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Abstract

Interpretations of a single sentence can vary,
particularly when its context is lost. This pa-
per aims to simulate how readers perceive con-
tent with varying toxicity levels by generating
diverse interpretations of out-of-context sen-
tences. By modeling toxicity, we can antici-
pate misunderstandings and reveal hidden toxic
meanings. Our proposed decoding strategy ex-
plicitly controls toxicity in the set of generated
interpretations by (i) aligning interpretation tox-
icity with the input, (ii) relaxing toxicity con-
straints for more toxic input sentences, and (iii)
promoting diversity in toxicity levels within
the set of generated interpretations. Experi-
mental results show that our method improves
alignment with human-written interpretations
in both syntax and semantics while reducing
model prediction uncertainty.

1 Introduction

Misunderstandings online can often be traced back
to misalignment between the meanings of text in-
tended by the author and those inferred by the read-
ers. This is even further amplified when text is
taken out of context – which is commonplace on
social media – resulting in frustration and heated
discussion. In this paper, we aim to mimic how
readers may interpret out-of-context sentences. We
do this by modeling and generating for each sen-
tence a diverse set of interpretations (Allein et al.,
2025). Toxicity is taken as the control factor during
generation as we want to simulate human interpre-
tation behavior of sentences that exhibit varying de-
grees of surface-level toxicity. Generating diverse
interpretations can help anticipate misunderstand-
ings, explain reactions from readers, and recover
underlying toxicity, which is especially beneficial
for capturing implicit hostility and harm online
(ElSherief et al., 2021; Hartvigsen et al., 2022).

*Equal contribution.

This paper introduces a novel decoding strategy
for interpretation generation that explicitly con-
trols the toxicity level of generated interpretations.
Our decoding strategy enforces three key objectives
that are inspired by toxicity patterns observed in
human-written sentence interpretations: Align the
toxicity level of generated interpretations with that
of the input sentence (Objective 1); Progressively
relax toxicity constraints on the interpretations for
increasing toxicity in the sentence (Objective 2);
Promote diversity in the toxicity levels across the
generated interpretations (Objective 3). These ob-
jectives are enforced iteratively during the decoding
process, enabling fine-grained control over toxic-
ity while maintaining coherence and diversity in
generated text. Controlling generation in the de-
coding phase is particularly desirable as it bypasses
the need for alterations to model architectures, al-
lowing a plug-and-play integration with existing
language models.

Our results demonstrate the soundness and ef-
fectiveness of our decoding strategy. Controlling
the decoding of interpretations using all three ob-
jectives consistently leads to generated interpreta-
tions that better align with human-written interpre-
tations in terms of syntax and semantics, compared
to when generation is not controlled. Our strategy
also lowers uncertainty for the base models when
predicting the interpretations.

2 Related Work

Text generation can be controlled using a range
of control factors, including text attributes (e.g.,
sentiment, style) (Hu et al., 2017; Dathathri et al.,
2020), syntactic structures (Li et al., 2022), speaker
or reader characteristics (Dinan et al., 2020; Ma-
jumder et al., 2020), and structured data (e.g., ta-
bles, knowledge graphs) (Zhang et al., 2023). A
popular approach to condition text generation is
in-context learning, where these control factors are
integrated into the input (Yang et al., 2023). An-
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other method is to control generation during the
decoding phase, e.g., by manipulating the output
token distributions (Pascual et al., 2021; Yang and
Klein, 2021; Kim et al., 2023).

This paper controls the toxicity of generated in-
terpretations based on the surface-level toxicity of
the original sentence during decoding. While much
of the existing work on controlling toxicity in text
generation focuses on reducing toxicity (Gehman
et al., 2020; Liu et al., 2021; Prabhumoye et al.,
2023; Wingate et al., 2022), our work builds on
the idea that the toxicity of the original sentence
is perceived differently among readers. We aim to
capture this variability by constraining generation
following three objectives.

3 Methodology

3.1 Preliminaries

Language models generate text sequences y of
length T by decoding the probability of the se-
quence y calculated using the chain rule: p(y) =∏T

t=1 p(yt|y<t), where y<t = {y1, ..., yt−1}. The
probabilities p(yt|y<t) are obtained by projecting
the logits computed by the language model into the
space of the model’s vocabulary V typically using
a softmax transformation. By applying the logarith-
mic differentiation over the chain rule, the softmax
scores are given by score(yt|y<t) = log p(yt|y<t).
Once the scores are computed, a decoding algo-
rithm such as nucleus sampling or beam search is
applied to autoregressively generate y.

In our work, we aim to control the toxicity of
the interpretations generated by a language model
for an input sentence in a plug-and-play manner.
We do this by calibrating the softmax scores for
toxicity control before applying the decoding al-
gorithm. To ensure the correct summation of all
probabilities in the V space to 1, we apply another
softmax transformation over the calibrated scores.

3.2 Toxicity control

We define a set of objectives for our decoding strat-
egy that should closely align the generated inter-
pretations with the toxicity behavior observed in
the input sentence and human interpretations. The
implementation of these objectives is summarized
in Algorithm 1.

Objective 1: Match toxicity level of the inter-
pretations to the sentence The toxicity of the
generated interpretations should match the toxicity

Algorithm 1 The implementation of Objectives 1-3
Input s, tox(s), tox(yt) ∈ RV , y = {}
Output y

if Objective 3 and (∃)y′
then

if tox(y
′
) < tox(s) then

tox(s) = tox(s) + (tox(s)− tox(y
′
))

else if tox(y
′
T ) > tox(s) then

tox(s) = tox(s)− (tox(y
′
)− tox(s))

end if
end if
while t ≤ T do

Compute score(yt|y<t)
if Objective 1 then

if Objective 2 then
λ = 1/(tox(s) ∗ 100)

else if not Objective 2 thenλ = 1
end if
if tox(y<t) < tox(s) then

score(yt|y<t) = score(yt|y<t)+
λ ∗ tox(yt)

end if
if tox(y<t) > tox(s) then

score(yt|y<t) = score(yt|y<t)−
λ ∗ tox(yt)

end if
end if
y∗
t = argmax(score(yt|y<t))

y<t = y<t + y∗
t

end while
if t=T then

y = y<t

end if

level of the input sentence, as maintaining consis-
tency in toxicity prevents the interpretations from
unintentionally intensifying or minimizing the orig-
inal tone. Adopting this hypothesis, we ensure that
the generated interpretation preserves the meaning
of the input sentence in terms of toxicity. Since the
text generation process is sequential, it is necessary
to calibrate the toxicity level of the generated text
after each time step t.

Knowing that the tox(∗) function indicates the
toxicity level (the codomain of the function is [0, 1])
and given the softmax scores score(yt | y<t) com-
puted by the language model for the t-th generated
token yt based on the already generated sequence
of t− 1 tokens y<t, we calibrate the scores as fol-
lows:

score(yt|y<t) = score(yt|y<t) + λ ∗ tox(yt),
if tox(y<t) < tox(s)

score(yt|y<t) = score(yt|y<t)− λ ∗ tox(yt),
if tox(y<t) > tox(s) (1)

where s is the input sentence, λ adjusts the tox-
icity control, and tox(yt) ∈ RV indicates the
toxicity level of yt in V used by the language
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Toxicity Interval Toxicity Average Standard
of the Input Sentence Deviation of the Interpretations

(0.0 - 0.2) 0.05
(0.2 - 0.4) 0.10
(0.4 - 0.6) 0.13
(0.6 - 0.8) 0.20
(0.8 - 1.0) 0.23

Table 1: Comparison between the toxicity intervals of
the input sentences and the average standard deviations
of the toxicity scores of all interpretations per input
sentences. The average is computed at the interval level.

model. All toxicity scores are computed us-
ing the well-established BERT-HateXplain model
(Mathew et al., 2021).

By implementing Objective 1 using Eq. 1, we
correct the toxicity of the generated interpretation
after every time step t to ensure that the toxicity
of the final interpretation converges to that of the
input sentence.

Objective 2: Gradually relax control as sentence
toxicity rises Empirically, we observe that in-
put sentences with higher toxicity scores are more
likely to have human interpretations with a broader
toxicity range than less toxic input sentences. As
shown in Table 1, the standard deviation of the tox-
icity scores observed in the human interpretations
of an input sentence is higher for more toxic input
sentences than for less toxic ones. Based on this ob-
servation, we gradually loosen the toxicity control
over the generated interpretations as the toxicity of
the input sentence increases. To implement this,
we set the weight λ in Eq. 1 as 1/(tox(s) · 100). If
Objective 2 is not implemented, λ is set to 1.

Objective 3: Promote diversity by alternat-
ing toxicity While the generated interpretations
should preserve the meaning of the input sentence,
we also want to capture the range of possible in-
terpretations. To encourage diversity in the set of
generated interpretations, we set a heuristic rule
that the current generated interpretation should be
higher in toxicity than the input sentence when the
previous interpretation was lower in toxicity, and
vice versa. To implement this, we update the toxic-
ity score of the input sentence, tox(s), after every
generated interpretation as follows:

tox(s) = tox(s) + (tox(s)− tox(y
′
)),

if tox(y
′
) < tox(s)

tox(s) = tox(s)− (tox(y
′
)− tox(s)),

if tox(y
′
) > tox(s) (2)

where y
′

is the previously generated interpretation.
Note that our decoding strategy defines the tox-

icity of interpretations as a function of the input
sentence toxicity, meaning that we can always sub-
stitute the toxicity score of the input sentence with
an arbitrary value. This feature is particularly im-
portant for content moderation by producing in-
terpretations that deliver the meaning of the input
sentence in a non-toxic manner.

4 Experimental Setup

Dataset We rely on the OrigamIM dataset1

(Allein and Moens, 2024) to evaluate our decod-
ing strategy. OrigamIM is the first dataset that
specifically supports the interpretation modeling
task (Allein et al., 2025) and includes 9,851 human-
written interpretations of 2,018 sentences from Red-
dit posts. To accommodate the language models
for this task, we fine-tune and validate them on the
OrigamIM training and validation sets. The test set
is used to evaluate our decoding strategy.

Models To evaluate our method for toxicity con-
trol, we use three open-source language models:
BART (139M parameters) (Lewis et al., 2020),
T5 (223M parameters) (Raffel et al., 2020), and
LLAMA 7b (6.74B parameters) (Touvron et al.,
2023). We test various combinations of our pro-
posed objectives and compare it against the base
models without explicit control.

Implementation details We fine-tune the lan-
guage models on an NVIDIA GeForce RTX GPU
with 24GB of GPU RAM during 8 epochs. We
set the learning rate to 0.0001 and the batch size
to 4 for T5 and BART and to 1 for LLAMA. We
use nucleus sampling (Holtzman et al., 2020) with
p = 0.9 during inference. Compared with the
commonly used beam search, nucleus sampling
is more effective and can better prevent text de-
generation (Holtzman et al., 2020). The match-
ing between the generated interpretations and the
human interpretations is done using the Hungar-
ian algorithm. Our code is available here: https:
//github.com/mtrusca/ToxicityControl.

Metrics We use METEOR (Banerjee and Lavie,
2005) to measure the syntactic similarity between
the human interpretations and the generated ones.
We measure semantic similarity using COMET

1https://github.com/laallein/origamIM.
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Method METEOR(↑) COMET (↑) Perplexity(↓) Correlation(↑)

BART 29.22 ± 0.21 82.36 ± 0.31 1.27 ± 0.2 0.43 ± 0.56
BART +Obj1 29.82 ± 0.12 83.74 ± 0.21 1.27 ± 0.1 0.41 ± 0.49
BART +Obj1,2 29.48 ± 0.23 83.11 ± 0.3 1.26 ± 0.1 0.45 ± 0.23
BART +Obj1,3 29.01 ± 0.22 84.16 ± 0.36 1.26 ± 0.2 0.42 ± 0.31
BART +Obj1,2,3 29.79 ± 0.12 85.81 ± 0.37 1.27 ± 0.1 0.46 ± 0.34

LLAMA 27.13 ± 0.44 86.16 ± 0.26 13.19 ± 0.3 0.41 ± 0.32
LLAMA+Obj1 27.73 ± 0.38 83.78 ± 0.26 13.19 ± 0.4 0.42 ± 0.41
LLAMA+Obj1,2 27.97 ± 0.11 84.47 ± 0.29 13.33 ± 0.2 0.43 ± 0.64
LLAMA+Obj1,3 27.14 ± 0.07 90.02 ± 0.4 13.11 ± 0.1 0.4 ± 0.35
LLAMA+Obj1,2,3 27.84 ± 0.22 91.07 ± 0.15 13.11 ± 0.4 0.43 ± 0.42

T5 27.44 ± 0.31 79.61 ± 0.33 1.43 ± 0.3 0.38 ± 0.46
T5 +Obj1 27.61 ± 0.1 79.07 ± 0.28 1.43 ± 0.2 0.41 ± 0.35
T5 +Obj1,2 28.19 ± 0.18 81.39 ± 0.46 1.44 ± 0.2 0.42 ± 0.51
T5 +Obj1,3 27.52 ± 0.39 81.98 ± 0.37 1.44 ± 0.3 0.42 ± 0.24
T5 +Obj1,2,3 28.25 ± 0.12 82.9 ± 0.27 1.43 ± 0.2 0.44 ± 0.36

Table 2: Quantitative evaluation of our decoding strategy for controlling toxicity in text generation (mean and
standard deviation; three runs).

Method METEOR(↑) COMET (↑) Perplexity(↓) Correlation(↑)

LLAMA+Obj1,3(λ = .25) 27.44 ± 0.09 88.93 ± 0.38 13.11 ± 0.1 0.41 ± 0.36
LLAMA+Obj1,3(λ = .50) 27.54 ± 0.28 89.93 ± 0.22 13.12 ± 0.2 0.4 ± 0.28
LLAMA+Obj1,3(λ = .75) 27.36 ± 0.38 90.44 ± 0.22 13.11 ± 0.1 0.41 ± 0.21
LLAMA+Obj1,3(λ = 1) 27.14 ± 0.07 90.02 ± 0.4 13.12 ± 0.1 0.4 ± 0.35
LLAMA+Obj1,2,3 27.84 ± 0.22 91.07 ± 0.15 13.11 ± 0.4 0.43 ± 0.42

Table 3: The effect of λ on the decoding mechanism for toxicity control. While the first four models use a fixed λ,
model LLAMA+Obj1,2,3 implements a decreasing λ as the toxicity of the input sentence increases.

(Rei et al., 2020). COMET is suitable for interpre-
tation modeling because it was trained to recognize
human preferences between correct and incorrect
translations, which can be applied to the "transla-
tions" of meaning in interpretations. Additionally,
COMET considers both the similarity between the
generated interpretation and the human interpreta-
tion, as well as between the generated interpreta-
tion and the input sentence. The third metric we
report is perplexity, which shows the level of uncer-
tainty the models have in predicting the generated
interpretations. The final metric is the Spearman
correlation computed between the toxicity scores
of the generated interpretations and the scores of
the human interpretations.

5 Results

Quantitative analysis Table 2 presents the quan-
titative results of integrating our method into the
text decoding of T5, LLAMA, and BART models.
Syntactically, we notice that controlling toxicity in
text generation consistently enhances the capacity
of the models to generate interpretations similar to
the input sentence. Analyzing METEOR scores,
we observe that the implementation of the first ob-

jective has the strongest capacity to increase syn-
tactic similarity, while the implementation of the
other two objectives further enhances this similar-
ity, as observed in the cases of LLAMA and T5.
Regarding semantic similarity, the meaning of the
input sentence is better preserved when toxicity is
directly adjusted during decoding. When toxicity
is controlled using all three objectives, COMET
scores show a substantial increase compared to the
results of the base models, with improvements of
4.10% for BART, 5.54% for LLAMA, and 4.04%
for T5.

Regarding perplexity, implementing our decod-
ing strategy generally results in lower model un-
certainty when generating the interpretations. Cor-
relation scores further confirm that the toxicity-
controlled interpretations better capture the toxicity
behavior observed in human interpretations than
when toxicity is not controlled. Lastly, the results
show overall improvement in the interpretation gen-
eration performance when all three objectives are
enforced.

To demonstrate that a variable λ value (as re-
quired by Objective 2) is more advantageous
than a fixed value, we evaluate our decoding
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Sentence Over the past few years across Western nations, there have been several attempts by Tox.: 0.04
‘Progressives’ to gain power.

Ground-Truth 1. Politics that have stagnated are due to be contested. Tox.: 0.03
Interpretations 2. Over the past few years across Western nations, there have been several endeavors by Tox.: 0.04

‘Progressives’ to gain puissance.

Generated 1. Western countries are not better than the Russians when it comes to politics. Tox.: 0.03
Interpretations 2. In recent years across Western countries, many left-leaning politicians have been trying Tox.: 0.08

to gain power

Sentence Zoomers are inexperienced, idealistic do-gooders who are woke, and Boomers are world Tox: 0.47
destroyers who consume everything without thinking, and will be the death of us all.

Ground-Truth 1. The young generation is too idealistic and not realistic while the older generation Tox: 0.18
Interpretations consumes resources mindlessly.

2. Zoomers are callow, idealistic do-gooders who are woke, and Boomers are world Tox: 0.45
destroyers who consume everything without mentally conceiving, and will be the
demise of us all.

Generated 1. Millennials (zoomers) are naive idealists who are attuned to the environment and Tox: 0.53
Interpretations boomers are extinctionists who consume everything without thought, and will ultimately

kill us.
2. Zoomers and Boomers’ lifestyles are completely different. Tox: 0.19

Generated 1. Zoomers and Boomers have different ideals on how to deal with the world. Tox: 0.17
Interpretations 2. The writer seems to be pointing to a kind of inter-generational difference that motivates Tox: 0.21
(tox(s) = 0.2) and polarizes extreme political movements.

Table 4: Examples from the OrigamIM test dataset that present toxicity behavior in LLAMA+Obj1,2,3.

strategy using different fixed λ values (λ =
0.25, 0.50, 0.75, 1). As shown in Table 3, a vari-
able λ results in better manipulation of the toxicity
level in the generated text and achieves higher se-
mantic and syntactic similarity to the human inter-
pretations, compared to when λ is fixed.

Qualitative analysis Table 4 presents several in-
terpretations generated by LLAMA using our de-
coding strategy. When the toxicity score of the
input sentence is low, the generated interpretations
are also non-toxic. However, this does not prevent
LLAMA from being creative and discussing Rus-
sian politics in the context of Western political sys-
tems. Conversely, when the input sentences have a
high level of toxicity, the generated interpretations
either reflect the toxicity or produce milder inter-
pretations. Note that we can moderate the toxicity
of an input sentence by replacing its toxicity score
tox(s) with a lower value that allows generation of
non-toxic interpretations (last line in Table 4).

6 Conclusion

In this work, we proposed a modular decoding al-
gorithm with three objectives designed to explicitly
guide the generation of interpretations of out-of-
context sentences. We showed that specifically con-
straining text decoding on toxicity brings generated
interpretations closer to those written by humans.

However, human interpretation is driven by many
factors beyond toxicity like cultural background
and personal experiences. We therefore strongly
encourage future research to also consider these
contextual factors when modeling the diverse ways
in which a sentence’s meaning is perceived.

Limitations

Due to the external classifier used to detect toxicity,
the ability to control the toxicity of our decoding
strategy is strongly correlated with the data used to
train the classifier. As a result, our strategy depends
on the quality of the classifier’s training data.

Ethical Considerations

Our decoding method intentionally amplifies tox-
icity in certain generated interpretations to better
replicate human interpretations of out-of-context
sentences with varying levels of toxicity. While
promoting toxicity in text generation may seem
controversial, it is not inherently negative in all
contexts. Minimizing or even entirely removing
toxicity is crucial for applications like customer ser-
vice, education, or mental health support – where
safety and ethics are non-negotiable. However,
some systems actually benefit from the ability to
produce texts with varying degrees of toxicity. For
example, explicitly highlighting toxicity in gener-
ated text can help improve content filtering systems
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and facilitate better detection of harmful language.
As such, we believe that developing methods for
the controlled and adaptable regulation of toxic
language is valuable. Nevertheless, it is important
to exercise caution in designing and implementing
these methods to ensure they are used responsibly
and ethically.
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