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Abstract

In this work, we study the cross-lingual
distance of machine translations through
alignment of seq2seq representations over
small corpora. First, we use the M2M100
model to collect sentence-level represen-
tations of The Book of Revelation in sev-
eral languages. We then perform unsuper-
vised manifold alignment (spectral cluster-
ing) between these collections of embed-
dings. As verses between translations are
not necessarily aligned, our procedure falls
under the challenging, but more realistic
non-correspondence regime. The cost func-
tion associated with each alignment is used
to rank the relative (machine) similarity of
one language to another. We then perform
correspondent alignment over another clus-
ter of languages, this time using FLORES+
parallel NLLB model embeddings. Our
experiments demonstrate that the represen-
tations of closely-related languages group
closely, and are cheap to align (requiring
<1000 sentences) via our strategy.

1 Introduction

Assessing the similarities and differences between
languages, that is, comparative linguistics, requires
the consideration of historical factors, vocabulary,
phonology, and written script Georgi et al. (2010);
Starostin (2000); Anttila (1989). Computational
linguists adopting lexicostatistical techniques can
study language distances by measuring the evolu-
tion of cognates Gudschinsky (1956). Comparative
analysis which operates purely at the word level,
such as ranking Levensthein distances (a string-edit
metric) Sturrock (2000), has been both widely used
and disputed Greenhill (2011). In parallel, the ma-
chine learning community recognized the need for
sentence-level processing to produce high-quality
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translations. The attention mechanism, common
to transformer-based language models Vaswani
(2017), considers the semantic contribution of all
tokens (word/sub-word units) in an input to develop
an output.

The quality of machine translation has drasti-
cally improved in recent years due to the advent
of attention-based sequence-to-sequence (seq2seq)
models which intake sentences in a source language
and output a corresponding translation in a target
language Sutskever (2014); Cho (2014). Sharp
improvements in multilingual training strategies
have resulted in so-called many-to-many transla-
tion models that can accept many source-target
language pairs. Many-to-many translation models,
such as the M2M100 Fan et al. (2021) and NLLB
Costa-jussa et al. (2022), can accept pairs from 100
and 200 widely-spoken languages, respectively.

Given a specified source language, the M2M100
and NLLB models tokenize an input and pass it
along several attention layers which encode the
specified sentence(s) to real-valued embeddings
Phuong and Hutter (2022). Such representations
produced by deeper encoder layers are thought to
embody abstract semantic meaning critical to devel-
oping coherent, high-quality output in the decoding
phase Vaswani (2017); Clark (2019); Voita et al.
(2019). Intuitively, we would expect that closely
related languages produce similar representations.
If we regard sentences as concepts, language gener-
ation benefits from the alignment of closely-related
concepts (The et al., 2024). We expect the syntac-
tical and figurative structure of sentences to align
more closely among related languages, thus we
want to investigate whether many-to-many trans-
former representations are capturing this dynamic.

In this work, we propose a low-resource strat-
egy for assessing how a many-to-many machine
translation model encoder groups languages. First,
we collect the sentence representations over a
common corpus across a cluster of Slavic, Indo-
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Aryan/Dravidian, Romance languages, Scandina-
vian, Turkic/Mongolic, and Bantu languages. For
this paper, we use the mean pooling of hidden states
over the entire sequence to get a sentence-level
representation, in line with other works Xu et al.
(2020); Kudugunta et al. (2019). For one group
of language families, the common corpus is the
Book of Revelation (BoR). For the other group, the
common text is a collection of parallel (i.e., corre-
spondent) sentences from the FLORES-200 dataset
Costa-jussa et al. (2022). We validate our method
over this correspondent dataset to verify alignment
is working as expected in a naive setting. In com-
parison to the work of Kudugunta et al. (2019)
which uses an irreproducible web crawl to generate
hundreds of thousands to tens of millions of parallel
sentence pairs Uszkoreit et al. (2010), our resource
is low-resource: we only require < 1000 sentences
per language pair to perform our clustering.

We treat each language’s set of embeddings as
a discrete manifold. Then, we perform a pairwise
manifold alignment via spectral clustering Wang
and Mahadevan (2009) and use the associated cost
to produce an ordering of machine-lingual similar-
ities. For the BoR corpus, since translations are
not necessarily verse-aligned, we are performing
alignment without correspondence — a much more
challenging regime, and realistic scenario for ultra
low-resource languages. Our similarity rankings
over both BoR and FLORES+ closely correspond
to established analyses in comparative linguistics
Bella et al. (2021) along with a few sharp devia-
tions that may indicate the preference of M2M100
and NLLB to occasionally place representations of
less related languages close to one another.

2 Comparison Algorithm

The semantics of a language, referring to its mean-
ing and how words and phrases convey ideas, often
follow distinct patterns based on the relationships
between words, contexts, and usage. These pat-
terns can be observed in how words group together,
how similar meanings emerge in different contexts,
or how words with similar meanings are often used
in comparable syntactic structures.

Spectral clustering Von Luxburg (2007); Law
et al. (2017) can be applied to identify these seman-
tic patterns by analyzing the structure of a similarity
matrix constructed from the relationships between
words or phrases. We follow the method of Wang
and Mahadevan (2009), referred to as manifold
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alignment without correspondence, and describe
this process explicitly in Section 2.1. We must use
a “without-correspondence” strategy as variations
in translations (in our case, of the Christian Bible),
can produce different verse-orderings and shuffled
semantics which prevents a verse-to-verse (1-1)
correspondence between two languages.

In our case, we used the heat kernel similarity on
a suggestion by Wang and Mahadevan (2009) for
language comparison. By representing sentences
as real-valued vectors in high-dimensional space
using encoder embeddings (e.g., M2M100/NLLB
representations), we can calculate pairwise similar-
ities, which are then used to create a graph where
nodes represent vectors in these representations,
and the edges are given quantitatively by their sim-
ilarity matrix. The spectral clustering algorithm
then partitions this graph into clusters by project-
ing these vector representations onto a set of vec-
tors given by solutions to a generalized eigenvec-
tor solution (see Section 2.2). This method hopes
to potentially reveal similarities between machine
representations of languages by comparing these
projections, which are closely related to the clus-
ters. In particular, we examine the square sum of
the first d eigenvalues as defined by the general
eigenvector equation as given in Section 2.1.

Chowdhury et al. (2021) also used a graph-based
approach to study the similarities between lan-
guages. They created graph Laplacians between
given languages at the word level. Our method
considers language at the sentence level and, in-
stead creates a joint graph based on their combined
information. Motivated by Wang and Mahadevan
(2009), we opt for the combined graph approach
due to a belief that we can measure the distance be-
tween two languages by considering spectral data
associated to a submanifold derived from a combi-
nation of data from the graphs of both languages.

2.1 Algorithm Sketch

Let X [x1, x2,...,2,] and Y
[Y1, Y2,...,yn] be p X m and ¢ X n matri-
ces, respectively. For our application, X and
Y are the mean poolings of hidden sentences
states. The rows are the representations and the
columns are the features. Let || x2 || denote the
Euclidean distance. Define the (k + 1) x (kK + 1)
matrix R,, by Ry = % where z; = x; and
22, ..., 2ka1 are x;’s k-closest neighbors and Jx
is the standard deviation for the pairwise distances



between the ;. We now define the similarity
matrix W, by W, = exp (—||Rs, — Ra,llF),
where [|A||F trace(AT A) is the Frobenius
norm of the matrix A. The matrix W, is sometimes
called the similarity matrix. N
Let the diagonal matrix D,, be defined by Dy’
> W2, and let L, = D, — W, We similarly
define a family of matrices in terms of Y. Let

2=y y|ma=|% .

0 Y D,
Define W by Wi/ = exp (—dist(Ry, Ry)/dx.y),
where dist(R,, R,) and 0x y are defined in Wang
and Mahadevan (2009) or in the Appendix. Let B,
be the diagonal matrix with By* = >~ W*/ and

B}7 = 7. W', We define the distance function
d(-) as

D,
0

d(Ry;, Ry;) = min 'min{dl(h), da(h)}, where

1<h<k

di(h) = [{ Ry, }n — k1 Ra, | F,

dy(h) = |[ke{Ry; }n — Ra, | F,

k= tTace(Rfi{Ryj }h)/trace(Rfini)

ko = trace({Ryj }{Rg)/tTace({Ryj }{{Ryj th)-

Here, h is a permutation of the k possible choices

for R,,. The quantity d x y is the standard deviation

of the set {dist(Ry,, Ry;) : v; € X,y; € Y}
Further, define

Ly + puB,
—MWT

L= W
a Ly +pBy |

Consider the solutions for A in the equation
ZTLZ~y = \ZTDZ~. (1)

Next, index the generalized eigenvalues from least
to greatest and consider the first d eigenvalues {); :
1 < i < d} and calculate K(d) = 2% A2
This K (d) will be used to measure the alignment
quality between two languages.

2.2 Cost Function

The cost function from Wang and Mahadevan
(2009) is given as

Cly) =Cla, B) =) ulala; — fly;)* W
4,J
1 T T 21174,7
+§ZM(OZ Ir; — yj) ij

Z?J
1
+5 2wy = pTy)? =" 2" L2,
i?j
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where 47 = [aT, 8T]T is a solution to the
generalized eigenvalue problem Eqn. 1. Note
that if we normalize v by dividing the constant
VAT ZT DZ~| then C(v) = |A|?. The cost func-
tion C'(«a, 8) from Wang and Mahadevan (2009)
is minimized by the generalized eigenvectors for
the above equation. Hence we define the new cost

d
function K (d) = Y |A\;|%, where the ); are the
i=1
eigenvalues for the above equation. The minimum
possible value of K (d) is O (manifolds are identi-
cal) while the maximum is unbounded, though in

practice we do not observe it to exceed 1000.

3 Experiments

In this section, we produce a ranking of (ma-
chine) language distances. We review our distances
against prevailing comparative linguistics theory.

Dataset. Our corpora to compare encoder man-
ifolds are the Book of Revelation (BoR) of the
Christian Bible and the FLORES+ dataset (dev
split). We choose the BoR due to (1) its widely
available translations and (2) since it contains a di-
verse set of vocabulary and vivid imagery this can
help further probe for concept alignment. For the
BoR, we source these translations from the digital
eBible corpus Akerman et al. (2023). Revelations
has a diverse set of words describing abstract vi-
sions. We thought this diversity would help sepa-
rate out some of the differences in the languages
we consider. For each family, we attempt to choose
translations of the BoR descending from a com-
mon pivot or consistent translator, though this is
not always possible. FLORES+ sentences are 1-1
aligned between all languages and professionally
translated.

Languages. For the non-correspondent BoR clus-
tering task, we consider three clusters of lan-
guages: (French, Italian, Spanish, Portuguese),
(German, Russian, Ukrainian, Polish), (Kannada,
Hindi, Bengali, Gujarati). For the correspondent
FLORES+ task, we consider three new clusters of
languages: (Icelandic, Swedish, Danish, Norwe-
gian Bokmal), (Swahili, Kirundi, Kinyarwanda,
Luganda), (Khalkha Mongolian, Kyrgyz, Tatar,
Kazakh). In each quadruplet, we include a chal-
lenge (grey) language which is widely accepted to
be the most dissimilar of its group despite close
geographic proximity.



Italian | Portuguese | French Swedish | Danish | Nor. Bok.
Portuguese 239 Danish 299
French 313 153 Nor. Bok. 76 228
Spanish 101 174 296 Icelandic 577 600 619

Table 1: Romance Language Distances. Our
method generally places Italian, Spanish, and Por-
tuguese close together, but controversially ranks
French closer to Portuguese than the other Ro-

Table 4: East/West Scandinavian Language Dis-
tances. Our ranking clusters members of the East
Scandinavian family closer together than with Ice-
landic, which is closer to Old Norse.

mance languages. Kh. Mong. | Tatar | Kazakh
Bengali | Hindi | Kannada Tatar 744
Hindi 21 Kazakh 226 413
Kannada 98 304 Kyrgyz 600 436 461
Gujarati 231 360 365

Table 2: Indo-Aryan/Dravidian Language Dis-
tances. Our ranking overall tends to cluster the
Indo-Aryan languages Bengali, Hindi, and Gujarati
together. It erroneously places Kannada, a Dravid-
ian language, not as far away for several orderings.

German | Russian | Polish
Russian 325
Polish 397 252
UKkrainian 228 220 155

Table 3: Slavic/Germanic Language Distances.
Our ranking overall tends to cluster the Slavic lan-
guages together.

Model. For each translation of the BoR, we push
every verse through the M2M100 (418M model)
and extract the mean pooling of hidden states over
the entire sequence to get a sentence-level represen-
tation. For each language, this results in roughly
403 points in R'924, For translations of FLORES+,
we use NLLB (600M model) mean pooling embed-
dings of 997 sentences also in R1924. We choose
d = 400 eigenvalues to construct our cost K (d) (as
described in Section 2.2 as this explained roughly
90% of covariance across all individual language
graph Laplacians. We ran all experiments using
only a CPU.

4 Experimental Analysis

4.1 Non-Correspondent Alignment

Tables 1, 2, and 3 depict our seq2seq spectral clus-
tering rankings via manifold alignment without
correspondence over the BoR. A higher spectral
clustering score indicates a higher cost for manifold
alignment.

Our spectral rank successfully tends to group

Table 5: Turkic/Mongolic Language Distances.
Kazakh, Tatar, and Kyrgyz (all members of the
Turkic Kipchak branch), and generally clustered
together. The method commits an error by viewing
Khalka Mongolian and Kazakh as closest.

Swahili | Luganda | Swalhili
Luganda 497
Kirundi 317 298
Kinyarw. 254 299 282

Table 6: Great Lakes/Sabaki Bantu Language
Distances. The alignment generally views the
Great Lakes Bantu languages as close. Our method
commits a single error by viewing Swabhili (a
Sabaki Bantu language) as the closest language
to Kirundi.

close languages together. This indicates that the
manifold alignment is easier for the core similar
languages, thus their representations may occupy
similar regions in the ambient space. Our ranking,
though generally accurate is not immune to errors
— for example, placing Kannada, a Dravidian lan-
guage, very close to some Indo-Aryan languages.

4.2 Correspondent Alignment

Tables 4, 5, and 6 depict rankings via manifold
alignment with correspondence over FLORES+.
To perform parallel alignment, we set W = [ in
Section 2.1. Our results generally fall in line with
what is found in Bella et al. (2021).

Swedish, Danish, and Norwegian Bokmal are
closely related members of the East Scandinavian
group within the Northern Germanic family and our
clustered closely by our method. Kahlkha Mongo-
lian, a member of the Mongolic languages, shares
typological features but is less related to the Turkic
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group. Our approach does commit an error by judg-
ing Khalkha Mongolian as closer to Kazakh than
the other Kipchak languages. Swahili, although a
Bantu language, is part of the Sabaki group, differs
in vocabulary from the other three. Our methodol-
ogy erroneously views Swabhili as the closest lan-
guage to Kirundi (which is, in fact, Kinyarwanda).

5 Conclusion

In this work, we study how seq2seq translation
models group languages together. We conduct this
assessment by extracting M2M 100 and NLLB hid-
den representations of sentences of various lan-
guages over small, common corpora. We observe
that the embedding manifolds of closely related
languages likely contain similar structures as they,
on average, do not incur high spectral clustering
costs. In contrast to Kudugunta et al. (2019), we
require < 1000 sentences and can perform cluster-
ing without parallel alignment, thus framing our
method as a low-resource strategy.
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