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Abstract

Recent advances in Large Multimodal Mod-
els (LMMs) have expanded their capabilities
to video understanding, with Text-to-Video
(T2V) models excelling in generating videos
from textual prompts. However, they still fre-
quently produce hallucinated content, revealing
Al-generated inconsistencies. We introduce
ViBe*: a large-scale dataset of hallucinated
videos from open-source T2V models. We iden-
tify five major hallucination types: VANISHING
SuBiEcT, OMISSION ERROR, NUMERIC VARIABILITY,
SusJsecT DysmorpHIA, and VISUAL INCONGRUITY.
Using ten T2V models, we generated and man-
ually annotated 3,782 videos from 837 diverse
MS COCO captions. Our proposed benchmark
includes a dataset of hallucinated videos and
a classification framework using video embed-
dings. ViBe serves as a critical resource for
evaluating T2V reliability and advancing hallu-
cination detection. We establish classification
as a baseline, with the TimeSFormer + CNN en-
semble achieving the best performance (0.345
accuracy, 0.342 F1 score). While initial base-
lines proposed achieve modest accuracy, this
highlights the difficulty of automated hallucina-
tion detection and the need for improved meth-
ods. Our research aims to drive the develop-
ment of more robust T2V models and evaluate
their outputs based on user preferences.

1 Introduction

Text-to-video (T2V) models have advanced signifi-
cantly, enabling the generation of coherent and vi-
sually detailed videos from textual prompts. These
models have improved in capturing intricate visual
elements that align with input text, yet a persistent
challenge remains - the generation of hallucinated
content. Hallucinations introduce visual discrepan-
cies where elements either misalign with or distort
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the intended scene, compromising the realism and
reliability of T2V outputs. This issue is particularly
critical in applications that demand high fidelity to
input prompts, such as content creation, education,
and simulation systems.

To address this challenge, we introduce ViBe, a
comprehensive large-scale dataset designed to sys-
tematically analyze and categorize hallucinations
in T2V models. Our dataset was constructed using
837 diverse captions from the MS COCO dataset,
which were used to prompt 10 leading open-source
T2V models, including HotShot-XL, MagicTime,
AnimateDiff-MotionAdapter, and Zeroscope V2
XL. The resulting dataset consists of 3,782 videos,
each manually annotated to identify common hal-
lucination types, including disappearing subjects,
missing scene components, numerical inconsisten-
cies, and visual distortions.

ViBe serves as a valuable resource for evalu-
ating the limitations of T2V models and facilitat-
ing the development of improved hallucination de-
tection techniques. To complement the dataset,
we propose a classification benchmark that lever-
ages video embeddings from TimeSFormer and
VideoMAE as inputs for hallucination classifica-
tion. This benchmark establishes a structured eval-
uation pipeline, offering baseline performance re-
sults and highlighting the challenges of hallucina-
tion detection.

In summary, our key contributions are:

e A large-scale dataset for hallucination
analysis in T2V models: We introduce
ViBe, the first dataset focused on systemati-
cally categorizing hallucinations in generated
videos. This dataset provides a foundation
for studying errors in T2V generation and im-
proving model fidelity.

o A structured framework for quantifying
hallucinations: We define five major hal-
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Figure 1: To generate the videos, we utilized randomly sampled image captions from the MS COCO dataset as
textual inputs for the video generation models. The resulting videos were then manually annotated by human
annotators to construct the ViBe dataset. Following annotation, the videos were processed into feature-rich video
embeddings using advanced embedding techniques. These embeddings along with human annotated hallucination
labels were subsequently input into various classifier models, which were trained to identify and categorize different
types of video hallucinations, enabling the detection of discrepancies between the expected and generated content.
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Figure 2: Prompt: three guys are standing on a beach next to surfboards. Vanishing Subject: The prompt mentions
that there are three guys on a beach with surfboards. In the initial frame, we see 3 guys on the beach with surfboards,
but in the last frame, we find only two guys remaining. The third guy seems to have vanished.

T2V Hallucination
Categories

Incorrect Elements

Missing Elements

Vanishing Omission Error Numeric Subject Visual
Subject Variability Dysmorphia Incongruity

Figure 3: Hierarchy of hallucination categories in ViBe.

lucination categories and provide human- puts.
annotated labels, enabling researchers to ana-

lyze and mitigate common errors in T2V out- ¢ A benchmark for hallucination classifica-

tion: We propose an evaluation framework
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using video embeddings and classification
models to establish baseline performance on
hallucination detection. Our results highlight
the difficulty of this task and provide a refer-
ence for future improvements.

2 Related Work

The phenomenon of hallucination in generative
models has been widely studied across different
types of media, including text, images, and videos.
In text generation, large language models (LLMs)
such as GPT-3 (Brown et al., 2020) often produce
responses that appear coherent but contain factual
inaccuracies. This issue has motivated the develop-
ment of evaluation benchmarks, such as the Hallu-
cinations Leaderboard (Hong et al., 2024), which
aim to measure how frequently and severely these
models generate misleading or incorrect content.

In the case of image generation, models like
DALL-E (Ramesh et al., 2022) and Imagen (Sa-
haria et al., 2022) have demonstrated impressive
abilities in creating high-quality images from tex-
tual descriptions. However, these models some-
times generate artifacts that do not align with
the provided input text, leading to unrealistic
or misleading outputs. To address this prob-
lem, datasets such as the HAllucination DEtection
dataSet (HADES) (Liu et al., 2022) have been intro-
duced. These datasets provide tools for assessing
hallucination in text-to-image models by focusing
on specific tokens and offering reference-free eval-
uation methods.

Video generation models face even greater chal-
lenges due to the added complexity of maintain-
ing consistency across multiple frames. Errors
in this context can manifest as unrealistic motion,
sudden changes in object appearance, or scenes
that contradict real-world physics. Recent efforts
have aimed to detect and quantify hallucinations
in text-to-video models (T2V). The Sora Detector
(Chu et al., 2024a) is an example of a framework
designed to identify hallucinations in video gen-
eration by analyzing key frames and comparing
them against knowledge graphs. Similarly, Video-
Hallucer (Wang et al., 2024b) introduces bench-
marks to evaluate hallucinations by distinguishing
between errors that originate from the model itself
and those that arise due to external inconsistencies.
Additionally, VBench (Huang et al., 2024) provides
a broad set of evaluation tools to assess the overall
quality of generated videos.

Despite these advancements, a major limitation
in current research is the lack of a large-scale,
human-annotated dataset specifically designed to
study hallucinations in text-to-video generation
models. ViBe addresses this gap by introducing a
structured large-scale dataset that categorizes dif-
ferent types of hallucinations observed in generated
videos. This dataset includes a diverse collection of
human-annotated videos sourced from ten publicly
available T2V generative models. By providing
detailed annotations, ViBe serves as a valuable re-
source for developing and testing new methods that
aim to detect and reduce hallucinations in text-to-
video models.

3 Dataset Construction

3.1 Dataset Prompt Diversity

To construct the ViBe dataset, we carefully se-
lected 837 diverse captions from the MS COCO
dataset (Lin et al., 2015), ensuring a balanced rep-
resentation of real-world scenarios. These captions
were used as prompts to generate 3,782 videos,
making ViBe a valuable resource for evaluating
text-to-video (T2V) models.

For structured evaluation, the dataset is orga-
nized into five distinct thematic categories:

e Sports: This category includes prompts de-
scribing various athletic activities. An exam-
ple caption is: "A baseball hitter stands in
position to hit the ball." These videos capture
dynamic motion, human-object interactions,
and fast-paced events.

e Animals: This category focuses on different
species and their behaviors in natural and do-
mestic settings. A sample prompt is: "Cows
strain their necks for hay in between posts of a
fence.” These videos challenge models to gen-
erate realistic animal motion and interactions
with the environment.

e Objects: Prompts in this category describe
static and dynamic objects in various contexts.
For instance, "Two electrical boxes and signs
sit on a street pole.” Evaluating this category
helps analyze how well models capture object
shapes, textures, and placements.

¢ Environment and Settings: This category in-
cludes prompts related to landscapes, weather
conditions, and urban or rural scenes. An
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example caption is: "Two people in the dis-
tance on a beach with surfboards.” This set
challenges models to generate coherent spatial
layouts and realistic environmental details.

e Human Activities: This category involves
prompts describing various actions performed
by individuals or groups. For example,
“Women are playing WII video games in a big
room.” The complexity of human movement,
interactions, and physical realism is critical in
evaluating these videos.

This structured approach ensures ViBe cov-
ers diverse real-world scenarios, spanning natural
and urban environments, various human activities,
and intricate object interactions. It enhances the
dataset’s utility for evaluating the coherence and
fidelity of generated videos while also serving as
a foundation for benchmarking improvements in
T2V model development.

3.2 Models Used for Dataset Creation

We used a subset of 837 captions as input prompts
for ten T2V models, representing diverse architec-
tures, sizes, and training paradigms: (i) MS1.7B
(ali vilab, 2023), (ii)) MagicTime (Yuan et al.,
2024a), (iii) AnimateDiff-MotionAdapter (Guo,
2023), (iv) zeroscope_v2_576w (Sterling, 2023a),
(v) zeroscope_v2_XL (Sterling, 2023b), (vi) Ani-
mateLCM (Wang et al., 2024a), (vii) HotShotXL
(Mullan et al., 2023), (viii) AnimateDiff Lightning
(Lin and Yang, 2024), (ix) Show1 (Zhang et al.,
2023), and (x) MORA (Yuan et al., 2024b).

Most models generated 1-second videos, except
Show1, which produced 2-second videos. Despite
their brevity, the hallucination artifacts we define
are highly discernible, enabling effective identifi-
cation and analysis. Table 1 provides a detailed
breakdown of video duration across models, high-
lighting variability in generated outputs.

Videos were systematically analyzed to iden-
tify and quantify hallucinations, revealing their
widespread occurrence across various open-source
T2V systems. Our dataset generation and classifi-
cation benchmark pipeline are illustrated in Figure
1.

3.3 Hallucination Definitions

Hallucination categories were designed based on
observed inconsistencies in generated videos rather
than technical classifications like those in Sora

T2V Model Duration

AnimateLCM (Wang et al., 2024a)
zeroscope_v2_XL (Sterling, 2023b)

Showl1 (Zhang et al., 2023)

MORA (Yuan et al., 2024b)

AnimateDiff Lightning (Lin and Yang, 2024)
AnimateDiff-MotionAdapter (Guo, 2023)
MagicTime (Yuan et al., 2024a)
zeroscope_v2_576w (Sterling, 2023a)
MS1.7B (ali vilab, 2023)

HotShotXL (Mullan et al., 2023)
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Table 1: Video duration per model varies as follows:
with the exception of the Show1 and ZeroscopeV2XL
model, which generates videos with a duration of 2
seconds, all other models produce videos that are 1
second in length.

Detector (Chu et al., 2024a). These inconsisten-
cies broadly fall into subject omissions or incor-
rect renderings, often exhibiting recurring patterns.
We identified five distinct categories, which, while
sometimes overlapping, are treated separately due
to their frequent occurrence. This framework cap-
tures common hallucination patterns in T2V out-
puts, as detailed in the following section:

1. Vanishing Subject (VS): A subject or part
of a subject unpredictably disappears during
the video. This is often observed in dynamic
scenes where subjects fail to persist visually
as seen in Figure 2.

2. Omission Error (OE): The video fails to ren-
der key elements explicitly described in the
input prompt as seen in Figure 9.

3. Numeric Variability (NV): The video alters
the specified number of subjects, either in-
creasing or decreasing their count as seen in
Figure 4.

4. Subject Dysmorphia (SD): Subjects in the
video exhibit unnatural or distorted shapes,
scales, or orientation changes, violating ex-
pected physical consistency during the course
of the video as seen in Figure 8.

5. Visual Incongruity (VI): Logically incom-
patible or physically impossible elements are
combined, creating perceptual inconsistencies
or violating natural laws as seen in Figure 5.

3.4 Human Annotation Details

Table 2 presents the distribution of hallucinated
videos across models and categories. Five anno-
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Figure 4: Prompt: Two road workers are standing by a red light with a sign. Numeric Variability: The prompt
explicitly mentions two road workers. However, while the system accurately incorporates elements like the red
light and depicts one road worker standing, it fails to generate the second road worker as specified in the prompt.
The system modifies the specified number of subjects, decreasing their count, which deviates from the original
instructions.

Figure 5: Prompt: A train heading for a curve in the track. Visual Incongruity: The scenario presents multiple
logical and physical impossibilities in its temporal sequence. Initially, no train is visible in the first two frames,
violating conservation of mass and the principle of object permanence. In the third frame, the train suddenly
materializes on the track without a clear point of origin. In the final frame, the train inexplicably rotates to become
perpendicular to the track, an action that defies both the mechanical constraints of train wheels on rails and basic
laws of motion. This instantaneous 90-degree rotation would be physically impossible given a train’s fixed wheel

assembly and its momentum-governed movement along rails.

tators manually categorized 3,782 videos, assign-
ing each to the most prominent hallucination type
based on a predefined taxonomy. To ensure con-
sistency, they followed a hierarchical classification
approach, prioritizing specific sub-categories be-
fore broader ones. Figure 3 visually represents this
hierarchy. Additional details on dataset annotation
are provided in the appendix A.

3.5 Implementation Details

For embedding extraction and classifier training,
the process utilized a system with 8 CPU cores,
each equipped with 32 GB of memory. This hard-
ware configuration provided the necessary compu-
tational resources to efficiently handle data process-
ing and model training. For video generation tasks,
an NVIDIA A100 GPU (Jack et al., 2025) was em-
ployed, taking advantage of its high-performance
capabilities for accelerated computation and ren-
dering of complex video content.

The total duration per model refers to the cumu-
lative time spent annotating all videos associated
with that specific model, as shown in 6. 1 provides
a detailed report on the video length for each model,
allowing for an analysis of how video duration may
impact processing times or model performance dur-
ing annotation tasks.

3.6 Inter-Annotator Scores

Two annotators were given 100 common videos to
assess inter-annotator agreement, compared against
the dataset’s gold-standard annotations. Cohen’s
Kappa scores (Table 3) show the highest agreement
for Visual Incongruity (0.8737) and the lowest for
Omission Error (0.7474). Cohen’s Kappa is calcu-
lated as:

K= Po — Pe (1)

1- Pe

where:

® p, is the observed agreement between the
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Figure 6: The total duration per model represents the
cumulative duration of all videos associated with that
model. For instance, magictime has a cuamulative video
duration of 349 seconds. The total duration for zero-
scopeV2_XL has the longest time, with a duration of
726 seconds, followed by zeroscopeV2_576w at 720
seconds. In contrast, the shortest time was recorded for
animatelightning, which took 215 seconds.

<> Annotation Time (min)
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Figure 7: The longest annotation time was recorded
for mora, taking 1561.5 minutes, followed by show1l
at 1521.0 minutes. Conversely, the shortest annota-
tion time was observed for animatelightning, which
required 483.75 minutes.

Figure 8: Prompt: A man in athletic wear swings a tennis racket through the air. Subject Dysmorphia: Throughout
the video, both the man and the racket undergo visually inconsistent distortions, resulting in temporal and spatial
anomalies. The system-generated artifacts introduce irregularities in the man’s form and the racket’s structure as
they move, causing fluctuations in shape, scale, and position that disrupt the continuity of the intended action.

raters.

® p. is the expected agreement by chance.

4 Classification

Given the growing challenge of video hallucina-
tions, addressing this issue is crucial. Currently,
the literature includes only one T2V hallucination
benchmark, T2VHaluBench (Chu et al., 2024a),
which consists of just 50 videos, limiting its util-
ity for robust evaluation. To overcome this, we
propose a large dataset to drive further research,
along with several classical classification baselines

to support hallucination category prediction. We
expect this work to be a key resource for advancing
research in this domain.

4.1 T2V Hallucination Classification

We evaluate our ViBe dataset using a variety of
classification models. We also present a novel task
for classifying hallucinations in a text-to-video gen-
eration. The first step involves extracting video em-
beddings from two pre-trained models: VideoMAE
(Video Masked Autoencoders for Data-Efficient
Pretraining) (Tong et al., 2022) and TimeSFormer
(Time-Space Attention Network for Video Un-
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T2V Model VS NV SD OE VI  Total

AnimateLCM 2 70 70 70 70 282
zeroscope_v2_XL 18 0 37 109 199 363
Showl 13 71 88 111 55 338
MORA 82 96 99 202 215 6%
AnimateDiff Lightning 1 33 52 56 63 215
AnimateDiff-MotionAdapter 28 59 158 182 94 521
MagicTime 70 70 70 69 70 349
zeroscope_v2_576w 17 0 41 115 187 360
MS1.7B 51 50 70 70 70 311
HotShotXL 70 70 70 69 70 349
Total 362 519 755 1053 1093 3782

Table 2: This table shows the distribution of hallucinated
videos produced by ten different text-to-video models,
classified into five types of hallucinations. The dataset
includes 3,782 videos, each assessed for the occurrence
of these hallucination types.

derstanding) (Bertasius et al., 2021). These ex-
tracted embeddings are subsequently used as fea-
ture representations for seven distinct classification
algorithms: Long Short-Term Memory (LSTM)
(Sutskever et al., 2014), Transformer (Vaswani
et al., 2017), Convolutional Neural Network (CNN)
(Krizhevsky et al., 2012), Gated Recurrent Unit
(GRU) (Chung et al., 2014), Recurrent Neural Net-
work (RNN) (Mikolov et al., 2010), Random For-
est (RF) (Ho, 1995), and Support Vector Machine
(SVM) (Cortes and Vapnik, 1995). This compre-
hensive evaluation across different model architec-
tures allows for a thorough comparison of perfor-
mance in classifying the given video dataset.

T2V Hallucination Benchmark # Videos

T2VHaluBench (Chu et al., 2024b) 50
ViBe 3,782

Table 4: The current T2V Hallucination Benchmark,
T2VHaluBench, is limited by a small sample size in its
dataset. In contrast, our dataset significantly outpaces
it, comprising a substantial collection of 3,782 videos,
offering a more comprehensive and robust foundation
for evaluating T2V hallucination phenomena.

4.2 Experimental Setup

The dataset was partitioned into 80% for training
and 20% for testing, and the Adam/AdamW opti-
mizer was used (Loshchilov and Hutter, 2019)..
For classification, video embeddings were ex-
tracted using the TimeSformer and VideoMAE
models, which process individual frames to gener-
ate meaningful feature representations. However,
despite these models operating on a per-frame basis,
the classification task itself did not strictly follow a
frame-by-frame approach. Instead, the classifica-

Hallucination Categories = Cohen’s Kappa
Vanishing Subject 0.7660
Omission Error 0.7474
Numeric Variability 0.8500
Subject Dysmorphia 0.8173
Visual Incongruity 0.8737

Table 3: This table presents Cohen’s Kappa Score
for Evaluating Inter-Annotator Agreement. The score
ranges from -1 to 1: 1 represents perfect agreement
between annotators. 0 implies that the agreement is no
better than random chance. Negative values indicate
stronger disagreement than expected by chance, sug-
gesting systematic annotation inconsistencies.

Hyperparameters

Model #Epochs  Batchsize  Optimizer Loss

GRU 30 32 AdamW categorical_crossentropy
LSTM 120 128 Adam categorical_crossentropy
Transformer 100 128 Adam categorical_crossentropy
CNN 100 128 Adam categorical_crossentropy
RNN 120 128 Adam categorical_crossentropy
RF N/A

SVM N/A

Table 5: Specifications of the model hyperparameters
employed during the classifier training process: for both
RF and SVM classifiers, default settings from scikit-
learn (Pedregosa et al., 2011) were applied.

Model Accuracy T F1 Score T
VideoMAE + GRU 0.268 0.190
VideoMAE + LSTM 0.302 0.299
VideoMAE + Transformer 0.284 0.254
VideoMAE + CNN 0.303 0.290
VideoMAE + RNN 0.289 0.289
VideoMAE + RF 0.331 0.279
VideoMAE + SVM 0.277 0.282
" TimeSFormer + GRU 0325 0279
TimeSFormer + LSTM 0.337 0.334
TimeSFormer + Transformer 0.322 0.284
TimeSFormer + CNN 0.345 0.342
TimeSFormer + RNN 0.299 0.299
TimeSFormer + RF 0.341 0.282
TimeSFormer + SVM 0.270 0.274

Table 6: A detailed comparison of model accuracy and
F1 score is presented for various combinations of mod-
els utilizing VideoMAE and TimeSFormer embeddings.
The model yielding the highest performance is denoted
in green for easy identification. This analysis aims to
assess the effectiveness of different embedding strate-
gies in optimizing both classification accuracy and the
balance between precision and recall, as captured by the
F1 score.

tion was performed at a higher level, incorporating
aggregated representations of the extracted embed-
dings.
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Figure 9: Prompt: a baby elephant walking behind a large one Omission Error: The generated output fails to
render a critical component explicitly specified in the input prompt the larger one. While the baby elephant is
depicted, the absence of the larger elephant represents a significant deviation from the prompt requirements. This
omission fundamentally alters the intended relationship and scale reference that was meant to be portrayed through
the presence of both elephants, demonstrating incomplete prompt adherence.

4.3 Results and Analysis

Table 6 presents a comprehensive comparison of
the performance metrics, namely accuracy and F1
score, for each model across two distinct feature
sets: VideoMAE and TimeSFormer embeddings.

For the models trained with VideoMAE embed-
dings, the RF model demonstrated the highest ac-
curacy, achieving a value of 0.331. However, the
LSTM model excelled in the F1 score, recording
the highest value of 0.299. On the other hand, the
GRU model exhibited the lowest performance, with
an accuracy of 0.268 and an F1 score of 0.190, indi-
cating a significant drop in both metrics compared
to the other models in this category.

When the TimeSFormer embeddings were uti-
lized, the CNN model outperformed all other mod-
els, attaining both the highest accuracy (0.345) and
F1 score (0.342). The LSTM model also performed
competitively, yielding an accuracy of 0.337 and an
F1 score of 0.334. In contrast, the SVM model was
the least effective, with an accuracy of 0.270 and
an F1 score of 0.274, which were notably lower
than those of other models.

Overall, TimeSFormer embeddings consistently
outperformed VideoMAE embeddings across most
models, showing superior accuracy and F1 scores.
The combination of TimeSFormer embeddings
with the CNN model delivered the optimal per-
formance in terms of both accuracy and F1 score,
making it the most effective configuration in this
study.

5 Conclusion and Future Work

In this paper, we present ViBe, a large-scale dataset
of 3,782 manually annotated videos, surpassing
prior benchmarks like T2VHaluBench by 75 times

in scale. It provides a robust foundation for eval-
uating hallucination, ensuring prompt adherence,
and improving video generation quality across di-
verse scenarios across T2V models. We introduce
a five-category hallucination taxonomy, enabling
systematic analysis and benchmarking of T2V mod-
els.

Future research directions encompass several
key areas of improvement. First, expanding the
existing taxonomy will provide a more comprehen-
sive framework for categorizing and understanding
various aspects of video generation. Additionally,
evaluating longer-duration videos will help assess
the scalability and temporal coherence of the mod-
els over extended sequences. Another critical fo-
cus is the development of automated classification
techniques, which will enhance the efficiency and
accuracy of video analysis by reducing reliance
on manual annotation. Finally, an essential step
forward involves training T2V models using RLHF.
This approach aims to refine the alignment of gen-
erated videos with human preferences, improving
the synthesized content’s relevance and quality.

6 Limitations

ViBe, while robust, has some limitations. Videos
are classified into a single hallucination category
for streamlined annotation, which may overlook
multi-category overlaps. The dataset is also lim-
ited to short video durations due to constraints in
open-source T2V models and annotation feasibil-
ity. Future work could address these limitations
by incorporating multi-category annotations and
extending video durations as computational and
automatic annotation methods improve.
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7 Ethics Statement

Our research on the video hallucinations bench-
mark aims to advance the understanding and evalu-
ation of generative models, ensuring transparency
and accountability in their development. We ac-
knowledge the ethical concerns surrounding poten-
tial misuse, particularly in creating highly realistic,
doctored videos that could contribute to misinfor-
mation, fraud, or manipulation. To mitigate these
risks, we emphasize responsible disclosure, pro-
mote the use of our benchmark for detection and
mitigation efforts, and advocate for ethical Al de-
velopment practices.
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A Appendix

This section offers supplementary material, includ-
ing additional examples, implementation details,
and more, to enhance the reader’s understanding
of the concepts discussed in this work. We also
present additional details of the annotation process
in Section B.

B Annotation Details

The objective of this annotation task is to detect
and classify hallucinations in videos produced by
T2V models. The annotated data will be utilized to
assess the model’s adherence to input prompts and
contribute to improving hallucination detection and
mitigation.

1 Understanding Hallucination Categories An-
notators will be trained to recognize the
five predefined categories of T2V hallu-
cination: Vanishing Subject, Omission
Error, Numeric Variability, Subject
Dysmorphia, = and Visual Incongruity.

2 Training and Evaluation Protocol

a. Training: Annotators will receive exam-
ple videos for each hallucination category,
along with justifications for category as-
signments.

b. Evaluation: Annotators will classify
five test videos, each corresponding to
a unique hallucination category. A min-
imum agreement score of 60% (correct
classification of at least 3 out of 5 videos)
is required to proceed to the annotation
phase.

c. Feedback Loop: Annotators who do not
meet the agreement threshold will receive
targeted feedback and additional training.

3 Annotation Process

a. Video Evaluation: Annotators will care-
fully review the assigned video, compar-
ing the visual content to the input text
prompt to identify inconsistencies.

b. Hallucination Categorization: Annota-
tors will assign the most prominent halluci-
nation category. If multiple hallucinations
exist, the most visibly apparent one will
be selected.

c. Annotation Tool: The identified category
will be entered into the annotation tool
(see 10, 11). Supplementary notes can be
added for clarification.

d. Annotation Time: The average annota-
tion time was recorded at 2.25 seconds per
video (see 7).

C Dataset

The five categories of hallucination have been pre-
viously defined, with examples provided for each.
In this section, we will present additional examples
to further illustrate these categories.

C.1 Hallucination Categories
1. Vanishing Subject (VS): See figs. 12 and 13

2. Omission Error (OE): See figs. 14 and 15

3. Numeric Variability (NV): See figs. 16
and 17

4. Subject Dysmorphia (SD): See figs. 18
and 19

5. Visual Incongruity (VI): See figs. 20 and 21
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Figure 10: This figure illustrates the annotation tool employed to label various video samples. The tool comprises
four columns:

Model: Represents the specific T2V model.

Prompt: Contains the image caption text derived from the MS COCO dataset.

Category: Indicates one of the five predefined hallucination categories.

Additional Notes: An optional column for supplementary annotations.
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j Numeric Variability (NV)
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Visual Incongruity (VI)

Figure 11: Using this annotation tool, annotators can classify the generated videos into one of the five predefined
hallucination categories.

Figure 12: Prompt: A boy in a red hat playing with tee ball set. Vanishing Subject: The visual content depicts a
boy wearing a red hat engaged in play with a tee-ball set. However, a hallucination occurs within the generated
scene, where the tee-ball set, initially present, inexplicably disappears during the sequence.

243



Figure 13: Prompt: Two young boys playing Wii bowling on a large television screen Vanishing Subject: In the
video frames, the TV initially displays two boys. However, as the video progresses, subtle changes occur. By the
final frame, one of the boys on the TV has mysteriously vanished, leaving only the other behind.
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Figure 14: Prompt: A person on a skateboard with his arms in the air. Omission Error: The prompt describes
a scene featuring a person on a skateboard with their arms raised in the air. However, this description exhibits a
hallucination, as the video does not depict the individual’s arms at all.

Figure 15: Prompt: Blue and yellow flowers in a glass vase near a mirror. Omission Error: The video lacks any
blue flowers, despite their explicit mention in the prompt. This discrepancy highlights a failure of the model to
accurately represent key visual elements specified in the input.

Figure 16: Prompt: A happy adult holding two large donuts. Numeric Variability: The description depicts a
content scenario where a happy adult is holding two large donuts. However, a hallucination occurs within the video,
where the depicted woman is shown holding three donuts instead of two.
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Figure 17: Prompt: A banana and a yellow apple in a woven basket. Numeric Variability: The visual scene
consists of a woven basket containing one banana and one yellow apple. However, the generative output exhibits a
hallucination, inaccurately depicting two bananas and two apples within the basket.

Figure 18: Prompt: Skateboarder and blue shirt and black jeans jumping on his board Subject Dysmorphia: The
video depicts a person riding a skateboard. Throughout the frames, the wheels of the skateboard keep morphing,
fluctuating in number as they increase and decrease. Additionally, the skateboarder’s arms undergo a similar
distortion, gradually shifting in shape over time.

P i V —a -

Figure 19: Prompt: A woman is jumping on a white bed. Subject Dysmorphia: The video depicts a woman
jumping on a white bed. Over time, a hallucination effect manifests, leading to a dysmorphic transformation of the
woman’s face within the video.

Figure 20: Prompt: A crowd of people standing on a beach flying kites. Visual Incongruity: Instead of being
depicted in the sky as expected, the kites appear visually inconsistent, resembling objects embedded in the sand.
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Figure 21: Prompt: a animal that is walking in a crowd of people Visual Incongruity: In the generated video,
a stone statue of an animal is seen moving atop a vast crowd that appears to be composed of human heads. The

statue’s movement contrasts with its rigid, lifeless material, creating an unsettling effect. The generated video blurs
the line between the inanimate and the living.
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