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Abstract

Large Language Models (LLMs) are increas-
ingly acting as autonomous agents, with func-
tion calling (FC) capabilities enabling them to
invoke specific tools for tasks. While prior
research has primarily focused on improving
FC accuracy, little attention has been given to
the robustness of these agents to perturbations
in their input. We introduce a benchmark as-
sessing FC robustness in two key areas: re-
silience to naturalistic query variations, and
stability in function calling when the toolkit
expands with semantically related tools. Evalu-
ating best-performing FC models on a carefully
expanded subset of the Berkeley function call-
ing leaderboard (BFCL), we identify critical
weaknesses in existing evaluation methodolo-
gies, and highlight areas for improvement in
real-world agentic deployments.

1 Introduction

Large Language Models (LLMs) are reshaping arti-
ficial intelligence, shifting from static language pro-
cessors to dynamic, task-oriented agents capable
of planning, executing, and refining their actions.
These agents hold the potential for transforma-
tive applications across various domains, including
healthcare (Abbasian et al., 2023; Mehandru et al.,
2024), finance (Li et al., 2024; Xiao et al., 2024,
Ding et al., 2024), education (Yang et al., 2024; Xu
et al., 2024), and customer support (Huang et al.,
2024; Rome et al., 2024). LLM agents have been
revolutionarily positioned as routing systems that
can act independently, make decisions and perform
tasks with minimal human intervention.

Agentic Function Calling Function calling (FC),
the process by which an agent autonomously se-
lects and invokes a specific function to retrieve
information or execute a task, serves as a funda-
mental building block of an agentic system. In
this context, a full execution trajectory can be seen
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as a complex, multi-turn (i.e., involving user in-
teraction) sequence of function calls, ultimately
achieving a given goal. Models specifically opti-
mized for FC are typically designed to generate
a function call in response to a natural-language
user request (Bai et al., 2023; Dubey et al., 2024;
Zhang et al., 2024). The function (also known as
a tool) is chosen from a predefined "toolkit"—a
compact set of function descriptions' —provided as
part of the model’s prompt. The agent is expected
to produce a syntactically correct tool invocation,
ensuring that parameter values are appropriately as-
signed to function arguments (a process known as
slot filling). For instance, given the query, "What is
the record for the highest number of points scored
by a single player in an NBA game?" and the com-
pact json tool description in Figure 1 (top), the
model is expected to generate the invocation code
shown in Figure 1 (bottom). Several datasets and
evaluation methodologies have been proposed to
assess LLMs’ function calling capabilities (Patil
et al., 2023; Liu et al., 2024), and various bench-
marks have been created for evaluating a range of
FC scenarios, BFCL leaderboard (Patil et al., 2023)
among the most prominent ones.

Robustness of Large Language Models In the
context of the more "traditional" LLM usage, a
model robustness quantifies an LLM’s ability to
generate semantically equivalent outputs, given se-
mantically equivalent inputs (Raj et al., 2023; Ra-
binovich et al., 2023; Ackerman et al., 2024). Ro-
bustness benchmarks assess, among other factors,
how well LLMs handle naturally-occurring, non-
malicious perturbations in user input, such as para-
phrased questions in a QA task, typos, variations in
punctuation, whitespace, or diacritics. Extending
this notion to agentic FC would require a model
to produce an equivalent tool invocation despite
naturalistic, yet, strictly meaning-preserving, per-

"Descriptions are often provided in the json format.
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"name": "basketball.most_points_single_game",
"description": "returns the record for the highest <...>",
"parameters”:
{"type": "dict", "properties": {
"league”: {"type": "string", "
b
"required": ["league"]

}

description": <...>}

}

{

"basketball.most_points_single_game":
{"league": ["NBA"]}
}

Figure 1: Compact function definition example (top),
and agent’s output, triggering the function call with
assigned parameter values (bottom), per user request
"What is the record for the highest number of points
scored by a single player in an NBA game?".

turbations in the input query. Considering Figure 1,
a semantically equivalent paraphrase "What is the
highest number of points ever scored by a single
player in an NBA game?" should result in the same
tool invocation as the original request.

Despite its clear practical significance, research
on the robustness of agentic function calling re-
mains sparse, with only two studies, to the best
of our knowledge, examining agent resilience to
modifications in tool descriptions. Ye et al. (2024)
introduce a series of increasingly aggressive alter-
ations to function names, parameter names, and
their descriptions — to the point where a tool (or
a parameter) name (or description) becomes arbi-
trary or entirely uninformative about its function-
ality. Similarly, Lu et al. (2024) conduct multiple
interventions, including tool distractions, within a
different evaluation framework that evaluates tool
sequencing at the system rather than function level.
While these studies offer valuable insights, they
provide limited evidence on agent resilience to real-
world perturbations, as system developers typically
exert substantial control over the faithfulness and
level of detail in function and parameter names,
along with their descriptions.

Moreover, a typical "toolkit" (the list of available
functions) in these studies is limited to a single tool
or a small number of unrelated tools. A realistic
scenario may involve a system specification with
thousands of available tools,”> which in practice is

2A software engineering (SWE) agent fixing git issues, has
access to about 1.2K tools exposed through github docs.

normally reduced to top-K most relevant function
definitions through a shortlisting module (Qin
et al., 2023), such as semantic search over the set
of tools, towards constructing the context (here,
prompt) of a FC agent. In the example toolkit in
Figure 1 (top), additional tools may include:
basketball.most_points_career(),
basketball.most_points_single_season(),
basketball.game_stats().

Contribution We focus on two aspects of ro-
bustness, capturing input variations that can be
expected in real-world agentic deployments but
are not easily controlled by a developer: (1) gen-
erating meaning-preserving rephrasings of user re-
quests and (2) expanding the toolkit to include
a set of semantically related tools that are likely
to be shortlisted by a selection module. Using
one of the (single-turn) challenging BFCL (Patil
et al.,, 2023) test sets as our starting point, we
first carefully build a benchmark dataset, com-
prising variations pertaining to the two afore-
mentioned aspects (Section 2). Next, we eval-
uate the robustness of several best-performing
LLMs?>, and discuss the breakdown of failures,
highlighting (among others) prominent weaknesses
of the existing agentic FC evaluation bench-
marks (Section 3). Our benchmark data is avail-
able at https://huggingface.co/datasets/
ibm-research/BFCL-FC-robustness.

2 Dataset Generation

We next provide details on the generation of our
benchmark dataset. Specifically, we describe the
creation of (1) meaning-preserving rephrasings of
user requests and (2) expanding the toolkit to in-
clude a set of semantically related tools.

2.1 User Query Perturbations

Building on the study by Ackerman et al. (2024),
who tested LLMs’ sensitivity to paraphrased user
queries in the QA and classification settings, we
investigate whether agents’ FC capabilities remain
robust to meaning-preserving variations in user re-
quests. Here, the task presents additional challenge,
as the rewording must strictly maintain precise pa-
rameter values to ensure accurate slot filling for the
sake of evaluation. For instance, the request "Cal-
culate the depreciated value of a property costing
$200,000 with an annual depreciation rate of 3%

3According to the BFCL leaderboard (Jan 2025).
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Figure 2: A toolkit expansion steps: (1) request variants are generated using the LLama3.1-70B model (Dubey et al.,
2024), (2) function json definitions for executing these requests are generated using the Code-Llama-13B model
(Roziere et al., 2023), and a filtering step (3) is applied to filter out tools semantically identical to any of the original
functions. The process is completed when the expanded toolkit is created for testing the original query.

original request

What is the record for the most points scored by a single player in an NBA game?

original toolkit

basketball.most_points_single_game...)

request variants

Who holds the record for the highest number of assists made by a female basketball player?
What is the longest winning streak in NBA history?

basketball.most_points_career(...)

additional tools | basketball.records_history(...)

Table 1: A toolkit expansion steps: request variants and additional tools addressing those variants.

for 5 years." can be safely rephrased as "Determine
the value of a $200,000 asset which loses 3 percent
of its worth each year, after five years." Contem-
porary LL.Ms handle this task effectively, and we
used the Llama3.1-70B model (Dubey et al., 2024),
with appropriate prompting and in-context learn-
ing. A manual review of 50 examples by one of the
authors revealed no instances of semantic drift or
parameter misalignment. Appendix 7.1 provides
details on the prompt used for this task.

A substantial portion of the paraphrases targeted
named entities, which are natural candidates for sur-
face form variability. For instance, the user query
"What is the humidity level in Miami,Florida in
the upcoming 7 days?" was rephrased as "How will
the humidity levels change over the next seven days
in Miami,FL?". These seemingly minor modifica-
tions led to a notable drop in benchmark perfor-
mance — we analyze and interpret this decline, and
propose strategies to mitigate it in Section 3.

2.2 Expanding Agent’s Toolkit

Aiming at expanding the (originally) "thin" agent’s
toolkit, simulating the scenario where function def-
initions are retrieved by a shortlister, we follow the
steps illustrated in Figure 2 and outlined in Table 1.

(1) We generate related yet different request vari-
ants using the Llama3.1-70B model (Dubey et al.,

2024), see Appendix 7.2 for the detailed prompt.

(2) For each request variant, a tool definition is
generated to enable request fulfillment. Here, we
used the CodeLLlama-13B model (Roziere et al.,
2023) with a carefully designed prompt and few-
shot examples, ensuring that the generated defini-
tions conform not only to the required json format
but also to the naming conventions, style, and level
of detail in function and parameter descriptions.
Notably, based on our manual inspection, the style
of the generated tool definitions is indistinguishable
from that of the original function(s).

(3) Inrare cases, a generated tool was found to be
strictly functionally equivalent to the original one,
despite differences in name, description, or param-
eter order (see Appendix 7.3). We eliminate such
cases by (a) concatenating the original tool prop-
erties into a "signature," and (b) filtering out any
newly generated tool whose "signature" exceeded a
predefined similarity threshold to the original tool,
as measured via cosine similarity of their embed-
dings, computed using the sentence-transformers
module (Reimers and Gurevych, 2019).

Table 1 presents example original request (and
its tool), along with the expansion process: ad-
ditional (related but not strictly identical) request
variants, and additional tools, fulfilling those addi-
tional requests. The mean number of tools in the
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expanded toolkit is 5.6 compared to the 2.7 (seem-
ingly unrelated) tools in the original BFCL dataset,
meaning that three semantically-related functions
were added on average to each one of the 200 test-
cases. Next, we evaluate the FC performance of
multiple agents using the generated benchmark.

3 Agentic FC Robustness Evaluation

3.1 Experimental Setup

Models We evaluate several top-performing
LLMs from the BFCL leaderboard, both API-
accessible and locally hosted, as FC agents. Closed
models include GPT40-mini and o1-mini,* as well
as Claude-3.5-Haiku and Claude-3.5-Sonnet.> Lo-
cally hosted models include Llama3.1-70B and
its more advanced version Llama3.3-70B (Dubey
et al., 2024), Granite3.1-8B-instruct (Granite Team,
2024), DeepSeek-v2.5 (DeepSeek-Al, 2024), and
Qwen2.5-72B (Qwen Team, 2024).

Evaluation Approach BFCL employ a two-
phase FC evaluation approach: (1) assessment of
the generated tool call through the tree-matching
abstract syntax tree (AST) methodology, and (2)
evaluation of the tool execution in a simulated en-
vironment (Patil et al., 2023). Our focus in this
study is the evaluation of FC construction provided
interventions in its input; we, therefore, adhere to
the first evaluation phase — namely, AST. A robust
agent will generate correct function call regardless
of the precise request wording and of its toolKkit size:
"thin" (as it comes with the original benchmark),
or expanded, simulating a shortlister selection.

3.2 Experimental Results

We report AST averaged over the 200 dataset ex-
amples, including three variants: (a) the original
version, (b) original ("thin") toolkit + rephrased
user request, (c) expanded toolkit + original user
request. Table 2 (left) reports the results. Several
insights can be drawn from the figures:

FC Evaluation Approach Weakness(es) A no-
table (and somewhat unexpected) drop occurs when
evaluating the original toolkit on a rephrased re-
quest. Closer examination of errors reveals a sig-
nificant weakness in the common approach to FC
evaluation — specifically, in handling arguments
that can accept several equivalently valid values
(e.g., named entities). Consider the request: "What

4https ://platform.openai.com/docs/models
Shttps://www.anthropic.com/claude

is the humidity level in Miami,Florida in the up-
coming 7 days?". The expected response includes
the function weather.humidity_forecast() and
validates its location parameter by exact match
to one of the predefined values: ["Miami", "Miami,
Florida", "FL"]. When the request is rephrased as
"How will the humidity levels change over the next
seven days in Miami,FL?", agents assign the value
"Miami, FL" to location, which does not match
any of the (incompletely) listed options.

Further systematic analysis of error types distri-
bution reveals that 70-90% of errors indeed stem
from mis-match in parameter value assignment.
We conclude that the majority of failures in this
case can be attributed to the evaluation approach
drawback rather than agents’ sensitivity.

We argue that this issue could potentially be
mitigated by applying semantic similarity instead
of exact match. Indeed, recent studies adopt a
more holistic approach to evaluation of a con-
structed function call; e.g., Zhong et al. (2025) who
use multi-dimensional matching strategy, including
FCs’ embeddings similarity and LLM-as-a-Judge
matching, ensuring a generated tool call meets its
semantic requirements. We leave the exploration
of this mitigation strategy in the context of BFCL
evaluation framework to future work.

Agents’ Sensitivity to Toolkit Expansion Ev-
idently, expanding an agent’s toolkit with a set
of related functions caused performance degra-
dation across the board (Table 2, left). Here,
objective agent failures span a range of error
types: wrong function selected, wrong number
of functions generated (typically two instead of
one), wrong parameter assignment to a correctly-
selected function, parameter hallucinations, etc.
As an example, in response to the request "What
is the ranking of Manchester United in Premier
League?", an agent with the expanded toolkit
produces football_league.ranking("premier
league"), retrieving the complete ranking ta-
ble of the league, instead of the more appro-
priate sports_ranking("”Manchester United”,
"premier league"), answering the query.

Table 2 (right) presents error breakdown for
agents in this study in the expanded toolkit sce-
nario, showing the proportion of each error type
within the set of failures stemming from toolkit
expansion. While no clear pattern dominates, it
is evident that agents struggle with both accurate
function selection and parameter assignment.
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robustness evaluation exp. toolkit + orig. query: error analysis (%)
model (agent) original orig. toolkit exp. toolkit || wrong Wrong - Wrongnum - Wrong param.
reph. query orig. query || syntax function of functions  assignment
Llama3.1-70B 0965 0.825(-15%) 0.925(-4%) | 0.00 0.45 0.10 0.45
Llama3.3-70B 0.945  0.785(-17%) 0.905 (-4%) | 0.00 0.23 0.46 0.31
DeepSeek-V2.5 0.965 0.835(-14%) 0.950 (-2%) | 0.00 0.56 0.00 0.44
Qwen2.5-72B 0975 0.850 (-13%) 0.965 (-1%) | 0.00 0.29 0.00 0.71
Granite3.1-8B-instruct | 0.945  0.770 (-19%) 0.870 (-8%) || 0.09 0.50 0.18 0.23
" Claude-3.5-Haiku | 0.925 0.765(-11%) 0.870(2%) | 0.00 044 000 056
Claude-3.5-Sonnet 0915 0.845( -8%) 0.890(-3%) | 0.00 0.29 0.00 0.71
gpt4o-mini 0.925 0.765 (-17%) 0.870 (-6%) | 0.26 0.42 0.00 0.32
ol-mini 0.905 0.770 (-15%) 0.885(-2%) | 0.33 0.27 0.00 0.43

Table 2: Agentic FC robustness evaluation results. Models’ AST performance drop is evident when rephrasing the
original query, and also when using the original query with extended toolokit (left); relative percent drop is specified
in brackets. Failures stemming from toolkit expansion vary mostly between wrong function selection and wrong
parameter assignment (right). The best result in a column (the lowest performance drop) is boldfaced.

Finally, expanding an agent’s toolkit with ad-
ditional functions occasionally caused models to
"repair" some of their original (baseline) failures in
a few cases. Interestingly, this observations high-
lights the stochastic, generative nature of LLM
agents, where seemingly unrelated changes to a
model context may entail different output.

4 Conclusions and Future Work

We focus on two aspect of robustness, capturing
input variations that can be expected in real-world
agentic deployments: (1) meaning-preserving
rephrasings of user requests and (2) agent’s toolkit
expansion to include a set of semantically related
tools that are likely to be shortlisted by a selection
module. We build a benchmark dataset, evaluate
the robustness of several SOTA LLM agents, and
discuss the breakdown of failures.

Our future work includes testing the robustness
of agentic FC with additional and diverse datasets.
Moreover, it has been shown that LLMs can be
easily distracted by larger context (Shi et al., 2023;
Levy et al., 2024). We plan to extend the set of
experiments to scenarios were agent’s toolkit is
expanded also with non-relevant tools, to compare
the performance against the current setting.

5 Limitations

While our study provides valuable insights into
measuring agents’ robustness in the function call-
ing scenario, it has several limitations. First, we
evaluate our approach on a single dataset, suffi-
cient for the focused contribution of a short pa-
per, but requiring extension to additional datasets
for a broader analysis. Second, our toolkit ex-

pansion scenario relies on multiple LLMs to gen-
erate related requests and corresponding tools, a
time-consuming process currently performed of-
fline. We are actively exploring ways to streamline
this pipeline for improved efficiency and usability.

6 Ethical Considerations

We use publicly available datasets to study the ro-
bustness of agentic function calling. We did not
make use of Al-assisted technologies while writing
this paper. We also did not hire human annotators
at any stage of the research.
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7 Appendices
7.1 Prompt for Request Rephrasing

We used the following prompt for generating
strictly meaning-preserving request rephrasing
with the Llama3.1-70B model (Dubey et al., 2024):

SYSTEM: You are a helpful assistant
helping rephrasing user requests, while
accurately preserving their meaning,
including numbers and names if exist.
Do not answer the requirement, just
produce another one that is identical
in meaning but is phrased differently.
Produce ONLY the rephrased requirement,
without further thoughts or explanations.
Consider the example below:

USER: Can I find the dimensions and
properties of a triangle, if it is known
that its three sides are 5 units, 4 units
and 3 units long?

ASSISTANT: What are the dimensions and
properties of a triangle whose three sides
are 5, 4 and 3 units long?

7.2 Prompt for Similar Requests Generation

We used the following prompt for generating
closely related but different request with the
Llama3.1-70B model (Dubey et al., 2024):

SYSTEM: You are a helpful assistant
introduced with the following user query.
Create a very similar query that refers
to a very similar user need and is likely
to be implemented in an enterprise as part
of the same project. The new query should
introduce one or two additional distinct
parameter types. It should differ from
the original query in a sense that a
function that can be used to fulfill the

original query is not fully appropriate
for the new one and vise versa. As an
example, generating ’'Book a single room
for two nights at the Hilton Hotel in
Chicago’ per the original query ’Book
a double room for three nights at the
Marriott hotel near OHare Airport in
Chicago’, is not sufficient since both
queries can be answered using the same
function call, invoked with different
parameters. The query should contain all
information needed for its computation.
For instance, ’What is the capital of
Brazil?’ is a good query, while ’What
is the capital of a country provided by
user?’ is not since one cannot generate a
function call and populate its arguments
using the info in the query alone. Output
the newly generated query only, without
explanation or interpretation. Consider
the examples below:

USER: I need the schedules of matches
happening on February 28, 2024.

ASSISTANT: I need the schedules of the
college league matches happening during
the winter 2024 season.

7.3 Example of Syntactically Different but
Semantically Equivalent Tools

Although rare, distinct, yet functionally equiva-
lent tools, pose a challenge for accurate evaluation,
since the "labeled" BFCL data contains only one
of these functions. As an example, the tool

sentence.translate(sentence: string,
from: string,
to: string)

is functionally equivalent to

translate_sent(orig_language: string,
target_language: string,
sentence: string).

As described in Section 2, we concatenate func-
tion name and description, as well parameter names
and descriptions into a tool "signature", and fil-
ter out generated tools exhibiting cosine similarity
higher than a predefined threshold to the original
one, aiming at a toolkit with distinct functions. The
similarity threshold was set to 0.8.
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