidence across the ordinal label
space. High probabilities assigned to labels far

from ŷ reduce the adjusted confidence, reflecting
increased prediction uncertainty.

4 Experimentation

In this section, we outline the datasets, evalua-
tion metrics, and comparison methods. We ex-
periment with Claude-3-Haiku (Anthropic, 2024)
(closed-source), and Mistral-7B-instruct (open-
source) models (Jiang et al., 2023), and perform all
experiments in a zero-shot setting, utilizing a fixed
temperature of 0.1, with single LLM invokation.

4.1 Datasets

We evaluate our framework on three datasets: two
conversational datasets and one fact-based classifi-
cation dataset.

HelpSteer2 (Conversational) (Wang et al.,
2024b): Benchmark dataset designed to evaluate
LLM-generated responses across five dimensions,
helpfulness, correctness, coherence, complexity,
verbosity. The evaluation dataset consists of 1038
single-turn conversations, annotated with ordinal
labels ranging from 0 to 4 for all metrics.

Llama T-REx (Fact-Based Classification) (El-
sahar et al., 2018): Following (Mahaut et al.,
2024b), we construct an evaluation dataset of
13.6K examples, comprising 6.8K true statements
paired with their corresponding false counterparts.

Conversational Dataset: A proprietary dataset
of 314 multi-turn conversations, each averaging
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Figure 3: Performance comparison on the HelpSteer2 dataset across different evaluation metrics. Results are reported
for VC, MCS, MCS-C, MCS-R, and MCS-RC. Each bar group represents performance on five conversational
dimensions and their average, highlighting the impact of advanced prompting techniques and calibration on
confidence estimation.

six turns. With eight conversational dimensions (Is-
sues, Friction, Task Success, Info Factuality, Coher-
ence, Naturalness, Comprehensiveness, Length),
this yields approx 15K evaluation points. Each
turn is annotated by two independent contractors,
with a third reviewer resolving discrepancies. This
dataset evaluates our framework’s effectiveness in
real-world, multi-turn conversational settings.

4.2 Evaluation Metrics

We evaluate our methods using four complemen-
tary metrics: AUPRC (precision-recall trade-off for
imbalanced datasets), AUROC (discriminative abil-
ity via true/false positive rates), ECE (calibration
quality through confidence-correctness alignment),
and Brier Score (overall calibration and accuracy
via mean squared error). While AUPRC and AU-
ROC assess discriminative performance, ECE and
Brier Score measure calibration quality. Detailed
metric calculations are provided in Appendix A.

4.3 Compared Methods

4.3.1 Baselines
Verbalized Confidence (VC): Following (Tian
et al., 2023), this method prompts the model to

output a confidence score (0-1) after each answer.
Trained Probe (TP): These methods transform

LLM’s internal representations from final or earlier
layers into confidence scores, leveraging learned
patterns for task-specific calibration.

Log Probability (LP): This approach averages
token-level log probabilities of the output sequence
to estimate confidence, building on established cali-
bration work (Guo et al., 2017; Xiong et al., 2023).

Self-Consistency (SC): This method generates
multiple answers and computes confidence based
on answer agreement rate, following (Wang et al.,
2022). Higher agreement among independent gen-
erations indicates higher confidence.

Top-K Confidence (TK): Drawing from (Tian
et al., 2023), this approach prompts the model to
elicit confidence for top− k(k = 2, 4) predictions.

4.3.2 Proposed Methods
Maximum Confidence Selection (MCS): Our
base method computes confidence scores for all
labels, selecting the highest-scoring label as the
prediction. Unlike conventional top-k approaches,
MCS evaluates the complete label set for compre-
hensive confidence distribution.

MCS+Reflection (MCS-R): Enhances MCS
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Table 1: Average Scores for Confidence Score Estima-
tion Experiments on Verbalized Method

Method Brier ECE AUROC AUPRC
Log Prob 0.117 0.101 0.623 0.895
CoT 0.098 0.093 0.667 0.908
Self-Consistency 0.095 0.086 0.672 0.913
Debate 0.104 0.078 0.692 0.927
Reflection 0.110 0.080 0.687 0.918

Table 2: Comparison of Results for MCS with Reflec-
tion and Debate Prompts

Method Brier ECE AUROC AUPRC
MCS .138 .169 .591 .899
+Reflection .256 .301 .697 .925
+Debate .256 .322 .700 .924

with reflection-based prompting, where the model
evaluates each label’s plausibility, then refines its
reasoning through reflection before assigning final
confidence scores. This process improves estima-
tion robustness and interpretability.

MCS+Calibration (MCS-C): Incorporates
distance-aware calibration using a weighting func-
tion that accounts for ordinal relationships between
labels. This adjustment prioritizes scores closer to
the predicted label, reducing overconfidence.

MCS+Reflection+Calibration (MCS-RC):
Combines reflection-based prompting with
distance-aware calibration to create a comprehen-
sive framework. Reflection provides structured
reasoning while calibration ensures ordinal
alignment. Prompt templates are provided in
Appendix C.

5 Results and Discussion

5.1 Effectiveness of Calibrated Reflection

We evaluate the proposed confidence estimation
framework on HelpSteer2 dataset using five meth-
ods: VC, MCS, MCS-R, MCS-C, and MCS-RC.
Results, presented in Figure 3, include four evalu-
ation metrics: ECE and Brier Score (lower is bet-
ter), as well as AUPRC and AUROC (higher is
better), computed across five conversational dimen-
sions: helpfulness, correctness, coherence, com-
plexity, and verbosity, along with their average. On
average, MCS-RC achieves the best performance
across all metrics, validating the effectiveness of
combining reflection-based reasoning with calibra-
tion. Notably, while VC slightly outperforms MCS

on AUPRC, MCS exhibits superior performance on
ECE, Brier Score, and AUROC, indicating that its
comprehensive consideration of all labels enhances
overall calibration and discriminative ability. MCS-
R significantly improves performance compared to
MCS, highlighting its ability to refine confidence
estimates through iterative feedback, while MCS-C
further enhances calibration quality by account-
ing for ordinal relationships, albeit with a smaller
impact. Combining both techniques (MCS-RC)
yields consistently superior results across all met-
rics, demonstrating their complementary nature.
Metric-wise, MCS-RC excels in helpfulness and
correctness, achieving the lowest calibration er-
rors and highest discriminative scores, while MCS-
R dominates coherence. For complexity and ver-
bosity, calibration plays a more prominent role,
effectively leveraging ordinal relationships. These
findings validate MCS-RC as a robust method for
confidence estimation, demonstrating superior cali-
bration and discriminative performance across di-
verse conversational dimensions.

5.2 Performance on Real-World Dataset

To evaluate the robustness of our framework, we
conduct experiments on a proprietary conversa-
tional dataset, systematically analyzing the effects
of advanced prompting strategies and calibration.
These experiments are divided into three key stages:
verbalized prompting, MCS, and MCS with
calibration and enhanced prompts. Verbalized
prompting is conducted using Chain of Thoughts,
Self-Consistency, Debate, and Reflection Prompt-
ing. Details about these methods are in Appendix
B. The results are summarized in Tables 1, 2, and
3, and detailed findings are presented below.

5.2.1 Verbalized Prompts with Reflection and
Debate

In this experiment, we evaluate the performance
of advanced prompting techniques, including Re-
flection and Debate, using verbalized confidence
estimation. As presented in Table 1, Reflection
achieves a significant improvement in AUPRC
(0.918) and AUROC (0.687) compared to the log
probability baseline, demonstrating its ability to
generalize across datasets. Debate-based prompt-
ing slightly outperforms Reflection on AUROC
(0.692) and achieves the highest AUPRC (0.927).
These findings validate that advanced prompting
strategies improve model performance. Notably,
the improved ECE observed for Reflection and De-

404



Table 3: Final Evaluation Scores Combining MCS + Enhanced Prompts + Calibration Technique

Method Brier Score ECE AUROC AUPRC
MCS 0.13799 0.16877 0.59146 0.89905
MCS+Debate (Ours) 0.25574 0.32192 0.69999 0.9243
MCS+Reflection (Ours) 0.25617 0.30092 0.6969 0.92534
MCS+Debate+Calibration (Proposed) 0.1282 0.19243 0.73752 0.93334
MCS+Reflection+Calibration (Proposed Best) 0.12502 0.17472 0.73994 0.93516

Table 4: Performance Comparison on T-REx Dataset

Method AUPRC
Verbalized Confidence 0.700
Log Prob 0.709
Trained Probe (SOTA) 0.910
Verbalized Debate (Proposed) 0.887
Verbalized Reflection (Proposed) 0.890

bate can be attributed to the inherent class imbal-
ance in the dataset and the model’s tendency to
over-predict certain labels. This clustering of con-
fidence scores within a narrow range positively
impacts calibration metrics like ECE, underscoring
the need for multi-metric evaluation.

5.2.2 MCS with Reflection and Debate
In this experiment, we evaluate the integration of
Reflection and Debate into the MCS framework for
confidence estimation. Table 2 provides a compar-
ative analysis of MCS with and without enhanced
prompts. Key observations are: 1) Incremental
improvements: MCS-R achieves notable improve-
ments in AUROC (0.697 vs. 0.591) and AUPRC
(0.925 vs. 0.899) compared to the standalone
MCS method. 2) Reflection vs. Debate: Reflec-
tion slightly outperforms Debate in AUPRC (0.925
vs. 0.924) but lags in AUROC (0.697 vs. 0.7).
This contrast suggests complementary strengths be-
tween the two prompting strategies. 3) Calibration
limitations: Despite improved discriminative per-
formance, ECE remains higher for both Reflection
(0.301) and Debate (0.322) compared to MCS, in-
dicating the need for post-processing techniques
like calibration.

5.2.3 MCS with Enhanced Prompts and
Calibration

This experiment incorporates distance-aware cali-
bration into the MCS framework enhanced by Re-
flection and Debate. Calibration aligns confidence
scores with ordinal relationships, mitigating over-
confidence and aligning predictions with the under-

lying structure of the label set. Table 3 presents
the results for calibrated and non-calibrated meth-
ods. Findings are: Effectiveness of calibration:
Calibration significantly enhances AUROC (from
0.697 to 0.739) and AUPRC (from 0.925 to 0.935)
for MCS+Reflection. Similar gains are observed
for MCS+Debate, underscoring the utility of cal-
ibration. Better calibration metrics: Apply-
ing calibration reduces ECE by 41.9% for Reflec-
tion and 40.2% for Debate, ensuring confidence
scores are better aligned with correctness. Simi-
larly, Brier Score improves substantially, dropping
by 51.2% for Reflection and 49.9% for Debate.
Best-performing method: The proposed method,
MCS-RC, achieves the highest performance across
all metrics, combining effective calibration and
reasoning-driven confidence estimation to improve
both calibration and discriminative capabilities.

6 Ablation Studies

6.1 Generalizing to Diverse Dataset Type

Objective and Hypothesis We investigate whether
our proposed prompting techniques, Reflection and
Debate, generalize effectively to factual classifica-
tion tasks. Specifically, we compare these methods
against state-of-the-art approaches, including VC,
TP, and LP, on the 13.6K examples of Llama-T-
REx dataset, as constructed in Section 4.1. Our
hypothesis is that advanced prompting techniques
provide a robust alternative to fine-tuning, offering
comparable or superior performance. Our findings
from Table 4 are as follows: 1) Advanced prompt-
ing matches fine-tuning performance: Reflec-
tion achieves an AUPRC of 0.89, closely matching
the Trained Probe method (0.91), which requires
fine-tuning. This supports our hypothesis that ad-
vanced prompts provide a robust alternative to fine-
tuning for confidence scoring. Debate also per-
forms strongly, with an AUPRC of 0.887, demon-
strating the consistency of advanced prompts. 2)
Significant improvement over vanilla prompts:
Both Reflection (0.89) and Debate (0.887) sig-
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Figure 4: Confidence score distribution across different methods: VC, MCS, MCS, MCS-R, and MCS-RC.
The histogram illustrates the frequency of confidence scores, while the blue line represents the kernel density
estimation. The progression from VC to MCS-RC demonstrates improved confidence score distribution, with
reduced overconfidence and better alignment with model uncertainty

nificantly outperform vanilla verbalized prompts
(0.70) and Log Probability (0.709), validating the
effectiveness of reasoning-driven confidence esti-
mation. 3) Generalizability across dataset types:
The strong performance of Reflection and Debate
on Llama-T-REx, a factual classification dataset,
demonstrates the generalizability of our advanced
prompting techniques across diverse dataset types.

6.2 Effect on Confidence Distribution

We study the impact of different components of
our proposed method on the distribution of confi-
dence scores for helpfulness, as illustrated in Figure
4. The four subplots correspond to the distribu-
tions for VC, MCS, MCS-R, and MCS-RC. The
confidence distribution for VC methods is heavily
right-skewed, reflecting overconfidence. Apply-
ing the MCS method results in a more balanced
distribution, improving the differentiation between
confident and less confident predictions. MCS-R
further smooths the distribution by allowing the
model to refine its confidence estimates through
a reconsideration of its initial reasoning, reducing
extreme scores and improving alignment with cor-
rectness. Finally, integrating Distance-Aware Cal-
ibration with MCS-R, i.e. MCS-RC produces the
most balanced distribution by redistributing confi-
dence scores based on ordinal label relationships,
effectively mitigating overconfidence and ensuring
well-calibrated predictions.

7 Conclusion

We introduce a novel framework (MCS-RC)
that integrates Maximum Confidence Selection,
Reflection-based prompting, and Distance-Aware
Calibration. Our experiments across multi-turn con-
versation and factual classification datasets show
that Reflection and Debate prompting outperform

traditional verbalized techniques, matching fine-
tuned approaches while maintaining zero-shot flex-
ibility. The framework improves AUPRC and AU-
ROC metrics through two key mechanisms: Re-
flection enhances reasoning-driven confidence es-
timation, while Distance-Aware Calibration mit-
igates overconfidence by considering ordinal la-
bel relationships. Notably, the MCS-RC frame-
work achieves these improvements without adding
computational overhead, ensuring scalability for
real-world applications. Confidence distribution
analysis further highlights its ability to produce
well-calibrated and interpretable scores, address-
ing critical challenges in trust and reliability for
LLM-based systems.

8 Limitations

The reliance on distance-aware calibration assumes
that the label space has a well-defined ordinal struc-
ture, which may not generalize to tasks with nomi-
nal or hierarchical labels. Although the zero-shot
nature of our framework ensures computational ef-
ficiency and scalability, it may limit performance in
scenarios where fine-tuning or task-specific adjust-
ments could further enhance confidence estimation.
Additionally, our experiments primarily focus on
conversational and fact-based classification tasks,
leaving open questions about the framework’s effec-
tiveness in other domains, such as vision-language
models or multi-modal tasks. These limitations
underscore important directions for future work,
including extending the framework to non-ordinal
tasks, exploring other functions for calibration to
replace distance-aware function, and validating its
robustness across a wider range of applications and
modalities.
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A Evaluation Metrics

These metrics collectively provide a comprehen-
sive evaluation of our framework’s performance,
addressing both discrimination ability and calibra-
tion quality.

A.1 Expected Calibration Error (ECE)
ECE (Expected Calibration Error) is a measure
used to evaluate the accuracy of a model’s confi-
dence predictions. Ideally, a model’s confidence
should accurately represent the actual likelihood
that its predictions are correct. The ECE assesses
how well the predicted probabilities match the true
outcomes by grouping these probabilities into spec-
ified intervals or bins and then evaluating the aver-
age discrepancies within those bins. The Expected
Calibration Error is calculated by: 1. Dividing the
range of predicted probabilities into a set number
of bins or intervals. 2. For each bin, calculating
the absolute difference between the mean predicted
probability (confidence) and the actual accuracy. 3.
Computing the weighted average of these differ-
ences across all bins to obtain the ECE.

Formula and Explanation:

ECE =
M∑

m=1

( |Bm|
n

)
|acc(Bm)− conf(Bm)|

(5)
where M is the total number of bins. Bm repre-

sents the set of samples within the mth bin. n is
the total number of samples. acc(Bm) is the accu-
racy within the mth bin, defined as the proportion
of correct predictions. conf(Bm) is the average
predicted probability (confidence) within the mth

bin.

A.2 Brier Score
The Brier score measures the mean squared differ-
ence between the predicted probability assigned to
the possible outcomes and the actual outcome. It
evaluates how well-calibrated the predicted proba-
bilities are. The Brier score measures the accuracy
and calibration of probabilistic predictions. A Brier
score of 0 indicates a perfect model.

BS =
1

N

N∑

t=1

(ft − ot)
2 (6)

where:

• ft is the predicted probability

• ot is the actual outcome (0 or 1)

• N is the number of predictions

A.3 AUPRC
AUPRC, or the Area Under the Precision-Recall
Curve, evaluates the performance of a model by
considering the trade-off between precision and
recall at various confidence thresholds. It is partic-
ularly well-suited for imbalanced datasets where
one class significantly outweighs the other.

AUPRC =
N∑

n=1

(Rn −Rn−1) · Pn (7)

N : The number of points in the precision-recall
curve, Pn: The precision at the nth threshold, Rn:
The recall at the nth threshold, Rn−1: The recall at
the previous threshold, Rn −Rn−1: The change in
recall between consecutive thresholds.

A.4 AUROC
AUROC, or the Area Under the Receiver Oper-
ating Characteristic Curve operates by defining a
function R(x, y), which is set to 1 if the model’s
predicted answer y for an input x is correct, and 0
otherwise. Concurrently, C(x) denotes the model’s
confidence in its prediction for x, ranging between
0 and 1.

Formulas and Explanations: True Positive Rate
(TPR): This rate is calculated at a specific confi-
dence threshold t and represents the proportion of
correctly predicted samples that have a confidence
level equal to or greater than t. The formula for
TPR is given by:

TPR(t) =

∑
[R(x, y(x)) · I(C(x) ≥ t)]∑

[R(x, y(x))]
(8)

Here, I is an indicator function that is 1 if
C(x) >= t and 0 otherwise.

False Positive Rate (FPR): FPR measures the
ratio of incorrectly predicted samples that have a
confidence level of t or higher. The formula for
calculating FPR is:

FPR(t) =

∑
[(1−R(x, y(x))) · I(C(x) ≥ t)]∑

[1−R(x, y(x))]
(9)

This calculation also employs the indicator function
I similar to the TPR formula.
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To construct the ROC curve, TPR and FPR val-
ues are plotted for various thresholds t. The AU-
ROC is then determined by calculating the area
under this curve. A higher AUROC value (close
to 1) signifies better discriminative ability of the
classifier, indicating it is capable of distinguishing
between the classes effectively, while a lower value
(close to 0) suggests poor performance.

B Verbalized Prompting Methods

B.1 Chain of Thoughts

Chain of Thought prompting can be used to im-
prove the explanation and justification behind each
model’s decision. By breaking down its reasoning
into smaller steps, the model can not only provide
a final prediction but also explain the intermedi-
ate logic that leads to this prediction, making the
confidence score more interpretable.

B.2 Few-Shot Learning

By providing a few examples of correct and incor-
rect predictions, the model can better gauge its own
performance and provide a more accurate probabil-
ity score for its predictions.

B.3 Self-Consistency

Self-Consistency can be employed to estimate the
confidence score by running multiple reasoning
paths and evaluating the consensus across them. If
most paths lead to the same prediction, the con-
fidence score should be high. Conversely, if the
model generates diverse or conflicting outputs, the
confidence score would be lower, providing a prob-
abilistic assessment of the prediction’s reliability.

B.4 Debate-Style Prompting

Debate-style prompting can be integrated into con-
fidence scoring by having the model argue for and
against its predicted label. If the arguments support-
ing the predicted label consistently outweigh the
counterarguments, the model can assign a higher
confidence score to its prediction. This method al-
lows the model to internally challenge its decisions,
refining the accuracy of its confidence estimation.

B.5 Reflection Prompting

Incorporating Reflection Prompting would involve
the model self-assessing its initial prediction and
offering an explanation of potential errors. By re-
flecting on possible mistakes and refining its an-
swer, the model can provide a more accurate and

justified confidence score. Reflection increases the
model’s ability to adjust its confidence level after
a self-evaluation, improving overall reliability in
probabilistic outputs.

C Prompts for Proposed methods
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Prompt for Verbalized Confidence

Provide your confidence level (on a scale of 0.0 to 1.0) that the following
statement is correct.
The statement is: {statement}
Confidence level:

Prompt for MCS method

You are an AI judge tasked with the assessment of the quality of interaction
between a user and a conversation agent. You are presented with a single-turn
interaction between the USER and AGENT, which contains a USER utterance\/request
and a conversational AGENT response.

### Metric: {metric}
### Score Rubrics: {rubrics}

### Your tasks:
Your task is to assign a probability of likelihood of each class in scoring
rubric being correct.
Estimate the probability (between 0 and 1) that each label is correct.

### Please output the following:
(Score is a class from the Score Rubrics. It can have only the actual class
label such as 1,2,3,4,5)
**score_n:** Probability of nth score in Score Rubrics being correct
---
USER: {user}
AGENT: {agent}
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